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Abstract Certain off-diagonal vacuum and nonvacuum configurations in Ein-
stein gravity can mimic physical effects of modified gravitational theories of
f (R, T, RμνTμν) type. We prove this statement by constructing exact and approx-
imate solutions which encode certain models of covariant Hořava type gravity with
dynamical Lorentz symmetry breaking. Off-diagonal generalizations of de Sitter and
nonholonomic �CDM universes are constructed which are generated through non-
linear gravitational polarization of fundamental physical constants and which model
interactions with non-constant exotic fluids and effective matter. The problem of possi-
ble matter instability for such off-diagonal deformations in (modified) gravity theories
is discussed.
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1 Introduction

There are various extensions of general relativity, GR, theory. Some of the most
popular are f (R), f (R, T ), and f (R,T, F)—which we will here generically call f -
modified theories, or modified gravity theories, MGTs. For such modifications, the
standard Lagrangian for GR, namely as L = R, on a pseudo-Riemannian manifold,
V—where R is the Ricci scalar curvature for the Levi-Civita connection, ∇—is mod-
ified by the addition of a functional, f (R,…), of the Ricci scalar only, in the first case,
of R and the torsion tensor, for a “boldface” symbolT = {T α

βγ }, the energy-momentum
tensor for matter, Tβγ , and/or its trace T = T α

α (in the second), and of a generalized
Ricci scalar R , and a Finsler generating function, F , in the third case (such values
may be defined on the tangent bundle T V ), etc. Classes of MGTs of these kinds can
be successfully constructed. Corresponding reconstruction procedures, able to mimic
the �CDM model including the dark energy epochs and the transitions between the
different main stages of the universe evolution can be elaborated, see reviews of results
in Refs. [1–10].

Several MGTs are actually related with different forms of the so-called covariant
Hořava gravity associated with a dynamical breaking of Lorentz invariance [11–14],
and with further developments, as well, including generic off-diagonal solutions,
Lagrange–Hamilton–Finsler like generalizations, A-brane models, and gauge like
gravity [15–19]. Theories of this kind can be constructed in a power-counting renormal-
izable form or as nonholonomic brane configurations which correspond to power-law
versions of actions of type f (R, T, RμνTμν) [20–29]. In general, such models
are with commutative and/or noncommutative parameters, and off-diagonal metrics
for wapred/trapped solutions, Lorentz violations, nonlinear dispersion relations and
locally anisotropic re-scaling, and effective polarizations of constants [30–36].

Gravitational and matter field equations in GR and various MGTs usually con-
sist of very sophisticated systems of nonlinear partial differential equations (PDEs)
and request advanced numeric, analytic and geometric techniques for constructing
exact and approximate solutions. After a series of assumptions of “high symmetry”
of the relevant interactions (for spherical, cylindrical or torus ansätze, with a possible
additional Lie group interior symmetry), such systems of nonlinear PDEs are usu-
ally transformed into much more simplified systems of nonlinear ordinary differential
equations (ODEs). In such cases, some classes of exact solutions can be obtained in
explicit form being paramterized by integration constants (see the monographs [37,38]
for reviews of some results in GR). At present, it is already possible to elaborate
geometric techniques [23–29], the so-called anholonomic frame deformation method
(AFDM), for decoupling and generating solutions of PDEs which involve an ansatz
resulting in ODEs. We can construct more general classes of exact solutions in MGTs
and GR depending generically on two, three and four variables in a “less symmet-
ric” form for four-dimensional (4-d), and extra-dimensional models using advanced
geometric, analytic and numerical methods.

The main goal of this article is to apply the AFDM for constructing exact
off-diagonal solutions corresponding to cosmological models of MGTs of type
f (R, T, RμνTμν) and to study the conditions under which such configurations can
be alternatively modeled as effective Einstein spaces with nontrivial off-diagonal
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parametric vacuum and non-vacuum configurations. There will be studied analogous
FLRW cosmological dynamics and a reconstruction procedure of the �CDM universe.
We shall not work with exotic anisotropic fluid configurations as in [11–14,20–22],
but rather with off-diagonal deformations of de Sitter solutions [15–19]. The prob-
lem of matter instabilities in MGTs and GR will be analyzed considering solutions
describing nonholonomic cosmological configurations.

2 Off-diagonal interactions in modified gravity and cosmology

2.1 Off-diagonal metrics modelling dark energy

In a spatially flat spacetime, we can consider the diagonal quadratic form

ds2 = g̊α(t)(duα)2 = å2(t)[(dx1)2 + (dx2)2 + (dy3)2] − dt2,

for local coordinates uα = (xi , y3, y4 = t), when i = 1, 2. The FLRW equations
are 3

κ2 H̊
2 = ρ̊ and ρ̊� + 3H̊(ρ̊ + p̊) = 0, where ρ̊ and p̊ are, respectively, the total

energy and pressure of a perfect fluid (pressureless or just radiation), H̊ := å�/å for
å� := ∂ å/∂t = ∂4å = ∂t å. The constant κ2 is related to the gravitational (Newton)
constant.1 Various models have been studied (see reviews and references in [1–10]),
in order to explain the observational data of an accelerating universe, and dark energy,
DE, and effective, real and/or exotic matter with an equation of state (EoS) of phantom
kind, p = 
ρ, with 
 < −1.

The simplest model of phantom DE is given by 3
κ2 H

2
DE = ρDE and ρ�

DE +
3HDE (1 + 
)ρDE = 0, which for 
 < −1 admits an exact solution

HDE = 2

3(1 + 
)(ts − t)
. (1)

This solution has a finite-time future singularity (Big Rip) at t = ts .
More general models have been elaborated for the Hubble function H(t) determined

by a phantom DE coupled with DM, via a coupling constant, Q, and the conservation
law

ρ�
DE + 3H(1 + 
)ρDE = −QρDE , ρ�

DM + 3HρDM = QρDM .

The solutions are ρDE = 0ρDE e−3(1+
)e−Qt andρDMa3 =Q 0ρDE
∫ t dt ′e−3
 e−Qt ,

respectively, where 0ρDE is an integration constant and the EoS is taken to
be p = 
ρDE . These functions can be used for the second FLRW equation,
− 1

κ2 (2H� + 3H2) = p. We have the solution

H = −Q/3(1 + 
), (2)

1 We have to introduce a system of notations which is different from that in standard cosmology. This will
be convenient for constructing cosmological models with generic off-diagonal metrics.
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which corresponds to the de Sitter space evolution, a(t) = a0e−Qt/3(1+
), where a0 is
determined from a3(1+
)

0 = − 3κ2

Q2 (1+
)2
 0ρDE . The value of H in (2) is positive
for 
 < −1. This does not mean that the Big Rip singularity in (1) can be avoided,
but just shows that the coupling of the phantom DE and DM gives a possibility that
the universe could evolve in the de Sitter phase. The first FLRW equation, 3

κ2 H
2 =

ρDE + ρDM , imposes the relation ρDM = (1 + 
)ρDE . We can consider a de Sitter
solution as an attractor, with 
 ∼ −4/3, i.e. −(1 + 
) ∼ 1/3, which is almost
independent from the initial condition; we get a solution of the so-called coincidence
problem. If DE does not couple with DM, ρDM ∼ a−3 and ρDE ∼ a−3(1+
). The
observed 1/3 ratio of DE and DM is not satisfied which results in a coincidence
problem.

Since the DE-DM coupling does not always remove the singularity and there is
no such fluid with constant EoS parameter, models were considered which are pro-
portional to a power of the scalar curvature, for instance, p f luid ∝ R1+ε , for ε > 0,
and the total EoS parameter is greater than −1. A Big Rip does not occur for large
curvature. Two variants of theories have been exploited where this kind of inhomo-
geneous effective fluid matter is realized. A conformal anomaly and other quantum
effects or by some modified model of gravity, for instance, when the gravitational
Lagrange density R → f (R) = R + R� . For 1 < � < 2, we have that solutions with
Ht ∼ − (�−1)(2�−1)

�−2 and we f f ∼ −1 − 2H�/3H2 > −1 do not result in a Big Rip or
any other kind of future singularity, see similar classical and quantum arguments as
motivations to study f -gravity in Refs. [1–14,20–22,39,40].

Various classes of off-diagonal solutions were studied which can be constructed by
geometric methods in MGTs [15–19,23–29,41,42]. Let us briefly recall the main ideas
supporting such an approach. Via frame transforms, any metric can be parameterized
by off-diagonal ansätze for metrics,

gαβ =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

g1 + ω2(w 2
1 h3 + n 2

1 h4) ω2(w1w2h3 + n1n2h4) ω2w1h3 ω2n1h4

ω2(w1w2h3 + n1n2h4) g2 + ω2(w 2
2 h3 + n 2

2 h4) ω2w2h3 ω2n2h4

ω2w1h3 ω2w2h3 ω2h3 0

ω2n1h4 ω2n2h4 0 ω2h4

⎤

⎥
⎥
⎥
⎥
⎥
⎦

,

where the coefficients are functions of type: g1 = g2 ∼ eψ(xi ) and ni (xk) (we can
fix certain constants for corresponding classes of generating, �(xk, t), and integra-
tion functions), ha[�(xk, t)] ∼ ha(t), [for a = 3, 4], wi [�(xk, t)] ∼ wi (t) and
ω(xk, t) ∼ ω(t), were found to generate exact (in general, nonhomogeneous) cosmo-
logical solutions in modified gravity theories. Such generic off-diagonal metrics2 can
be represented as

ds2 = a2(t)[(e1)2 + (e2)2] + a2(t )̂h3(t)(̂e3)2 + (̂e4)2, (3)

with respect to N-adapted frames ê3 = dy3 + nidxi and ê4 = dt + wi (t)dxi .

2 Which cannot be diagonalized by coordinate transformations.
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We can formulate certain well-defined conditions, see Sect. 3, when off-diagonal
deformations g̊α(t) → gαβ(xk, t) ∼ gαβ(t) define new classes of cosmological mod-
els. Such deformations mimic contributions from f -gravity encoded into the data for
ω(t), wi (t) etc. when corresponding formulas are nonlinear functionals relating gen-
erating functions to the (effective) matter sources. The off-diagonal configurations are
equivalently modeled as solutions of some effective field equations Řα

β = �̌δα
β . In

result, various classes of cosmological solutions in MGTs can be alternatively modeled
by metrics of type (3). In all cases, the scaling factor a(t) is nonlinearly determined by
the coefficients wi (t) and ha(t) via a generating function �(t) and an effective source
ϒ(t). It is possible to model �CDM cosmology and analogously DE and DM effects
with ρDE + ρDM encoded into �(t) and ϒ(t), but with respect to the adapted frames
êa(t). Solutions with small off-diagonal deformations of metrics may be interpreted
in accordance with observational data if the factor a(t) is chosen to be determined
nonlinearly/ parameterically, for instance, an effective H(t) (2) with cosmological
evolution from a spacetime background encoding f (R) -modifications.

Let us suppose that we have found a cosmological solution (3) in a given MGT and
analyze how this metric can be formally diagonalized for deformations with a small
real parameter ε (when 0 ≤ ε 	 1). We can consider “homogeneous” approximations
of type ĥ3(t) ≈ 1 + εχ̂3(t), wi (t) ∼ εw̌i (t) and ni ∼ εňi (On inhomogeneity effects
in cosmology and possible physical models, see [43]). In a more general context,
it is possible to elaborate on “small” local anisotropic deformations depending on
space like coordinates when χ̂3(xk, t), wi (t) ∼ εw̌i (xk, t) and ni ∼ εňi (xk). Some
amount of anisotropy is compatible with observational data in various gravity and
cosmological theories (see [44,45], for reviews of various approaches related to GR
and generalizations of Bianchi, Kasner and Gödel type configurations; [41,42], for
off-diagonal configurations; and [46], for f -gravity theories). We note also that the
approximation ĥ3(t) ≈ 1 + εχ̂3(t) can be very restrictive—one can consider more
general classes of solutions with arbitrary ĥ3(t).

The metrics with small off-diagonal deformations on ε and rescaling å(t) → a(t),
can be written as

ds2 = a2(t)[(e1)2 + (e2)2]+a2(t)[1+εχ̂3(t)](dy3 +εňi dx
i )2 + (dt +εw̌i (t)dx

i )2.

(4)
Below, we shall discuss how is it possible to construct subclasses of off-diagonal
configurations in a f̂(R̂, . . .) gravity where ϒ̂) goes into �̌ and �̌2 = �̌−1[�̂2| ϒ̂| +∫
dζ �̂2∂ζ | ϒ̂|] results in f̂ → f̌ = Ř, with an effective Řα

β = �̌δα
β . We will be

able to reproduce the �CDM model provided the metric (4) defines certain classes of
solutions constructed for a corresponding effective action in GR, namely

S = 1

κ2

∫
δ4u

√| εgαβ |( εŘ − 2�̌ +m L( εgαβ,m �)). (5)

The Ricci scalar εŘ = Ř(a, ε) is constructed for εgαβ with coefficients of (4), �̌ is
an effective cosmological constant used for nonholonomic deformations, and mL is
considered for certain effective matter fields with certain pressure m p and energy-
density mρ. The EoS are chosen, for simplicity, to correspond to an effective de Sitter
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configuration determined by �̌, where 
̌ := p̌�/ρ̌� = −1, with pressure p̌� and
energy-density ρ̌�.

We can describe the theories determined by (5) and (4) with respect to nonholonomic
(non-integrable) dual frames êα = (ei , êa), which is convenient for constructing off-
diagonal solutions, or to redefine the constructions with respect to local coordinate
coframes duα = (dxi , dya), where certain analogs of the FLRW metric and �CDM
like theories can be analyzed. For ε → 0, the metric (4) transforms into

ds2 = a2(t)[(e1)2 + (e2)2 + (dy3)]2 + dt2, (6)

which is just the FLRW metric but with a re-scaled factor because of ϒ̂ → �̌ and
�̂ → �̌.

The corresponding effective Einstein equations with respect to the nonholonomic
frames are

3H2 = κ2
mρ + �̌, 2H� = −κ2(mρ +m P + �̌), (7)

where H� := a�/a. We can express εŘ +m L =a Ř+0
mL+ε 1

mL, where aŘ and 0
mL

are computed for the metric (6) and 1
mL include all ε-deformations in (5). The term 1

mL
results in the effective splitting mρ =0

m ρ + ε 1
mρ and m p =0

m p + ε1
m p. In this way,

we can encode the off-diagonal components as certain additional terms into the matter
source, or either consider them as a polarization of the effective cosmological constant
� := �̌ + ε 1�̌. We do not provide explicit formulas for the corrections proportional
to ε because, in the end, we shall take smooth limits ε → 0. The main constructions for
nonholonomic off-diagonal transforms are based on rescaling å(t) → a2(t) generated
by the solutions with ϒ̂ → �̌ and �̂ → �̌. Possible small inhomogeneous and locally
anisotropic contributions, and concordance with observational data, can be estimated
similarly to those presented, e.g., in [46]. In coordinate frames, Eq. (7) are written as
3H2 = κ20

mρ + �, and 2H� = −κ2(0
mρ + 0

m P + �). For ε → 0, the diagonalized
solutions are determined by a (and not by å) and can be parameterized to define
and effective �CDM like model where a = aceHct , for a positive constant ac. Thus,
MGTs with equivalent off-diagonal encodings of f -gravity seem to result in realistic
cosmological models, at least for small parametric ε-deformations.

We conclude that within certain assumptions, various possible f (R) -nonlinear
modifications can be encoded into off-diagonal terms and some effective a(t),
ĥ3(t), wi (t) via nonlinear interactions. This can be done for more general classes
of cosmological solutions with nonlinear gravitational interactions restructuring the
spacetime aether before considering certain small ε-parameters.

2.2 Geometric preliminaries

We consider a pseudo-Riemannian manifold V , dim V = n + m, (n,m ≥ 2). A
Whitney sum N is defined for its tangent space T V , when N : T V = hT V ⊕ vT V .
This states a nonholonomic (equivalently, non-integrable, or anholonomic) horizontal
(h) and vertical (v) splitting, or a nonlinear connection (N-connection) structure. In
local form, it is determined by its coefficientsN = {Na

i (u)}, whenN = Na
i (x, y)dxi⊗
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∂/∂ya for certain local coordinates u = (x, y), or uα = (xi , ya), and h-indices
i, j, . . . = 1, 2, . . . , n and v-indices a, b, . . . = n+ 1, n+ 2, . . . , n+m.3 Such a h-v-
decomposition can be naturally associated with some N-adapted frame or, respectively,
dual frame structures, eν = (ei , ea) and eμ = (ei , ea),

ei =∂/∂xi − Na
i (u)∂/∂ya, ea =∂a =∂/∂ya, and ei =dxi , ea =dya + Na

i (u)dxi .
(8)

The nonholonomy relations hold [eα, eβ ] = eαeβ − eβeα = W γ
αβeγ , with nontriv-

ial anholonomy coefficients Wb
ia = ∂aNb

i ,Wa
ji = �a

i j = e j
(
Na
i

) − ei (Na
j ). The

coefficients �a
i j define the N-connection curvature.

Any metric structure g on V (for physical applications, we consider the signature
(+,+,+,−)) can be written in two equivalent ways: (1) with respect to a dual local
coordinate basis,

g = g
αβ
duα ⊗ duβ, (9)

where g
αβ

=
[
gi j + Na

i N
b
j gab Ne

j gae
Ne
i gbe gab

]

, or (2) as a distinguished metric (in brief,

d-metric, i.e. in N-adapted form,

g = gαβ(u)eα ⊗ eβ = gi (x
k)dxi ⊗ dxi + ga(x

k, yb)ea ⊗ ea . (10)

A linear connection is called distinguished, d-connection, D = (hD, vD), if it
preserves under parallelism a prescribed N-connection splitting. Any D defines an
operator of covariant derivation, DXY, for a d-vector field Y in the direction of a d-
vector X. We note that any vector Y (u) ∈ TV can be parameterized as a d-vector, Y =
Yαeα = Yiei + Yaea , or Y = (hY, vY ), with hY = {Yi } and vY = {Ya}, where the
N-adapted base vectors and duals, or covectors, are chosen in N-adapted form (8). The
local coefficients of DXY can be computed for D = {�γ

αβ = (Li
jk, L

a
bk,C

i
jc,C

a
bc)}

and h-v-components of Deαeβ := Dαeβ using X = eα and Y = eβ . The terms d-
vector, d-tensor, etc. are used for any vector, tensor valued with coefficients defined in
a N-adapted form with respect to the necessary types of tensor products of N-elongate
bases and necessary h-v-decompositions. We can define three fundamental geometric
objects: the d-torsion, T , the non-metricity, Q, and the d-curvature, R, respectively
defined by

T (X,Y) := DXY − DYX − [X,Y],Q(X) := DXg, R(X,Y)

:= DXDY − DYDX − D[X,Y].

The N-adapted coefficients, T = {Tγ
αβ =

(
T i

jk, T
i
ja, T

a
ji , T

a
bi , T

a
bc

)
},Q = {Qγ

αβ}
and R = {Rα

βγ δ=
(
Ri

hjk, R
a
bjk, R

i
hja, R

c
bja, R

i
hba, R

c
bea

)
}, of such fundamental

geometric objects are computed by introducing X = eα and Y = eβ , and D = {�γ
αβ}

into the formulas above (see [23–29] for details).

3 The Einstein rule on index summation will be applied if the contrary is not stated. Boldface letters are
used in order to emphasize that an N-connection spitting is considered on a spacetime manifoldV = (V,N).
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A d-connection D is compatible with a d-metric g if and only if Q = Dg = 0.
Any metric structure g on V is characterized by a unique metric compatible and
torsionless linear connection called the Levi-Civita (LC) connection, ∇. It should be
noted that ∇ is not a d-connection because it does not preserve under parallelism the
N-connection splitting. Nevertheless, such a h-v decomposition allows us to define
N-adapted distortions of any d-connection D,

D = ∇ + Z, (11)

with respective conventional “non-boldface” and “boldface” symbols for the coeffi-
cients: ∇ = {�α

βγ } and, for the distortion d-tensor, Z = {Zα
βγ }.

This stands for any prescribed N and g = hg + vg, but alternatively to ∇, on V,
we can work with the so-called canonical d-connection, D̂, when

(g,N) → ∇ : ∇g = 0;∇ T = 0;
D̂ : D̂g = 0; hT̂ = 0, vT̂ = 0, hvT̂ �= 0;

are completely defined by the same metric structure. The canonical distortion d-tensor
Ẑ in the distortion relation of type (11), D̂ = ∇ + Ẑ, is an algebraic combination
of the coefficients of the corresponding torsion d-tensor T̂ = {T̂α

βγ }. The respec-

tive coefficients of the torsions, T̂ and ∇T = 0, and curvatures, R̂ = {R̂α
βγ δ} and

∇R = {Rα
βγ δ}, of D̂ and ∇ can be defined and computed using standard formulas.

The coefficients T̂α
βγ are not trivial but nonholonomically induced by anholonomy

coefficients W γ
αβ and certain off-diagonal coefficients of the metric.

The Ricci tensors of D̂ and ∇ are computed in the standard form, R̂ic = {R̂ βγ :=
R̂γ

αβγ } and Ric = {R βγ := Rγ
αβγ }. With respect to N-adapted coframes (8), the

Ricci d-tensor R̂ic is characterized by four h-v N-adapted coefficients

R̂αβ = {R̂i j := R̂k
i jk, R̂ia := −R̂k

ika, R̂ai := R̂b
aib, R̂ab := R̂c

abc}, (12)

and (an alternative to R := gαβ Rαβ) scalar curvature, R̂ := gαβR̂αβ = gi j R̂i j +
gab R̂ab.

We emphasize that any (pseudo) Riemannian geometry can be equivalently
described by both geometric data (g,∇) and (g,N,D̂). For instance, there are canon-
ical distortion relations R̂ =∇ R+ ∇Z and R̂ic = Ric + Ẑic, where the respective
distortion d-tensors ∇Z and Ẑic are computed by introducing D̂ = ∇ + Ẑ into the
corresponding formulas for curvature and (12). The canonical data (g,N,D̂) provide
an example of nonholonomic (pseudo-) Riemannian manifold which is a standard one
but enabled with a nonholonomic distribution determined by (g,N). If the coefficients
�a

i j = 0, such a distribution is holonomic, i.e. integrable. Nevertheless, physical the-

ories formulated in terms of data as (g,∇), or (g,N,D̂), are not equivalent if certain
additional conditions are not imposed.

We can introduce the Einstein d-tensor of D̂, Êαβ := R̂αβ − 1
2gαβ R̂, and construct

a N-adapted energy momentum tensor for a Lagrange density mL of the matter
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fields, T̂αβ := − 2√|gμν |
δ(
√|gμν | mL̂)

δgαβ , performing a N-adapted variational calculus

with respect to frames (8), and considering that D̂ is used as covariant derivative
instead of ∇. A nonholonomic deformation of Einstein’s gravity is constructed, being
∇ → D̂ = ∇ + Ẑ, with gravitational field equations

R̂αβ = κ2
(

T̂αβ − 1

2
gαβ T̂

)

(13)

for a conventional gravitational constant κ2 and T̂ := gμνT̂μν . Such equations are
different from the standard Einstein equations in GR because, in general, R̂αβ �= Rαβ

and T̂αβ �= Tαβ , where Tαβ := − 2√|gμν |
δ(
√|gμν | mL)

δgαβ for mL[gαβ,∇]�= mL̂[gαβ, D̂].
LC-configurations can be extracted from certain classes of solutions of Eq. (13) if

additional conditions are imposed, resulting in zero values for the canonical d-torsion,
T̂ = 0. In N-adapted coefficient form, such conditions are equivalent to

T̂ i
jk = L̂i

jk− L̂i
k j , T̂

i
ja = Ĉi

jb, T̂
a
ji = −�a

ji , T̂
c
a j = L̂c

a j −ea(N
c
j ), T̂

a
bc = Ĉa

bc−Ĉa
cb.

(14)

It should be emphasized that we are able to find generic off-diagonal solutions of the
Einstein equations in GR depending on three and more coordinates for D̂ → ∇, when
R̂αβ → Rαβ and T̂αβ → Tαβ , if the nonholonomic constraints (14) are imposed after
certain classes of solutions were found for D̂ �= ∇. But we are not able to decouple
such systems of nonlinear PDEs if the zero torsion condition for ∇ is imposed from
the very beginning.

2.3 Nonholonomic f -modified gravity theories

Different models of modified gravity are formulated for independent metric and linear
connection fields with a corresponding Palatini type variational formulation (see [1–
10]). The gravitational and matter field equations in MGTs consist in very sophisticate
systems of nonlinear PDEs for which finding exact solutions is a very difficult technical
task, even for the simplest diagonal ansätze with the coefficients of the metrics and
connections depending on just one (time or space) variable. Nevertheless, the AFDM
[23–29] seems to work efficiently and allows to construct off-diagonal solutions in
MGTs and GR [41,42].

Let us consider three classes of equivalent MGTs defined for the same metric field
g = {gμν} but with different actions (and related functionals) for gravity, gS, and
matter, mS, fields,

S = gS + mS = 1

2κ2

∫
f (R, T, RαβT

αβ)
√|g|d4u +

∫
mL

√|g|d4u

= gŜ + m Ŝ = 1

2κ2

∫
f̂(R̂, T̂, R̂αβ T̂αβ)

√|̂g|d4u +
∫

mL̂
√|̂g|d4u

= gŠ + m Š = 1

2κ2

∫
Ř

√
|ǧ|d4u + �̌

∫ √
|ǧ|d4u. (15)
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We use boldface d4u in order to emphasize that the integration volume is for N-
elongated differentials (8),κ2 is the gravitational coupling constant, the values with “∧”
are computed for a canonical d-connection D̂ and the values with “∨ ” for re-defined
geometric data (ǧ, Ň, Ď) for certain nonholonomic frame transforms and nonholo-
nomic deformations gαβ ∼ ĝαβ ∼ ǧαβ .4 For simplicity, we consider matter actions
which only depend on the coefficients of a metric field and not on their derivatives,
T̂αβ = mL̂ ĝαβ + 2δ( mL̂)/δ̂gαβ .

We assume that the matter content of the universe can be approximated by a perfect
fluid,

T̂αβ = p̂gαβ + (ρ + p)̂vα v̂β (16)

is defined for certain (effective) energy and pressure densities, respectively, v̂α being
the four-velocity of the fluid for which v̂α v̂α = −1 and v̂α = (0, 0, 0, 1) in N-adapted

comoving frames/coordinates. Frame transforms of metrics of type ĝαβ = eα′
αe

β ′
β g̊α′β ′ ,

will be studied beginning with the FLRW diagonalized element

ds̊2 = g̊α′β ′duα′
duβ ′ = å2(t)[dr2 + r2dθ2 + r2 sin2 θdϕ2] − dt2,

= å2(t)[dx2 + dy2 + dz2] − dt2, (17)

where the scale factor å(t) (we use also the value H̊ := å/å, for å� := då/dt) with
signature (+,+,+,−), and a parametrization of coordinates in the form uα′ = (x1′ =
r, x2′ = θ, y3′ = ϕ, y4′ = t), or as Cartesian coordinates (x1′ = x, x2′ = y, y3′ =
z, y4′ = t). For such cosmological metrics, the main issues of the Einstein and modified
Universes are encoded into energy-momentum tensor T̊αβ = p̊g̊αβ +(ρ̊+ p̊)v̊αv̊β (we
omit primes or other distinctions in the coordinate indices if there is no ambiguity)
arising from a matter Lagrangian mL̊ for T̊ α

β = diag[0, 0, 0,−ρ̊] with

T̊ (t) = T̊ α
α = −ρ̊, P̊(t) = R̊αβ T̊

αβ = R̊44T̊
44 = −3ρ̊(H̊2 + H̊�). (18)

There will constructed nonhomogeneous and locally anisotropic cosmological solu-
tions of type (10) with

gi = gi (x
k) = ηi (x

k, y4)g̊i (x
k, y4) = eψ(xk ),

ga = ω2(xk, y4)ha(x
k, y4)

= ω2(xk, y4)ηa(x
k, y4)g̊a(x

k, y4), N 3
i = ni (x

k), N 4
i = wi (x

k, y4). (19)

In Eq. (19), there is no summation on repeated indices, ηα = (ηi , ηa) are polarization
functions, the N-connection coefficients are determined by ni and wi , the vertical
conformal factor ω may depend on all spacetime coordinates and g̊α = (g̊i , g̊a) define
the “prime” diagonal metric if ηα = 1 and Na

i = 0. The “target” off-diagonal metrics
are with Killing symmetry on ∂/∂y3 when the coefficients (19) do not depend on y3.

4 see details in Sects. 3.1.2 and 3.2.
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We can consider nonholonomic deformations with non-Killing symmetries when, for
instance, ω(xk, y4) → ω(xk, y3, y4), which results in a more cumbersome calculus
and geometric techniques. For simplicity, we do not study such generalizations in this
work (see examples in [23–29]).

The quadratic line element is parameterized

ds2 = a2(xk, t)[η1(x
k, t)(dx1)2 + η2(x

k, t)(dx2)2] + a2(xk, t )̂h3(x
k, t)(̂e3)2

+ω2(xk, t)h4(x
k, t)(̂e4)2, (20)

when a2(xk, t)ηi (xk, t) = eψ(xk ), for i = 1, 2; a2 ĥ3 = ω2(xk, t)h3(xk, t), and
ê3 = dy3 + ni (xk)dxi , ê4 = dy4 + wi (xk, t)dxi . Functions ηi , ηa, a, ψ, ω, ni , wi

will be found such that, via nonholonomic transforms (19), when g̊α′β ′(t) (17) →
ĝαβ(xk, t) (20), off-diagonal nonhomogeneous cosmological solutions are generated
in a model of MGT (15). We can consider subclasses of off-diagonal cosmological
solutions with deformed symmetries when nontrivial limits ĝαβ(xk, t) → ĝαβ(t) can
be found and define viable cosmological models.

Applying an N-adapted variational procedure with respect to nonholonomic bases
(8) for the action S = gŜ+ m Ŝ, which is similar to that in [20–22] but for ∇ → D̂ and
matter source T̂αβ (16), we obtain the field equations for the corresponding modified
gravity theory

R̂αβ
1̂f − 1

2
ĝαβ f̂ + (̂gαβD̂μD̂μ − D̂αD̂β) 1̂f + (T̂αβ + �αβ) 2̂f (21)

+�αβ
3̂f + 1

2
(D̂μD̂μT̂αβ

3̂f + ĝαβD̂μD̂νT̂μν 3̂f) − D̂νD̂(αT̂ ν
β)

3̂f = κ2 T̂αβ,

for �αβ = p ĝαβ − 2T̂αβ, �αβ = 2 Êν
(αT̂β)ν − p Êαβ − 1

2 R̂T̂αβ , with respective

d-tensors defined by Eq. (12), where 1̂f := ∂̂f/∂R̂, 2̂f := ∂̂f/∂T̂ and 3̂f := ∂̂f/∂P̂,
when P̂ = R̂αβ T̂αβ and (αβ) denotes symmetrization of the indices.

In general, the divergence with D̂ and/or ∇ of Eq. (21) is not zero. Also Eq. (13)
has a similar property. In the last case, we can obtain the continuity equations as
in GR and then deform them by using the distortions (11), which for the canonical
d-connections are completely determined by the metric structure. There are certain
types of conservation laws for matter fields with additional nonholonomic constraints.
Remarkably, such sophisticate nonholonomic and nonlinear systems can be solved
in very general off-diagonal forms, by applying the anholonomic frame deformation
method. In order to compare these results and to find possible applications in mod-
ern cosmology, we will consider a particular equation of state (EoS) p = 
ρ with

 = const, and study the cosmology of off-diagonal distortions of certain FLRW
models considered in the framework of GR and its modifications. In both cases,
by exploring some particular classes of solutions, the dynamics of the matter sec-
tor of generalized f (R, T, RμνTμν) gravity (with respect to N-adapted frames) may
lead to similar cosmological scenarios as GR, but with nonholonomic constraints and
deformations.
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3 The AFDM and exact solutions in MGTs

A surprising property of Eqs. (13) and (21) is that they can be integrated in very
general form with generic off-diagonal metrics when their coefficients depend on all
spacetime coordinates via various classes of generating and integration functions and
constants. In particular, we can consider such generating and integration functions
when ĝαβ(xk, t) (20) result in off-diagonal metrics of type ĝαβ(t) depending on the
parameters and possible (non-) commutative Lie algebra or algebroid symmetries.

3.1 Off-diagonal FLRW like cosmological models

We shall study cosmological models with sources of type (16) when the four-velocity
v̂α is re-parameterized in a way that for some frame transforms as

Ŷαβ := κ2 (T̂αβ − 1

2
gαβ T̂)

→ diag[ϒ1 = ϒ2, ϒ2 = hϒ(xi ), ϒ3 = ϒ4, ϒ4 = vϒ(xi , t)] (22)

→ �̂ gαβ (redefining the generating functions and sources), (23)

for effective h- and v-polarized sources, respectively, hϒ(xi ) and ϒ4 = vϒ(xi , t), or
an effective cosmological constant �̂. For simplicity, we can consider effective matter
sources and “prime” metrics with Killing symmetry on ∂/∂3, i.e. when the effective
matter sources and d-metrics do not depend on y3.5 In brief, the partial derivatives
∂α = ∂/∂uα will be written as s• = ∂s/∂x1, s′ = ∂s/∂x2, s∗ = ∂s/∂y3, s� =
∂s/∂y4.

The nontrivial components of the nonholonomic Einstein equations (12), with
source (22) parameterized with respect to (co) bases (8), for a d-metric ansätze (10)
with coefficients (19), are (see Refs. [20–22])

ψ•• + ψ ′′ = 2 hϒ (24)

φ�h�
3 = 2h3h4

vϒ (25)

n��
i + γ n�

i = 0, (26)

βwi − αi = 0, (27)

∂iω − (∂iφ/φ�)ω� = 0, (28)

for
αi = h�

3∂iφ, β = h�
3 φ�, γ =

(
ln |h3|3/2/|h4|

)�
, (29)

where
φ = ln |h�

3/
√|h3h4||, and or � := eφ, (30)

5 The method can be extended to account for y3 dependence and non-Killing configurations (see [23–29]).
In this paper the local coordinates and ansätze for d-metrics are parameterized in different forms than in
previous works, what is more convenient for the study of cosmological models.
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is considered as a generating function. In these formulas, we consider h�
a �= 0,

hϒ, vϒ �= 0. Formula (28) is a nontrivial solution of (27) with coefficients (29),
when

wi = ∂iφ/φ� (31)

and eiω = ∂iω − ni ω∗ − wiω
� = 0.

The d-torsion (14) vanishes if the (Levi-Civita, LC) conditions L̂c
a j =ea(Nc

j ), Ĉ
i
jb =

0,�a
ji = 0, are satisfied:

w�
i = (∂i − wi∂4) ln

√|h4|, (∂i − wi∂4) ln
√|h3| = 0, (32)

∂kwi = ∂iwk, n
�
i = 0, ∂i nk = ∂kni .

The decoupling property of the above system of equations follows from the facts
that: (1) integrating the 2-d Laplace Eq. (24) one finds solutions for the h-coefficients
of the d-metric, and (2) the solutions for the coefficients of the d-metric can be found
from (25) and (30). (3) Then the N-connection coefficients wi and ni can be found
from (26) and (27), respectively.

3.1.1 Cosmological solutions with nonholonomically induced torsion

The Eqs. (24) and (27) can be solved, respectively, for any source hϒ(xk) and generat-
ing function φ(xk, t). The system (25) and (30) can be written as h3h4 = φ�h�

3/2 vϒ

and |h3h4| = (h�
3)

2e−2φ , for any nontrivial source vϒ(xi , t) in (25). Introduc-

ing the first equation into the second, one finds |h�
3 | = (e2φ)�

4| vϒ | = ���
2| vϒ | , i.e.

h3 = 0h3(xk) + ε3ε4
4

∫
dt (�2)�

vϒ
, where 0h3(xk) and ε3, ε4 = ±1. Using again

the 1st equation, we get h4 = φ�(ln
√|h3|)�

2 vϒ
= 1

2 vϒ
��
�

h�
3

h3
. We can simplify such

formulas for h3 and h4 if we redefine the generating function, � → �̂, where
(�2)�/| vϒ | = (�̂2)�/�, i.e.

�2 = �−1
[

�̂2| vϒ | +
∫

dt �̂2| vϒ |�
]

, (33)

for an effective cosmological constant � which may take positive or negative values.
We can integrate on t , include the integration function 0h3(xk) in �̂ and write

h3[�̂] = �̂2/4�. (34)

Introducing this formula and (33) and that for h4, we compute

h4[�̂] = (ln |�|)�
4| vϒ | = (�̂2)�

8

[

�̂2| vϒ | +
∫

dt �̂2| vϒ |�
]−1

. (35)
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As next step, we need solve Eq. (26) by integrating on t twice. We obtain

nk =1 nk +2 nk

∫
dt h4/(

√|h3|)3, (36)

where 1nk(xi ),2 nk(xi ) are integration functions and ha[�̂] are given by formulas (34)
and (35). If we fix 2nk = 0, we shall be able to find nk =1 nk(xi ) which have zero
torsion limits (see examples in Sect. 3.1.2).

The solutions of (27) are given by (31), which for different types of generating
functions are parameterized

wi = ∂i�

�� = ∂i (�
2)

(�2)�
, (37)

where the integral functional �[�̂, vϒ] is given by (33).
We can introduce certain polarization functions ηα in order to write the d-metric of

such solutions in the form (20). Let us fix ω2 = |h4|−1 to satisfy the condition (28),
which for a generating function �[φ] is equivalent to ��∂i h4 − ∂i� h�

4 = 0 . These
first order PDE equations impose certain conditions on the class of generating function
� and source vϒ . We can choose such a system of coordinates where vϒ = 1

4 (e−φ)�
and h4 = �, i.e. this coefficient of the d-metric is considered as a generating function
and the last conditions are solved.

A modification of the scale factor å(t) → a(xk, t), for the FLRW metric (17)
(with for g̊1 = g̊2 = g̊3 = å2, g̊4 = −1, has to be chosen in order to explain
observational cosmological data. For any prescribed functions a(xk, t) and ω2 =
|h4|−1 and solutions eψ(xk ), (see (24)) and ha[�̂], nk(xi ), wi [�̂] (given respectively
by formulas (34)-(37)), we can compute the polarization functions ηi = a−2eψ, η3 =
å−2h3, η4 = 1 and function ĥ3 = h3/a2|h4|. Such coefficients (see the data (19)),
define off-diagonal metrics of type (20),

ds2 = a2(xk, t)[η1(x
k, t)(dx1)2 + η2(x

k, t)(dx2)2]
+a2(xk, t )̂h3(x

k, t)[dy3 + ni (x
k)dxi ]2 − [dt + ∂i�[�̂, vϒ]

��[�̂, vϒ] dx
i ]2. (38)

Choosing any generating functions a2(xk, t), ψ(xi ) and �[�̂, vϒ] and integration
functions ni (xk), we generate a nonhomogeneous cosmological model with nonholo-
nomically induced torsion (14). More general torsions can be induced if ni (xk, t) is
taken with two types of integration functions 1ni (xk) and 2ni (xk) (see Eq. (36)). Hav-
ing constructed this solution, we can now consider certain subclasses of generating and
integration functions where a(xk, t) → a(t) �= å(t), wi → wi (t), ni → const, etc.
In this way generic off-diagonal cosmological metrics are generated (because there
are nontrivial anholonomy coefficients Wb

ia .
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3.1.2 Levi-Civita off-diagonal cosmological configurations

The LC-conditions (32) are given by a set of nonholonomic constraints which cannot be
solved in explicit form for arbitrary data (�,ϒ) and arbitrary integration functions 1nk
and 2nk . However, some subclasses of off-diagonal solutions can still be constructed
where via frame and coordinate transforms we can chose 2nk = 0 and 1nk = ∂kn with
a function n = n(xk). It should be noted that (∂i − wi∂4)� ≡ 0 for any �(xk, y4) if
wi is defined by (37). Introducing a new functional B(�), we find that (∂i −wi∂4)B =
∂B
∂�

(∂i − wi∂4)� = 0. Using Eq. (34) for functionals of type h3 = B(|�̃(�)|), we
solve Eq. (∂i − wi∂4)h3 = 0, what is equivalent to the second system of equations in
(32), because (∂i − wi∂4) ln

√|h3| ∼ (∂i − wi∂4)h3.
We can use a subclass of generating functions � = �̌ for which (∂i �̌)� = ∂i �̌

�
and get for the left part of the second equation in (32), (∂i − wi∂4) ln

√|h3| = 0. The
first system of equations in (32) can be solved in explicit form if wi are determined by
formulas (37), and h3[�̃] and h4[�̃, �̃�] are chosen respectively for any ϒ → �. We
can consider �̃ = �̃(ln

√|h4|) for a functional dependence h4[�̃[�̌]]. This allows
us to obtain wi = ∂i |�̃|/|�̃|� = ∂i | ln

√|h4||/| ln
√|h4||�. Taking the derivative ∂4

on both sides of these equations, we get w�
i = (∂i | ln

√|h4||)�
| ln

√|h4||� − wi
| ln

√|h4||�
| ln

√|h4||� . If the

mentioned conditions are satisfied, we can construct in explicit form generic off-
diagonal configurations with w

�
i = (∂i − wi∂4) ln

√|h4|, which is necessary for the
zero torsion conditions. We need also to solve for the conditions ∂kwi = ∂iwk from
the second line in (32). We find in explicit form the solutions for such coefficients,

w̌i = ∂i �̌/�̌
� = ∂i Ã, (39)

with a nontrivial function Ã(xk, y4) depending functionally on the generating function
�̌.

Finally, we conclude that we generate LC-configurations for a class of off-diagonal
cosmological metric type (10) for ϒ = ϒ̆ = �, � = �̌ = �̃ and 2nk = 0 in (36)
which are parameterized by quadratic elements

ds2 = eψ(xk )[(dx1)2 + (dx2)2] + �̌2

4|�| [dy
3 + (∂kn(xi ))dxk]2

− (�̌
�
)2

|�|�̌2
[dt + (∂i Ã[�̌])dxi ]2. (40)

We can re-write such solutions in the form (38). This provides us a general pro-
cedure of off-diagonal deformations with å(t) → a(xk, t) [see the FLRW metric
(17)], resulting in nonhomogeneous cosmological metrics in GR. Prescribing a func-
tion a(xk, t), a generating function �̌(xk, t) and a solution eψ(xk ) (see (24)), we
respectively compute the v-conformal factor and the polarization functions for ĥ3 =
h3/a2|h4| = �̌4/4a2(�̌

�
)2, ω2 = |h4|−1 = |�|�̌2/(�̌

�
)2, ηi = a−2eψ, η3 =

å−2h3 = �̌2/4|�|å2, η4 = 1. Such coefficients (see data (19)) transform the off-
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diagonal cosmological solutions (40) into metrics of type (20),

ds2 = a2(xk, t){[η1(x
k, t)(dx1)2 + η2(x

k, t)(dx2)2] + ĥ3(x
k, t)[dy3

+(∂kn(xi ))dxk]2} − [dt + (∂i Ã[�̌])dxi ]2. (41)

The dependence on the source � is contained in explicit form, for instance, in the
polarization η3. This class of effective Einstein off-diagonal metrics gαβ(xk, t) define
new nonhomogeneous cosmological solutions in GR as off-diagonal deformations
of the FLRW cosmology. For certain well-defined conditions, one can find limits
gαβ → gαβ(t, a(t), ĥ3(t), �̌(t), ηi (t)). This provides explicit geometric models of
nonlinear off-diagonal anisotropic cosmological evolution which, with respect to N-
adapted frames, describe a(t) with modified re-scaling factors.

3.2 Effective FLRW cosmology for f -modified gravity

The anholonomic frame deformation method outlined in previous subsections can be
applied for the generation of off-diagonal cosmological solutions of field equations of
modified gravities, see (21). Redefining the generating functions via the transforms
(33) and � → �̌ → �̃, we can generate off-diagonal cosmological configurations
with R̂ = 4�, see (22) and (23). Such parameterizations of geometric data and
sources are possible for certain general conditions via transforms of N-adapted frames
when the action functional functionally depends on � and on the effective sources,
f̂[R̂(�), T̂(�), P̂], with P̂(t) = R̂αβ T̂αβ = −3ρ̊(H2 + H�) and H = a�/a with
scaling factor a(t) taken for some limits of a solution (38), or (41).

We assume that the density of matter ρ = ρ̊ in T̂αβ (16) is the same as for a
standard FLRW metric (17) and does not change under off-diagonal deformations
with respect to N-adapted frames. For such configurations, �α

β = (p − 2�)δα
β

and �α
β = (2�2 − p � − 1

2 4�2)δα
β = −p�δα

β , where terms with �2 compensate

each other in 4-d. We can write D̂μT̂αβ = 0, D̂μ
1̂f ∼ ∂ 2̂f/∂R̂2

... eμ� ∼ 0, and
(similarly) D̂μ

2̂f ∼ 0, D̂μ
3̂f ∼ 0, for R̂αβ ∼ T̂αβ ∼ �δαβ , � = const, with

respect to corresponding classes of N-adapted frames. Eq. (21) transform into a system
of nonholonomic nonlinear PDEs of type (24)–(27), R̂α

β = ϒ̂δα
β , with effective

diagonalized source

ϒ̂ = �

1̂f
+ f̂

2 1̂f
+ (2� − κ−2� − p)

2̂f
1̂f

+ p�
3̂f
1̂f

, (42)

which can be parameterized with dependencies on (xi , t), or on t . These equations can
be solved for very general off-diagonal forms, depending on generating and integration
functions, following the procedure outlined in previous subsections. Redefining the
generation function as in (33), when an effective cosmological constant �̌ is gener-
ated from ϒ̂(xi , t), one has �̌2 = �̌−1

[
�̂2| ϒ̂| + ∫

dt �̂2| ϒ̂|�]. Such a generating
function defines off-diagonal cosmological solutions of type (38), or (40), as solutions
of field equations for an effective (nonholonomic) Einstein space Řα

β = �̌δα
β . In this
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way, a geometric method is provided when the (effective or modified) matter sources
transform as ϒ̂ (22) → �̌ (23) and the gravitational field equations in modified grav-
ity can be effectively expressed as nonholonomic Einstein spaces when the d-metric
coefficients encode the contributions of f̂, 1̂f, 2̂f and 3̂f and of the matter sources.

We can consider inverse transforms with �̌ → ϒ̂ and state that for certain well-
defined conditions (39) we can mimic both f -functional contributions and/or massive
gravitational theories [41,42]. Here we emphasize that off-diagonal configurations
(of vacuum and non-vacuum types) are possible even if the effective sources from
modified gravity are constrained to be zero.

4 Off-diagonal modeling of cosmological modified gravity theories

This section has three goals. The first is to provide a reconstruction procedure for off-
diagonal effective Einstein and modified gravity cosmological scenarios. The second
is to apply these methods in practice and provide explicit examples related to f (R)

gravity and cosmology. The third goal is to analyze how matter stability problems for
f (R)-theories can be solved by nonholonomic frame transforms and deformations
and imposing non-integrable constraints.

4.1 Reconstructing nonholonomic f -models

Let us construct an effective Einstein space which models a quite general modified
gravity theory with f (R, T, RαβT αβ) = R+F(RαβT αβ)+G(T ). This theory admits
a reconstruction procedure which is similar to that elaborated in [20–22]. Following
the anholonomic frame deformation method with an auxiliary canonical d-connection
D̂, the modified gravity (21) is formulated for

f̂(R̂, T̂, R̂αβ T̂αβ) = R̂ + F̂(P̂) + Ĝ(T̂). (43)

We can self-consistently embed this model into a nonholonomic background deter-
mined by N-adapted frames (8) for a generic off-diagonal solution (41) with limits
D̂ → ∇ and gαβ → gαβ(t, a(t), ĥ3(t), �̌(t), ηi (t)). With respect to such frames, the
nonholonomic FLRW equations are similar to those found in section III B of [20–22]
(see the second paper for details on methods of constructing solutions and speculations
on the problem of matter instability).6

The effective function a(t) defines in our case off-diagonal cosmological evolution
scenarios which are different from those where å(t) stands for a standard diagonal

6 In section III A of that work, a model with G(T ) = 0 was investigated in detail. The conclusion was
that in order to elaborate a realistic evolution it is necessary to consider nontrivial values for G(T ). In
nonholonomic variables, such term Ĝ(T̂) allows to encode f (R) modified theories and related into certain
off-diagonal configurations in GR, which simplifies the solution of the problem of matter instability (see
Sect. 4.3).
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FLRW cosmology. For H := a�/a, 1Ĝ := dĜ/dT̂ and 1F̂ := dF̂/dP̂, we have

3H2 + 1

2

[
f̂ + Ĝ − 3(3H2 − H�) ρ 1F̂

]
− ρ(κ2 − 1Ĝ) = 0, (44)

−3H2 − 2H� − 1

2
[̂f + Ĝ −

(
ρ 1F̂

)�� − 4H
(
ρ 1F̂

)� −
(

3H2 + H�) ρ 1F̂] = 0.

An observer is here in a nonholonomic basis determined by Na
i = {ni , wi (t)} for a

nontrivial off-diagonal vacuum with effective polarizations ηα(t), and can test cosmo-
logical scenarios in terms of the redshift 1+ z = a−1(t) for P = P(z) and T = T (z),
with a new “shift” derivative when (for instance, for a function s(t)) s� = −(1+z)H∂z .

The system of two Eq. (44) simplifies by extending it to a set of three equations for
four unknown functions {̂f(z), Ĝ(z), ρ(z), ς(z)} with a new variable ς(z) := ρ 1F̂,

3H2 + 1

2
[̂f(z) + Ĝ(z)] − 3

2
[3H2 − (1 + z)H(∂z H)] ς(z)

3

2
H2(1 + z)∂zς(z)

−κ2ρ(z) = 0,

−3H2 + (1 + z)H(∂z H) − 1

2
{̂f(z) + Ĝ(z) − [3H2 − (1 + z)H(∂z H)]ς(z)

+[3(1 + z)H2 − (1 + z)H(∂z H)]∂zς(z) + (1 + z)2∂2
zzς(z)} = 0,

(∂z
1F̂) ς(z) − ρ(z) (∂z f̂) = 0. (45)

Here, by re-scaling the generating function, we have fixed the condition ∂z
1Ĝ(z) = 0.

Such a nontrivial term must be considered if one wants to transform f̂ into a standard
theory f (R, T, RαβT αβ). The functional Ĝ(T̂), in both holonomic and nonholonomic
forms, encodes a new degree of freedom for the evolution of the energy-density of
type ρ = ρ0a−3(1+
) = ρ0(1+ z)a3(1+
), which is taken for the dust matter approx-
imation 
 when the evolution reduces to ρ ∼ (1 + z)3. For the assumption that such
an evolution can be considered with respect to N-adapted frames, the solutions of (45)
are determined by data {̂f(z), Ĝ(z), ς(z)} by replacing the second and third equations
into the first one and obtaining a single fourth-order equation for f̂(z).

The reconstruction procedure is restricted to fluids without pressure when such
approximation is considered locally with N-adapted frames and the expressions (18)
for (å, H̊ , ρ̊) are re-defined in terms of (a, H, ρ); data are written with a script “0”
if z = z0, with ξ = κ2ρ0/3H2

0 . One should not confuse, e.g., H̊ and H0, because
these values are computed for different FLRW solutions, with å(z) determined for a
diagonal configuration and a(z) for an off-diagonal one, respectively. We can express

T̂ = T̂α
α = −ξ

3H2
0

κ2 (1 + z)3 and P̂ = R̂αβ T̂αβ = −3ξ
3H2

0
κ2 (1 + z)3[H2 − (1 +

z)H(∂z H)]. Following the approach outlined in Sect. IIIB of [20–22], we introduce
the parameterizations

F̂(P̂) = H2
0 F̌(P̌) and Ĝ(T̂) = H2

0 Ǧ(Ť), (46)

where ˇP =P̂/P0 and ˇT = T̂/T0, for P0 = −9H4
0 ξ/κ2 and T0 = −3H2

0 ξ/κ2. In
correspondingly N-adapted variables, the off-diagonal cosmological solutions can be
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associated with a class of de Sitter (dS) solutions with effective cosmological constant
�̌ , where H(z) = Ȟ0 results in P̌ = Ť = (1 + z)3. In these variables, the solutions
of (45) can be written as

F̌ = c1P̌b1 + P̌b2/3[c2 cos

(
b3

3
ln P̌

)

+ c3 sin

(
b3

3
ln P̌

)

] + c4 + 3ξ P̌, (47)

Ǧ = c̃1Ťb1 + Ťb2/3[c̃2 cos

(
b3

3
ln Ť

)

+ c̃3 sin

(
b3

3
ln P̌

)

] + c̃4 − 3ξ Ť,

being the constants b1 = −1.327, b2 = 3.414 and b3 = 1.380. The values c1, c2, c3
and c4 are integration constants, and the second set of constants c̃1, c̃2, c̃3 and c̃4 can be
expressed via such integration constants, and b1, b2 and b3. We omit explicit formulas
because for general solutions they can be included in certain generating or integration
functions for the modified gravity equations and ultimately related to real observation
data for the associated cosmological models.

For off-diagonal configurations, the f̂(R̂, T̂, R̂αβ T̂αβ) gravity positively allows for
dS solutions in presence of non-constant fluids, not only due to the term P̂ = R̂αβ T̂αβ

in (15), and respective gravitational field and cosmological equations. This is possible
also because of the off-diagonal nonlinear gravitational interactions in the effective
gravitational models. It should be emphasized that the reconstruction procedure elab-
orated in [20–22], see also references therein, can be extended to more general classes
of modified gravity theories, to Finsler like theories and the ensuing cosmologi-
cal models [41,42]. Introducing (47) and (46) into (43), we reconstruct a function
f̂ = R̂ + F̂(P̂) + Ĝ(T̂). As a result, we can associate an effective matter source ϒ̂,
which allows the definition of a corresponding generating function �̌ (see also � and
(33)). Finally, we can reconstruct an off-diagonal cosmological solution with nonholo-
nomically induced torsion of type (38) or to model a similar cosmological metric for
LC configurations (40) (equivalently, (41)).

4.2 How f -gravity and cosmology are encoded in nonholonomic configurations?

It is well known that any FLRW cosmology can be realized in a specific f (R)

gravity (see Ref. [47–50] and, for further generalizations, [20–22]).7 In this sub-
section we analyze two examples of reconstruction of f (R) -gravities where the
”e-folding” variable ζ := ln a/a0 = − ln(1 + z) is used instead of the cosmolog-
ical time t and in related nonholonomic off-diagonal deformations. For such models,
we consider f̂ = f̂(R̂) in (15), use ϒ̂(xi , ζ ) = �/ 1̂f + f̂/2 1̂f instead of (42),
which can be parameterized with dependencies on (xi , ζ ) (in particular, only on ζ ),
�̌2 = �̌−1[�̂2| ϒ̂| + ∫

dζ �̂2∂ζ | ϒ̂|], when ∂ζ = ∂/∂ζ with s� = H∂ζ s for any
function s. The matter energy density ρ is taken as in (45).

We restrict ourselves to N-adapted frames (8), determined by an off-diagonal cos-
mological solution of the (modified) gravitational field equations, and can repeat all

7 We use a system of notations different from that article; here, e.g., N in used for the N-connection and
we work with nonholonomic geometric objects.
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computations leading to Eqs. (2)–(7) in [47–50] and prove that a modified gravity with
f̂(R̂) realizes the FLRW cosmological model. Such solutions depend on the above
source type ϒ̂(xi , ζ ) and generating function �̌(xi , ζ ); also the nonholonomic back-
ground can be modeled to be nonhomogeneous (via wi and ni depending respectively
on xi and ζ , or only on ζ ). The off-diagonal analog of the field equation corresponding
to the first FLRW equation is

f̂(R̂) = (H2+H ∂ζ H)∂ζ [̂f(R̂)]−36H2
[
4H + (∂ζ H)2 + H∂2

ζ ζ H
]
∂2
ζ ζ [̂f(R̂)]+κ2ρ.

In terms of an effective quadratic Hubble rate, q(ζ ) := H2(ζ ), and considering that
ζ = ζ(R̂) for certain parameterizations, this equation yields

f̂(R̂) = −18q(ζ(R̂))[∂2
ζ ζq(ζ(R̂)) + 4∂ζq(ζ(R̂))]d

2̂f(R̂)

dR̂2

+6[q(ζ(R̂)) + 1

2
∂ζq(ζ(R̂))] d̂f(R̂)

dR̂
+ 2ρ0a

−3(1+
)
0 a−3(1+
)ζ(R̂). (48)

We can construct an off-diagonal cosmological model with metrics of type (38) and
nonholonomically induced torsion (when t → ζ ) if a solution f̂(R̂) is used for com-
puting ϒ̂ and �̌. Modeling such nonlinear systems we can consider solutions of the
field equations for an effective (nonholonomic) Einstein space Řα

β = �̌δα
β , when

certain terms of type d̂f(Ř)/dŘ and higher derivatives vanish for a functional depen-
dence f̂(�̌) with ∂ζ �̌ = 0. The nonholonomic cosmological evolution is determined
by off-diagonal coefficients of the metrics and by certain non-explicit relations for
the functionals variables, like q(ζ(R̂(�̌))) and (effective/modified) matter sources
transform as ϒ̂ (22) → �̌ (23).

LC-configurations can be modeled by off-diagonal cosmological metrics of type
(40) when the zero torsion conditions (32) are satisfied. We obtain a standard expression
(see [47–50]) for the curvature of ∇,

R = 3∂ζq(ζ ) + 12q(ζ ), (49)

if the polarization or generating functions for (40) and the solutions of (48) are taken
for diagonal configurations.

We here provide an example of reconstruction of models of f (R) gravity and
nonholonomically deformed GR when both reproduce the �CDM era. For simplicity,
we do not consider a real matter source (if such a source exists, it can be easily encoded
into a nontrivial vacuum structure with generic off-diagonal contributions).

With respect to correspondingly N-adapted frames and for a(ζ ) and H(ζ ) deter-
mined by an off-diagonal solution (38), with nonholonomically induced torsion, or
(41), for LC-configurations, the FLRW equation for �CDM cosmology is given by

3κ−2H2 = 3κ−2H2
0 + ρ0a

−3 = 3κ−2H2
0 + ρ0a

−3
0 e−3ζ . (50)
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This equation looks similar to the one for Einstein gravity for diagonal configura-
tions but contains values determined, in general, for other classes of models with
off-diagonal interactions. Thus, H0 and ρ0 are fixed to be certain constant values, after
the coefficients of off-diagonal solutions are found, and for an approximation were the
dependencies on (xi , ζ ) are changed into dependencies on ζ (via a corresponding re-
definition of the generating functions and the effective sources). We can relate the first
term on the rhs to an effective cosmological constant � (23), which in our approach
appears via a re-definition (33). The second term in the formula describes, in general,
an inhomogeneous distribution of cold dark mater (CDM) with respect to N-adapted
frames. In order to keep the similarity with the diagonalizable cosmological models
in GR we can choose these integration constants for � = 12H2

0 to survive in the
limit wi , ni → 0. It should be noted that such limit must be computed for “nonlinear”
nonholonomic constraints via generating functions and effective sources.

Using (50), the effective quadratic Hubble rate and the modified scalar curvature,
R̂, are computed to be, respectively, q(ζ ) := H2

0 +κ2ρ0a
−3
0 e−3ζ and R̂ = 3∂ζq(ζ )+

12q(ζ ) = 12H2
0 + κ2ρ0a

−3
0 e−3ζ . These functional formulas can be used for the

dependencies on R̂ if a necessary re-definition of the generation functions, or an
approximation (xi , ζ ) → ζ is performed. Expressing 3ζ = − ln[κ−2ρ−1

0 a3
0(R̂ −

12H2
0 )] and X := −3 + R̂/3H2

0 , we obtain from Eq. (48)

X (1 − X)
d 2̂f
dX2 + [χ3 − (χ1 + χ2 + 1)X ] d̂f

dX
− χ1χ2̂f = 0, (51)

for certain constants, for which χ1 + χ2 = χ1χ2 = −1/6 and χ3 = −1/2. The solu-
tions of this equation with constant coefficients and for R (49) were found in [47–50]
as Gauss hypergeometric function, denoted there by f̂ = F(X) := F(χ1, χ2, χ3; X),
as F(X) = AF(χ1, χ2, χ3; X)+BX1−χ3 F(χ1 −χ3 +1, χ2 −χ3 +1, 2−χ3; X) (for
some constants A and B). This provides a proof of the statement that f (R) gravity
can indeed describe �CDM scenarios without the need of an effective cosmological
constant. Working with auxiliary connections of the type D̂, we can generalize the
constructions to off-diagonal configurations and various classes of modified gravity
theories, where A, B and χ1, χ2, χ3 are appropriate functions of the h coordinates. For
instance, reconstruction procedures for Finsler like theories and cosmology models
on tangent and Lorentz bundles, and bi-metric/massive gravity models are given in
[39–42].

Having chosen f̂ = F(X) for a modified gravity, we can go further and mimic an off-
diagonal configuration when f̂ = f̂(R̂) is introduced in (15) and the source ϒ̂(xi , ζ ) =
�/ 1̂f + f̂/2 1̂f is considered instead of (42) and (33) for �̌2 = �̌−1[�̂2| ϒ̂| +∫
dζ �̂2∂ζ | ϒ̂|]. Nevertheless, recovering nonhomogeneous modified cosmological

models cannot be completed for general re-parameterized dependencies on (xi , ζ ) (in
particular, only on ζ ). This distinguishes explicitly the modified gravity theories of type
f (R) from those generated by nonholonomic deformations. For certain homogeneity
conditions, we can state an equivalence of some classes of gravities and cosmological
models, or analyze their alternative physical implications. But a complete recovering is
only possible if all generating and integration functions and the effective sources are
correlated with certain observable cosmological effects and further approximations
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and re-definitions in terms of constant parameters and functionals depending on a
time-like coordinate can be effectively performed.

The AFDM allows to reconstruct off-diagonal configurations modeling f (R) grav-
ity and cosmology with non-phantom or phantom matter in GR. With respect to
N-adapted frames in an off-diagonal (modified, or not) gravitational background, the
FLRW equations can be written as

3κ−2H2 =s ρ(xk)a−c(xk ) +p ρ(xk)ac(x
k ), (52)

where a(xk, ζ ) and H(xk, ζ ) are determined by a solution (38), or (41). For re-
parameterizations or approximations with (xi , ζ ) → ζ , we assume that the positive
functions sρ(xk),p ρ(xk) and c(xk) can be considered. The first term on the rhs dom-
inates for small a in the early universe, as in GR with non-phantom matter described
by an EoS parameter w = −1 + c/3 > −1. Introducing q(xk, ζ ) := H2(xk, ζ ) and
the respective functionals sq := κ2

3 sρa
−c
0 and pq := κ2

3 pρa
c
0, for q = sqe−cζ +

pqecζ , in R̂ = 3∂ζq(ζ ) + 12q(ζ ), we find

ecζ =
{ [R̂ ±

√
R̂2 − 4(144 − 9c2)]/6(4 + c), for c �= 4;

R̂/24, for c = 4.
(53)

The non-phantom matter may correspond to the case c = 4 in (53), including radiation
with w = 1/3. Eq. (52) transform into a functional equation on Y determined by
changing the functional variable R̂2 = −576sq pq Y , 4Y (1 −Y ) d 2̂f

dY 2 + (3 +Y ) d̂f
dY −

2̂f = 0. This is again a functional variant (if we consider dependencies on xk) of the
generating Gauss’ hypergeometric function, similarly to (51), which can be solved in
explicit form.

For the case c �= 4 in (53), we obtain models with phantom-like dominant com-
ponents. A similar procedure as for deriving Eqs. (22) and (23) in [47–50], results

in a functional generalization of the Euler equation, namely R̂2 d 2̂f(R̂)

dR̂2 + AR̂ d̂f(R̂)

dR̂
+

B̂f(R̂) = 0, for some coefficients A = −H0(1 + H0) and B = (1 + 2H0)/2, for
H0 = 1/3(1+ phw). Here we consider, for simplicity, homogenous limits and approx-

imations H2(t) = κ2

3 phρ for the phantom EoS fluid-like states, ph p =ph wphρ, with

phw < −1. In both cases, with a trivial or a nontrivial nonholonomically induced
torsion, there are solutions of the nonholonomic Euler equations above which can
be expressed in the form f̂(R̂) = C+R̂m+ + C−R̂m− , for some integration con-
stants C± and 2m± = 1 − A ± √

(1 − A)2 − 4B. This reproduces with respect to
N-adapted frames the phantom dark energy cosmology with a behavior of the type
a(t) = a0(ts − t)−H0 , where ts is the so-called Rip time. If the generating functions for
the off-diagonal cosmological solutions are chosen in a way such that the N-connection
coefficients wi and ni transform to zero, the solutions describe universes which end
at a Big Rip singularity during ts . Additionally to the former result that in the f (R)

theory no phantom fluid is needed, we conclude that for off-diagonal configurations
we can effectively model such locally anisotropic cosmological configurations.
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One can encode and effectively model various types of cosmological solutions
for modified gravity theories with f (R) and/or f (R, T, RαβT αβ) functionals and
their nonholonomic deformations. The cosmological reconstruction procedures can be
elaborated for various types of viable modified gravity which may pass, or not, local
gravitational tests and explain observational data for accelerating cosmology, dark
energy and dark matter interactions [20–22,39–42,47–50]. Nevertheless, these theo-
ries exhibit certain specific problems as non-conservation of the energy-momentum
tensors for the effective or physical matter fields.

In explicit form, we explain how the “non-conservation” problem can be solved
for off-diagonal solutions with one Killing symmetry in the framework of f (R, T )

theories generalizing certain constructions from [51]. Following a similar procedure
as in Sect. II of that work, but using the operator D̂ instead of ∇, for f̂ = f̂(R̂, T̂),
and considering an N-adapted parametrization of the effective source ϒ̂ = const, we
prove that

(

1 + κ2

2̂f

)

D̂αT̂αβ = 1

2
gαβD̂αT̂ − (T̂αβ + �̂αβ)D̂α ln( 2̂f) − D̂α�̂αβ. (54)

In these equations the values 2̂f := ∂̂f/∂T̂ and �̂αβ = −2T̂αβ − pgαβ are used,
with an energy-momentum tensor (16) for nonholonomic flows of a perfect fluid. In
general, D̂αT̂αβ �= 0 even for nonholonomic deformations of GR. Nevertheless, we
can consider a subclass of off-diagonal configurations in f̂(R̂, T̂) gravity when ϒ̂

(22) → �̌ (23) and �̌2 = �̌−1[�̂2| ϒ̂| + ∫
dζ �̂2∂ζ | ϒ̂|] result in f̂ → ˇf = LR

and effective Řα
β = �̌δα

β which admit LC-solutions with zero torsion. For such

nonholonomic distributions with D̂ → ∇, D̂αT̂αβ → ∇̌�̌ = 0 and all terms on the
lhs of (54) vanish, because they are nonholonomically equivalent to functionals of the
effective cosmological constant �̌. Such conditions are satisfied in correspondingly
N-adapted frames and for canonical d-connections. The equations (54) generalize to
nonholonomic forms the similar ones derived for the Levi-Civita connection ∇ (see
Eq. (10) in Ref. [51]).

4.3 Nonholonomic constraints and matter instability

There is another serious problem in modified gravities which is related to possible
matter instabilities related to modifications of the gravitational actions. Even tiny
modifications of GR may make the new model to posses unstable interior solutions
(see, e.g., [52,53]). It was demonstrated however that there are viable f (R) theories
(with appropriated choices of the functional) where such instabilities may not occur
[1–10,54–56]. The issue of instability and stabilization via additional nonholonomic
constraints will be studied in our further works. In this section, we speculate how
the AFDM can be applied to stability analysis in more general f (R, T, RαβT αβ)

theories. The corresponding field equations are very difficult to solve even in a linear
approximation [20–22], if we work in coordinate frames and with general functionals.
In the nonholonomic variable formalism, the gravitational field equations in modified
gravity theories posses the decoupling property exhibited above, which allows to
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encode f (R, . . .)-modifications into off-diagonal nonholonomic configurations for
the effective Einstein manifolds.

For a stability analysis, the trace equations where (21) are multiplied by gμν are to
be considered, namely

−2̂f+(R̂+3D̂μD̂μ)1̂f+(T̂+�)2̂f+(
1

2
D̂μD̂μT̂+D̂μD̂νT̂μν+�)3̂f = κ2T̂, (55)

where 1̂f := ∂̂f/∂R̂, 2̂f := ∂̂f/∂T̂ and 3̂f := ∂̂f/∂P̂, when P̂ = R̂αβ T̂αβ . Let
us envisage a trace configuration in the interior of a celestial body, when T̂ = T̂0
and −2̂f + R̂0 ( 1̂f) = κ2 T̂0. Imposing nonholonomic constraints, we parameterize
a LC-configuration in GR and model an interior solution in the presence of some
gravitational objects (for instance, the Sun or the Earth). The f -modifications (in
general with strong coupling for the curvature and the energy-momentum tensor) may
result in a worsening of the stability problems and may prevent T̂0 to be a solution of
any suitable background equation. It is difficult to find solutions of (55) even for very
much simplified cases in the nonlinear situation if we work in coordinate frames for
the connection D̂ = ∇.

A rigorous study of the problem of matter instability for f (R) and more gen-
erally f (R, T, RαβT αβ) gravities, for certain illustrative cases when 1̂f = R, and
for restrictive conditions where there is a qualitative description via additional func-
tionals on T and P shows that the appearance of a large instability can actually
be avoided. Using the AFDM, we can consider modified gravity theories with f -
modifications which are effectively described by Řα

β = �̌δα
β when the modifications

are encoded into polarization functions and N-coefficients. For models generated by
f̂(R̂, T̂, R̂αβ T̂αβ) = f̂1(R̂) + F̂(P̂) + Ĝ(T̂), we take a constant interior solution with

T̂0 = const and P̂0 = const, and denote by f̂ (s)1 := ∂ ŝf1/∂R̂s and F̂(s) := ∂s F̂/∂P̂s

for s = 1, 2, . . . We can repeat, with respect to the N-frames (8), the computations
presented in detail for Eqs. (45)–(48) in [20–22] (see also references therein), and
prove that Eqs. (55) for linear pertubations can be written in the form

[

ĎμĎμ + 2
Ťμν

0

Ť0
ĎμĎν + 2

�0

Ť0
+ 4

P̌0

Ť0

f̂ (1)
1

F̂(2)

]

δP̌

=
[

2

Ť0

f̂ (1)
1

F̂(2)
− P̌0

Ť0

F̂(1)

F̂(2)

(
2 mL̂ − Ť0

)
]

δŘ.

The values of type δP̂ and δR̂ are considered for a small perturbations in the curvature
where R̂ = R̂0 +δR̂ and P̂ = P̂0 +δP̂. No instability appears if δ ˇP =δŘ = 0 which is
a particular solution of the above equation. We can in fact model a damped oscillator
with additional nonholonomic constraints if �0 +2P̌0̂f

(1)
1 /F̂(2) ≥ Ť0, which allows to

avoid large instabilities in the interior of a spherical body. For some specific functionals
f (R) and appropriate G(T ), the same behavior as in GR results (with mass stability in
the cosmological context), although there are possible large perturbations δR and δP
remaining. The ideas how to circumvent the mass instability problem for holonomic
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configurations has been studied in [57–62]. Redefining the generating functions and
sources in a f -modified model into an effective Einsteinian theory, with S[Ř,�̌], one

can consider a nonholonomically deformed Hilbert-Einstein action with f̂ → ˇf = L.R
In such cases, δR̂ = δ ˇR = 0 and instabilities are not produced, indeed, if we impose
the zero torsion conditions (see (14)), we get back to the GR theory. Even if Eq. (55)
involves not only perturbations of the Ricci scalar R̂ but also of the Ricci d-tensor R̂αβ

(through δP̂), via nonholonomic transforms to effective Řα
β = �̌δα

β , the stability of
the system is obtained via off-diagonal interactions and the nonholonomic constraints
used for an effective modeling of a subclass of f̂-theories to certain nonholonomic
deformations of the Einstein equations with effective cosmological constant �̌. This
is indeed a remarkable result.

5 Concluding remarks and discussion

We have presented a study of the conditions when a wide class of f (R, . . .) modified
gravity theories, MGTs, can be encoded into effective off-diagonal Einstein spaces if
nonholonomic deformations and constraints are considered for the nonlinear dynamics
of gravity and matter fields. A special attention has been paid to a new version of MGT
which includes strong coupling of the fields [20–22]. Notably, we advocated such
theories to have physical motivations from the covariant Hořava-Lifshitz like gravity
models, with dynamical breaking of the Lorentz invariance [11–14]. This provides also
an example of a covariant, power-counting renormalizable theory and is represented
by a simplest power-law f -gravity.

It is worthwhile to mention that the gravitational field equations in such MGTs
admit a decoupling property with respect to certain classes of nonholonomic frames,
which allows us to generate exact solutions for very general off-diagonal forms. The
corresponding integral varieties of solutions are parameterized by generating and inte-
gration functions and various classes of commutative and noncommutative symmetry
parameters. It is possible to re-define the generating functions and effective sources
of matter fields in such a way that the f -terms are equivalently encoded into effective
Einstein spaces with complex parametric nonlinear structure for the gravitational vac-
uum. We argue that certain nonholonomic configurations model also covariant gravity
theories with nice ultraviolet behaviors and seem to be (super-)renormalizable in the
sense of Hořava-Lifshitz gravity [11–19,41,42].

Notwithstanding the fact that the various f (R) modified theories and general rel-
ativity, GR, are actually very different theories, the off-diagonal configurations and
nonlinear parametric interactions considered in GR may encode various classes of such
modified gravity effects and explain alternatively observational data for accelerating
cosmology and certain effects in dark energy and dark matter physics. In both cases,
it is possible to find cosmological solutions and reconstruct the corresponding action.
In the already mentioned classes of modified gravity theories with f -modifications
[1–14,20–22], the dynamics of the matter sector is modeled by a perfect fluid.

We note, finally, that MGTs in general contain ghosts, due to the higher-derivative
terms in the action. However, we can select certain ghost-free configurations deter-
mined by corresponding classes of nonholonomic deformations or constraints. Such
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models of bi-metric and massive graviton gravities were recently studied in [39–
42]. Together with the results in [11–19], the conclusion is reached that some
f (R, T, RαβT αβ) models, and their off-diagonal nonholonomic equivalents, may pos-
sess nice ultraviolet properties and that interesting connections can be established with
viable theories of quantum gravity.
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