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Abstract We establish a new formula for the heat kernel on regular trees in terms
of classical I -Bessel functions. Although the formula is explicit, and a proof is given
through direct computation, we also provide a conceptual viewpoint using the horo-
cyclic transform on regular trees. From periodization, we then obtain a heat kernel
expression on any regular graph. From spectral theory, one has another expression for
the heat kernel as an integral transform of the spectral measure. By equating these
two formulas and taking a certain integral transform, we obtain as application several
generalized versions of the determinant formula for the Ihara zeta function associated
to finite or infinite regular graphs. Our approach to the Ihara zeta function and determi-
nant formula through heat kernel analysis follows a similar methodology which exists
for quotients of rank one symmetric spaces.
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1 Introduction

Let q be a positive integer and X be a (q + 1)-regular graph. There is an associated
heat kernel KX (t, x0, x) corresponding to the Laplacian formed by considering the
adjacency matrix on X . We show that in a natural way the building blocks of KX are
the functions

q−r/2e−(q+1)t Ir (2
√
qt),

where r ∈ Z≥0, time t ∈ R≥0, and Ir is the classical I -Bessel function of order r .
The expression for the heat kernel on X comes from a new formula for the heat kernel
on regular trees (Proposition 3.1) which we prove in this article. Our expression is
quite different from a previous formula due to F. Chung and S.-T. Yau [7], which we
describe in Subsect. 3.1, Eqs. (5a,5b). If we write the functions in the above stated
building block as

q−r/2 · e−(
√
q−1)2t · e−2

√
qt Ir (2

√
qt),

then there is moreover a near-perfect analogy with the building blocks of typical heat
kernel expressions on Riemannian symmetric spaces, which have the form

F(r) · e−at · 1√
4π t

d
e−r2/4t

for certain constants a, d and function F that allow further interpretations; we refer
to the survey article [18] and the references therein for further discussion.

More precisely, we prove the following result.

Theorem 1.1 The heat kernel on a (q + 1)-regular graph X is given by

KX (t, x0, x) = e−(q+1)t
∞∑

m=0

bm(x)q−m/2 Im(2
√
qt),

where Im is the I-Bessel function of order m, bm(x) = cm(x) − (q − 1)(cm−2(x) +
cm−4(x)+· · · )with the last term being either c1(x) or c2(x), and cm(x) is the number
of geodesics from a fixed base point x0 to x of length m ≥ 0.

To be specific, we define a geodesic in a graph to be a path without back-tracking.
The terminology is consistent with concepts from Riemannian geometry where a
geodesic is a path which locally is distance minimizing. Moreover, a closed geodesic
is a closed path without back-tracking or tails. We defer until Sect. 2 more details on
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Heat kernels on regular graphs and generalized Ihara 173

these definitions and a precise axiomatic characterization of the heat kernel. In view of
a combinatorial observation, Proposition 2.1, we may formulate the following result.

Corollary 1.2 In addition to the stated assumptions, suppose that X is vertex transi-
tive. Let N 0

m denote the number of closed geodesics of length m in X with base point
x0. Then

KX (t, x0, x0) = Kq+1(t, x0, x0) + e−(q+1)t
∞∑

m=1

N 0
mq

−m/2 Im(2
√
qt)

where Kq+1 denotes the heat kernel of the (q + 1)-regular tree.

For finite, not necessarily vertex transitive, graphs X , similar formulas were pre-
viously proved by Ahumada [1], Terras-Wallace [34] and Mnëv [22]. Note that our
formula holds for infinite graphs as well, and is therefore more general than the finite
graph case. With our methods, one can also deduce the formula for the finite non-
vertex transitive case using Proposition 2.2. There is a second expression for the heat
kernel coming from spectral considerations. Equating the two expressions for the heat
kernel, as in known approaches to the Poisson summation formula or the Selberg trace
formula, one obtains an identity which is a type of theta inversion formula. To this
identity we will apply a certain integral transform, which amounts to a Laplace trans-
form with a change of variables, and obtain the logarithmic derivative of the Ihara zeta
function. This procedure is motivated by McKean [21] in his approach to the Selberg
zeta function and was axiomatized in [18] to abstract settings. In the end, one obtains
determinantal formulas for Ihara zeta-like functions. In a special case, we recover the
standard formula stemming from Ihara’s work [17], which in turn is generalized in
[2,12,15,20,33] for finite graphs; see Subsect. 4.3.

We now describe one sample outcome which comes from the above described
sequence of calculations. Let X be a vertex transitive (q+1)-regular graph. We define
the associated Ihara zeta function of X by

ζX (u) = exp

{ ∞∑

m=1

N 0
m

m
um

}
,

where N 0
m is the number of closed geodesics of length m starting at a fixed vertex x0.

For finite graphs, the classical Ihara zeta function is just our Ihara zeta function raised
to the power equaling the number of vertices.

Theorem 1.3 Let X be a vertex transitive (q+1)-regular graphwith spectral measure
μ for the Laplacian. Then

ζX (u)−1 = (1 − u2)(q−1)/2 exp

(∫
log

(
1 − (q + 1 − λ)u + qu2

)
dμ(λ)

)
.

Again, we defer to Sect. 2 the definitions of the Laplacian and spectral measure.
There are some papers in the literature defining Ihara zeta functions for infinite graphs,
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in particular Clair and Mokhtari-Sharghi [6], Grigorchuk-Zuk [14] and Guido, Isola
and Lapidus [13]. Their definitions are at least a priori somewhat different in that
they typically look at approximations by finite graphs and also use ideas from oper-
ator algebras such as the von Neumann trace. In many cases the different definitions
coincide and the formula in Theorem 1.3 can be recovered from the above references.

A number of interesting examples of Ihara zeta functions for infinite Cayley graphs
can be found in [14]. Additionally, we refer to the articles [29,30] and [31] in which the
author provides a fascinating discussion inwhich the spectral and zeta function analysis
on graphs is compared to similar studies in spectral theory on symmetric spaces and
zeta functions from number theory. Going further in this direction, the results in [22]
and [25] study trace formula on finite discrete graphs, and the more recent work [8]
and [9] on certain cusp-like regular graphs, obtaining theorems analogous to known
results in the study of the Selberg zeta function for non-compact quotients of rank one
symmetric spaces.

In summary, in the present article we give a new expression for the heat kernel
associated to any regular graph. One can quickly deduce the Ihara determinant formula
and a number of interesting extensions, not the least of which is to infinite transitive
graphs. As is well-known, one main application of such formulas is to the study of
counting closed geodesics. For us, it is also significant that our analysis provides yet
another instance of when the heat kernel yields zeta functions together with their main
functional relation, just as in the case of Riemann, Selberg, and beyond. In particular,
the present paper can be viewed in the context of the last section of [18].

2 Preliminaries

2.1 Graphs

We follow the definitions in Serre’s book [28]. A graph X consists of a set of vertices
V X , a set of edges EX , and two maps

EX → V X × V X, y �→ (o(y), t (y))

and

EX → EX, y �→ y

such that for each y ∈ EX we have that y = y, y �= y and o(y) = t (y). The vertices
o(y) and t (y) are the extremities of the edge y. Two vertices are adjacent if they are
extremities of an edge. The degree of a vertex x is

deg x = Card {y ∈ EX : o(y) = x}.

A graph is d-regular if each vertex has degree d.
There is an obvious notion ofmorphism. Let PAT Hn denote the graphwith vertices

0, 1, 2, . . . , n and (half of) the edges are given by [i, i + 1], i = 0, . . . , n − 1. A
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Heat kernels on regular graphs and generalized Ihara 175

path (of length n) is a morphism c from PAT Hn into the graph. The sequences
of edges yi = c([i, i + 1]) [such that t (yi ) = o(yi+1)] determines the path. In
particular a path is oriented. There is a backtracking if for some i that yi+1 = yi
and there is a tail if y0 = yn−1. A path is closed if c(0) = c(n). A geodesic is a path
without backtracking. A geodesic loop (or circuit in Serre’s terminology) is a closed
path that is a geodesic. A closed geodesic is a closed path with no tail and without
backtracking.

Let us here make a comment on the terminology we have chosen. In graph theory
the names for what we call closed geodesics or geodesic loops, range from circuits,
loops etc, to closed paths without backtracking and no tails. Our terminology is instead
directly imported from Riemannian geometry for the fully analogous concepts. In that
theory geodesics are locally distance minimizing paths and the difference between a
geodesic loop and a closed geodesic is that the latter is required to be differentiable
also at the starting/ending point.

The path of length zero counts as a closed geodesic and, therefore, is a geodesic
loop. Additionally, every closed path with one edge counts as a closed geodesic. Any
length two geodesic loop is also a closed geodesic, but the closed path y.y is neither.

A prime geodesic is an equivalence class of closed geodesics [c] (where the equiv-
alence class is forgetting the starting point) which is primitive in the sense that it is
not a power of another closed geodesic. The latter means by definition that there is no
closed geodesic d and integer n > 1 such that [c] = [

dn
]
, which says in words that c

is not just a geodesic that traverses another one n number of times.
An orientation is a subset EX+ of edges such that EX is the disjoint union of

EX+ and EX+. With the data of a graph one can associate a geometric realization:
start with the discrete topology, take V X × [0, 1] and make identification based on
the maps o and t .

A tree is a connected nonempty graph without geodesic loops.
We will in particular consider vertex transitive graphs. This means there is a group

of automorphisms which is transitive on the vertices. In particular such a graph is of
course regular. A rich source of such graphs is provided by Cayley graphs of groups:
Let G be a group and let S be a subset of G. We denote by X (G, S) the oriented
graph having elements of G as vertices and EX+ = G × S with o(g, s) = g and
t (g, s) = gs for each edge (g, s).

Let X be a graph on which a group G acts. An inversion is a pair consisting of an
element g and an edge y such that gy = y. If G acts without inversions (which is
the same as saying that there is an orientation of X preserved by G) we can define
the quotient graph G\X in an obvious way; the respective edge and vertex sets are
the corresponding quotients. (To get rid of inversions one may pass to a barycentric
division.) As in topology we say that X is a regular covering of Y if there is a group
which acts on X freely and without inversion with quotient Y .

Let X be a (q + 1)-regular graph. Then its universal covering is the (q + 1)-regular
tree, and the covering group acts freely on the tree without inversion. The covering
group is a free group.
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2.2 Path counting in graphs

We fix a base vertex x0 in a graph X and define the following counting functions which
will be used in this paper:

• ak(x) is the number of paths of length k from x0 to x ,
• ck(x) is the number of geodesics of length k from x0 to x ,
• c0k = ck(x0) is the number of geodesic loops of length k starting at x0,
• ck the number of geodesic loops of length k, from some starting point with a distinct
direction,

• N 0
k is the number of closed geodesics of length k starting at x0,

• Nk is the number of closed geodesics of length k, from some starting point with a
distinct direction,

• πk is the number of prime geodesics of length k.

The sequences {ck}, {Nk} and {πk} only make sense for finite graphs, since if the
graph is infinite, these values are typically infinite. For finite vertex transitive graphs,
the sequences {N 0

k } and {Nk} are related by the number of vertices, i.e. starting points.
Specifically, if the graph X has n vertices, then N 0

k · n = Nk for all k. Also, Nk and
πk have a precise relationship, see e.g. [32] or [14]. Finally, we recall the conventions
that c00 = N 0

0 = 1, c01 = N 0
1 and c02 = N 0

2 .

Example Let X be the complete graph on four vertices. To illustrate and clarify the
definitions above we note that c00 = 1, c10 = 0, c02 = 0, c03 = 6, c04 = 12, and c05 = 12.
The values for N 0

k coincides with c0k until k = 4 but then N 0
5 = 0.

Proposition 2.1 Let X be a transitive (q+1)-regular graph. Then for k ≥ 3, following
relation holds true

N 0
k = c0k − (q − 1)(c0k−2 + c0k−4 + · · · )

the last term being c01 or c
0
2 depending on the parity of k.

Proof This is similar to an argument in [27]. A geodesic loop of length k ≥ 3 which is
not a closed geodesic has the form y1.z.y1 where z is a geodesic loop of length k − 2.
There are two possibilities, either z is a closed geodesic or not. If we fix z, then the
number of possibilities for y1 is q − 1 in the first case and q in the second case. Since
X is vertex transitive, we may freely change the starting point of any loop, namely z.
With this in mind, we obtain the recursive relation that

c0k − N 0
k = (q − 1)N 0

k−2 + q(c0k−2 − N 0
k−2) = (c0k−2 − N 0

k−2) + (q − 1)c0k−2,

which we can write as

N 0
k − N 0

k−2 = c0k − qc0k−2.

Using that c01 = N 0
1 and c02 = N 0

2 , the proposition follows by induction on k. 	
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Heat kernels on regular graphs and generalized Ihara 177

With a proof similar to the one given in the above proposition, we obtain the
following result.

Proposition 2.2 Let X be a finite (q+1)-regular graph. Then for k ≥ 3, the following
relation holds true

Nk = ck − (q − 1)(ck−2 + ck−4 + · · · )

the last term being c1 or c2 depending on the parity of k.

2.3 The combinatorial laplacian and heat kernel

Given a (q + 1)-regular graph X and function f on the vertices X , the Laplacian of
f , written as � f , is the function of the vertices of X which is defined by the formula

� f (x) = (q + 1) f (x) −
∑

e s.t. o(e)=x

f (t (e)).

The Laplacian is a semi-positive, bounded self-adjoint operator on L2(V X). For a
finite graph with N vertices we label the eigenvalues of � as follows: 0 = λ0 ≤ λ1 ≤
· · · ≤ λN−1 ≤ 2(q + 1). The heat kernel KX (t, x, y) : R≥0 × X × X → R on X is
the solution of

�KX (t, x0, x) + ∂

∂t
KX (t, x0, x) = 0 (1a)

KX (0, x0, x) =
{
1 if x = x0
0 otherwise.

(1b)

Sometimes we write KX (t, x0, x) = KX (t, x) when a base point x0 is understood.
Whenever X is a countable graph with bounded vertex degree, the heat kernel of X

exists and is unique among bounded functions ([10,11]). Let X be a regular covering
of Y via the map π and group �, then it is formally immediate that

KY (t, y0, y) =
∑

x∈π−1(y)

KX (t, x0, x)

where y0 = π(x0); alternatively, with a chosen x such that y = π(x), we have that

KY (t, y0, y) =
∑

γ∈�

KX (t, x0, γ x).

Onecan show that the heat kernel decays sufficiently rapidly so that the above equalities
are not only formal, but indeed are convergent series. We refer to [4,10] as well as the
heat kernel formula for trees in Proposition 3.1 and the bounds in Subsect. 2.5.
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178 G. Chinta et al.

Consider the numbers an(x) defined by

e(q+1)t KX (t, x) =
∞∑

n=0

an(x)
tn

n!

then it is well-known and simple to see that an(x) is the number of paths from x0 to
x as defined above.

2.4 The I -Bessel function

Classically, the I -Bessel function Ix (t) is defined as a certain solution to the differential
equation

t2
d2w

dt2
+ t

dw

dt
− (t2 + x2) = 0.

For integer values of x , it is immediately shown that Ix = I−x and, for positive integer
values of x , we have the series representation

Ix (t) =
∞∑

n=0

(t/2)2n+x

n! �(n + 1 + x)
(2)

as well as the integral representation

Ix (t) = 1

π

π∫

0

et cos(θ) cos(θx)dθ. (3)

The mathematical literature contains a vast number of articles and monographs which
study the many fascinating properties and manifestations of the I -Bessel functions, as
well as other Bessel functions. The connection with the discrete heat equation comes
from the basic relation

Ix+1(t) + Ix−1(t) = 2
d

dt
Ix (t), (4)

which easily can be derived from the integral representation and trigonometric iden-
tities. This relation will be used in the proof of Proposition 3.1.

2.5 Universal bounds for the I -Bessel function

We have the following uniform bounds from [4] which used [26]. For any t > 0 and
integer x ≥ 0, we have that

√
t · e−t Ix (t) ≤

(
t

t + x

)x/2

=
(
1 + x

t

)−x/2
.
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As stated, the above bound is enough to show that the periodization procedure in our
setting gives rise to convergent sum expressions for the heat kernel.

2.6 An integral transform of I-Bessel

For integers n and s ∈ C with Re(s) > 0 we have e.g. from [24], that

∞∫

0

e−st e−t In(t)dt =
(
s + 1 − √

(s2 + 2s)
)n

√
(s2 + 2s)

.

We will consider the transform, essentially the Laplace transform,

G f (u) = (u−2 − q)

∫ ∞

0
e−(qu+1/u)t e(q+1)t f (t)dt.

In view of the above formula, applying the transform to the heat kernel building block,
we get

G
(
e−(q+1)t q−k/2 Ik(2

√
qt)

)
(u) = uk−1

for k ≥ 0 and 0 < u < 1/
√
q .

3 Heat kernels on regular graphs

3.1 A heat kernel expression for regular trees

Let X be the (q + 1)-regular tree and x0 ∈ X a base point. From its characterizing
properties (1a) and (1b), it is immediate to show that the heat kernel on a graph is
invariant with respect to any graph automorphism g:

K (t, gx0, gx) = K (t, x0, x).

In particular, we have that the heat kernel K (t, x0, x) on the tree X is radial, that is
it depends only on r = d(x0, x). Therefore we can write the heat kernel as K (t, r).
Expressions for K (t, r) were established by Bednarchak [3], Chung and Yau [7],
Cowling, Meda and Setti [5], as well as Horton, Newland and Terras [16]. In the
physics literature regular trees are called Bethe lattices. As stated, one of the main
results of this paper is a formula for the heat kernel on X , which we consider to be new
since we did not find the expression in either the mathematical or physics literature.

As an example of a known expression, Chung and Yau [7] prove that in the radial
coordinate r , the heat kernel of the (q + 1)-regular tree is given by
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K (t, r) = 2e−(q+1)t

πqr/2−1

∫ π

0

exp
(
2t

√
q cos u

)
sin u(q sin(r + 1)u − sin(r − 1)u)

(q + 1)2 − 4q cos2 u
du

(5a)

for r > 0, and

K (t, 0) = 2q(q + 1)e−(q+1)t

π

∫ π

0

exp
(
2t

√
q cos u

)
sin2 u

(q + 1)2 − 4q cos2 u
du. (5b)

The formula which we prove is given in the following proposition.

Proposition 3.1 The heat kernel of the (q + 1)-regular tree is given in the radial
coordinate r ≥ 0 as

K (t, r) = q−r/2e−(q+1)t Ir (2
√
qt) − (q − 1)

∞∑

j=1

q−(r+2 j)/2e−(q+1)t Ir+2 j (2
√
qt),

where I denotes the I -Bessel function.

Proof It is immediate that when t = 0, the above series is equal to δ0(r) as required,
since Ix (0) = 0 for x �= 0 and I0(0) = 1. Since K (0, r) = δ0(r), it remains to show
that the above series is equal to K (t, 0) for t > 0. Denote by f (r) = K (t, r) and
ḟ (r) = ∂K (t, r)/∂t . If r = 0, then the differential equation (1a) for the heat kernel
takes the form

(q + 1) f (0) − (q + 1) f (1) + ḟ (0) = 0,

and for r > 0 the differential equation becomes

(q + 1) f (r) − q f (r + 1) − f (r − 1) + ḟ (r) = 0.

Let g(r) be the above series expansion times e(q+1)t , or, when written out,

g(r) = q−r/2 Ir (2
√
qt) − (q − 1)

∞∑

j=1

q−(r+2 j)/2 Ir+2 j (2
√
qt)

It is an elementary exercise to show that the series expansion satisfies the characterizing
differential equation for the heat kernel if and only if we have the differential equations

− (q + 1)g(1) + ġ(0) = 0, (6)

and for every r > 0

− qg(r + 1) − g(r − 1) + ġ(r) = 0. (7)
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Heat kernels on regular graphs and generalized Ihara 181

Let us first verify (6). We begin by writing the

Left-hand-side of (6) = −(q + 1)q−1/2 I1(2
√
qt)

+(q + 1)(q − 1)
∞∑

j=1

q−(1+2 j)/2 I1+2 j (2
√
qt)

+2
√
q I ′

0(2
√
qt) − (q − 1)2

√
q

∞∑

j=1

q−2 j I ′
2 j (2

√
qt).

Using the basic relation Ir−1(z) + Ir+1(z) = 2I ′
r (z) (4), we obtain the expression

Left-hand-side of (6) = −(q + 1)q−1/2 I1(2
√
qt)

+(q + 1)(q − 1)
∞∑

j=1

q−(1+2 j)/2 I1+2 j (2
√
qt)

+√
q(I1(2

√
qt) + I−1(2

√
qt))

−(q − 1)
√
q

∞∑

j=1

q− j (I2 j+1(2
√
qt) + I2 j−1(2

√
qt)).

(8)

Collecting terms, and recalling that I−1 = I1, we can evaluate the coefficient of each
I -Bessel function in (8):

I0 : there are no I0 terms,

I1 : −(q + 1)q−1/2 + 2
√
q − (q − 1)

√
qq−1 = 0,

I2 j+1 : (q2 − 1)q−(1+2 j)/2 − (q − 1)
√
qq− j − (q − 1)

√
qq−( j+1)

= (q − 1)q− j ((q + 1)q−1/2 − q1/2 − q−1/2)

= 0.

In other words, the left-hand-side of (6) is zero, as required.
Let us now check the case when r > 0. Again, we begin by writing the

Left-hand-side of (7) = −q1−(r+1)/2 Ir+1(2
√
qt)

+ q(q − 1)
∞∑

j=1

q−(r+1+2 j)/2 Ir+1+2 j (2
√
qt)

− q−(r−1)/2 Ir−1(2
√
qt)

+ (q − 1)
∞∑

j=1

q−(r−1+2 j)/2 Ir−1+2 j (2
√
qt)
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+ 2
√
qq−r/2 I ′

r (2
√
qt)

− 2
√
q(q − 1)

∞∑

j=1

q−(r+2 j)/2 I ′
r+2 j (2

√
qt) (9)

= −q1/2−r/2 Ir+1(2
√
qt)

+ q(q − 1)
∞∑

j=1

q−(r+1+2 j)/2 Ir+1+2 j (2
√
qt)

− q−(r−1)/2 Ir−1(2
√
qt)

+ (q − 1)
∞∑

j=1

q−(r−1+2 j)/2 Ir−1+2 j (2
√
qt)

+√
qq−r/2(Ir+1(2

√
qt)

+ Ir−1(2
√
qt))

−√
q(q − 1)

∞∑

j=1

q−(r+2 j)/2(Ir+1+2 j (2
√
qt)

+ Ir−1+2 j (2
√
qt)). (10)

As above, we can evaluate the coefficient of each I -Bessel function in (9):

Ir−1 : −q−(r−1)/2 + √
qq−r/2 = 0

Ir : there are no Ir terms,

Ir+1 : −q1/2−r/2 + (q − 1)q−(r+1)/2 + √
qq−r/2 − √

q(q − 1)q−(r+2)/2 = 0

Ir+2 j+1 : q(q − 1)q−(r+1+2 j)/2 + (q − 1)q−(r+1+2 j)/2

−√
q(q − 1)q−(r+2 j)/2 − √

q(q − 1)q−(r+2 j+2)/2

= (q − 1)q−r/2q− j (q1/2 + q−1/2 − q1/2 − q−1/2)

= 0.

In other words, the left-hand-side of (7) is zero, as required, which completes the proof
of the proposition. 	


In the following subsection we indicate another approach to the proof of Proposi-
tion 3.1.

3.2 The horospherical transform

Every geodesic ray γ in the tree emanating from a fixed base point x0 can be viewed as
an “ideal boundary point at infinity”. To each such γ there are associated horospheres,
one for each integer n:
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Hn = {x ∈ X : lim
k→∞

[
d(γ (k), x) − k

] = n}

where d is the natural combinatorial distance in the graph.
We fix a geodesic ray γ and may then consider the associated horospherical trans-

form of functions f : X → R denoted by

H f : Z → R

and defined by H f (n) = ∑
x∈Hn

f (x). For a radial function, decaying fast enough,
we have the inversion formula

f (r) = q−r (H f )(r) − (q − 1)
∞∑

j=1

q−(r+2 j)(H f )(r + 2 j) (11)

for r ≥ 0. This is stated in [16] on pages 7–8 for f of finite support.
If we apply the horospherical transform to the Eqs. (1a, 1b) characterizing the heat

kernel, we get

(q + 1)HK (t, n) − (qHK (t, n + 1) + HK (t, n − 1)) + ∂

∂t
HK (t, n) = 0,

for n ∈ Z and with HK (0, n) = δ0(n). The solution to this difference-differential
equation can be seen to be (cf. section 3.2 in [16] or [19])

f (t, n) = q−n/2e−(q+1)t In
(
2
√
qt

)
.

As already remarked, the heat kernel on a regular tree is radial, so by inserting the
above expression into the inversion formula (11) (here we need to go beyond finitely
supported functions for which this formula was stated in [16]) we can get a different
proof of Proposition 3.1.

3.3 Heat kernels on regular graphs

Let q > 0 be an integer and X a (q + 1)-regular graph. We fix a base point x0 ∈ V X
which we will suppress in the notation. The heat kernel on X can be obtained from
periodizing the heat kernel Kq+1 on the universal covering space, the (q + 1)-regular
tree Tq+1, over the covering group � Following the remarks in Subsect. 2.3 we have
(with a slight abuse of notation) that

KX (t, x) =
∑

γ∈�

Kq+1(t, γ x).

Recall that cn(x) denotes the number of paths without backtracking from the identity
x0 to x of length n in X . We also use c0n = cn(x0) as notation for the number of
geodesic loops, i.e. closed paths without backtracking, starting at x0. Note that cn(x)

123



184 G. Chinta et al.

is equal to the number of elements of the form γ x for some γ ∈ � on the radius n
sphere in Tq+1. We therefore have

KX (t, x) =
∑

n≥0

cn(x)Kq+1(t, n),

or more explicitly by inserting the expression from Proposition 3.1 for Kq+1(t, n),

KX (t, x) = e−(q+1)
∑

n≥0

cn(x)
∞∑

j=0

dq( j)q
−n/2− j In+2 j (2

√
qt),

where dq( j) is 1 if j = 0 and 1 − q otherwise. A rearrangement of the terms gives

KX (t, x) = e−(q+1)t
∑

m≥0

bm(x)q−m/2 Im(2
√
qt),

where bm(x) = cm(x) − (q − 1)(cm−2(x) + cm−4(x) + · · · ) where the last term is
c1(x) if m is odd and c0(x) if m is even. This is also with the understanding that
b0(x) = c0(x) and b1(x) = c1(x). This proves Theorem 1.1.

Now specialize to x = x0. In view of Propositions 2.1 and 3.1 we obtain Corol-
lary 1.2 as well.

3.4 Spectral theory

An excellent reference here is that of Mohar and Woess [23]. One has that there are
spectral measures μx such that (suppressing x0)

KX (t, x) =
∫

e−λt dμx (λ). (12)

In particular if X is a finite graphwith n vertices, then the Laplacian has eigenvalues
0 = λ0 < λ1 ≤ · · · ≤ λn−1 and corresponding orthonormal eigenfunctions φ j . The
heat kernel may thus be written as

KX (t, x0, x) = 1

n

n−1∑

j=0

e−λ j tφ j (x)φ j (x0). (13)

4 Ihara formulas

In this final section we describe how the G-transform introduced in Sect. 2.6 applied
to the heat kernel gives rise to the Ihara zeta function.
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4.1 Zeta functions

Motivated by Selberg’s work, Ihara defined a zeta function for a finite graph X , which
is now referred to as the Ihara zeta function. The product formula for the Ihara zeta
function is

ζ I h
X (u) =

∏

[P]

(1 − ul(P))−1

where the product is over equivalence classes of prime geodesics and l the length.
(Actually, Ihara worked in a specific group setting, but Serre remarked in the preface
of [28] that the definition could be given a simple interpretation in terms of graphs.)
By a general calculation, see for example [32, p. 29], one has

log ζ I h
X (u) =

∞∑

m=1

Nm

m
um,

where Nm is the number of closed geodesics of length m. Thus the Ihara function is
a zeta type function similar to those appearing in the classical works of Artin, Hasse,
and Weil on counting points of varieties in finite fields.

The numbers Nm are not defined for infinite graphs X . In the case of transitive
graphs, a natural replacement is N 0

m, since in the finite case one has Nm = nN 0
m ,

where n is the number of vertices. So we can define a zeta function for any (not
necessarily finite) vertex transitive graph via

log ζX (u) =
∞∑

m=1

N 0
m

m
um .

More exotically one could define a two variable function ζ via

log ζX (u, x) =
∞∑

m=1

bm(x)

m
um .

Following Riemann one has another set of zeta functions by instead taking the
Mellin transform of the the heat kernel. This is a subject for another paper.

4.2 The periodization side

We will apply the transform

G f (u) = (u−2 − q)

∫ ∞

0
e−(qu+1/u)t e(q+1)t f (t)dt,

where we throughout consider 0 < u < 1/
√
q . First we transform our heat kernel

expression
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KX (t, x0, x) = e−(q+1)t
∞∑

m=0

bm(x)q−m/2 Im(2
√
qt)

of Theorem 1.1. Using the basic formula in Subsect. 2.6, in the case x �= x0, so
b0(x) = 0 we have that the G-transform of the heat kernel is equal to

1

u

∞∑

m=0

bm(x)um = ∂

∂u

∞∑

m=1

bm(x)

m
um = ∂

∂u
log ζX (u, x).

In the case x = x0, the G-transform of the heat kernel on the diagonal is equal to

1

u

∞∑

m=0

bmu
m = ∂

∂u

∞∑

m=1

bm
m

um + ∂

∂u
log u.

In the vertex transitive case, for the case x = x0 we apply the transform to the
expression of Corollary 1.2

KX (t, x0, x0) = Kq+1(t, x0) + e−(q+1)t
∞∑

m=1

N 0
mq

−m/2 Im(2
√
qt)

which gives (summing the geometric series arising from the first term)

1/u − (q − 1)
u

1 − u2
+ 1

u

∞∑

m=1

N 0
mu

m .

This can in turn be written as

∂

∂u
log u + q − 1

2

∂

∂u
log(1 − u2) + ∂

∂u

∞∑

m=1

N 0
m

m
um

= ∂

∂u
log u + q − 1

2

∂

∂u
log(1 − u2) + ∂

∂u
log(ζX (u)).

We have proven

Proposition 4.1 For X a (q + 1)-regular vertex transitive graph,

(GKX )(·, x0)(u) = ∂

∂u

[
log u + q − 1

2
log(1 − u2) + log ζX (u).

]

In summary, the G-transform of the heat kernel yields expressions involving the
Ihara zeta function together with other trivial terms. In the setting of compact quotients
of rank one symmetric spaces, there is a similar change of variables in the Laplace
transform so that when applied to the trace of the heat kernel, one obtains the Selberg
zeta function. With this in mind, our approach to the Ihara zeta function as an integral
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transform of the heat kernel is in line with a known approach to the Selberg zeta
function in many settings.

4.3 Ihara’s determinantal formula

Now we deduce the classical Ihara determinantal formula. Let X be a (q + 1)-regular
graph of finite vertex cardinality n. From (13),

KX (t, x0) = 1

n

n−1∑

j=0

e−λ j t .

The G-transform of the righthand side is a simple integration which yields

1

n
(u−2 − q)

n−1∑

j=0

1

qu + 1/u − (q + 1 − λ j )

= −1

n

∂

∂u

n−1∑

j=0

log
1

u

(
1 − (q + 1 − λ j )u + qu2

)
.

Comparing this last expression with Proposition 4.1 from the periodization side (and
also verifying that integration constantsmatch up)we immediately get Ihara’s formula,
namely

1

ζ I h
X (u)

= (1 − u2)n(q−1)/2 det((1 − (q + 1)u + qu2)I + �u),

since, as remarked above,

1

u

∞∑

m=1

Nmu
m = ∂

∂u
log ζ I h

X (u).

This formula is also known to hold more generally for non-regular graphs, see the
references mentioned in the introduction.

4.4 First extension of Ihara’s formula

Using spectral theory, we obtain a similar formula for infinite transitive graphs, this
time using our zeta function instead of Ihara’s. The common point is that both zeta
functions are obtained as G-transforms of the heat kernel, and the determinantal for-
mula follows from having another expression for the heat kernel, namely that which
comes from spectral theory.

We use the notation μ = μx0 . Since the functions involved are positive, we may
change the order of integration in our integral transforms and arrive at the expres-
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sion Equating the expression in Proposition 4.1 with the G-transform of the spectral
expansion of the heat kernel given in (12), we arrive at

∂

∂u

[
log u + q − 1

2
log(1 − u2) + log ζX (u)

]

= − ∂

∂u

∫
log

1

u

(
1 − (q + 1 − λ)u + qu2

)
dμ(λ).

Note: since the functions involved are positive, we are justified in interchanging the
spectral integral with theG-transform integral on the righthand side.We now integrate
this equality, noting that atu = 0 both sides are 0 to determine the integration constants.
We get the formula

log u+ q−1

2
log(1−u2) + log ζX (u) = −

∫
log

1

u

(
1−(q+1 − λ)u + qu2

)
dμ(λ),

which leads to

ζX (u)−1 = (1 − u2)(q−1)/2 exp

[∫
log

(
1 − (q + 1 − λ)u + qu2

)
dμ(λ)

]
. (14)

This is Theorem 1.3. We further remark that Eq. (14) clearly generalizes the Ihara
determinant formula since for vertex transitive graphs with a finite number n vertices
one has ζ I h

X = ζ n
X .

4.5 Second extension of Ihara’s formula

Here we do not specialize to x = x0. The resulting identities involve counting geodes-
ics paths, not only closed geodesics paths. Alternatively, as in the most classical situa-
tion, our consideration corresponds to computing the Hurwitz zeta function instead of
the Riemann zeta function. With the same calculations as above, one gets in the finite
graph case, (at one point one uses orthogonality of eigenfunctions) the formula

− log ζX (u, x) = 1

n

n−1∑

j=0

f j (x) f̄ j (x0) log(1 − (q + 1 − λ j )u + qu2).

Thus the eigenfunctions come in to determine the more precise count of geodesics.
The lead asymptotic as the length goes to infinity behaves the same as for the closed
geodesics since the trivial eigenvalue has the constant function as eigenfunction. From
an intuitive viewpoint, this observation is clear: For a fixed x and large length m the
geodesics do not look much different from a closed geodesic. In symbols, if m 
 1
then x ≈ x0.

We have the analogous formula for infinite regular graphs, namely that

− log ζX (u, x) =
∫

log(1 − (q + 1 − λ j )u + qu2)dμx (λ).
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