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Abstract A method to simulate orthotropic behaviour in
thin shell finite elements is proposed. The approach is
based on the transformation of shape function derivatives,
resulting in a new orthogonal basis aligned to a specified
preferred direction for all elements. This transformation is
carried out solely in the undeformed state leaving mini-
mal additional impact on the computational effort expended
to simulate orthotropic materials compared to isotropic,
resulting in a straightforward and highly efficient imple-
mentation. This method is implemented for rotation-free
triangular shells using the finite element framework built
on the Kirchhoff–Love theory employing subdivision sur-
faces. The accuracy of this approach is demonstrated using
the deformation of a pinched hemispherical shell (with a 18◦
hole) standard benchmark. To showcase the efficiency of this
implementation, the wrinkling of orthotropic sheets under
shear displacement is analyzed. It is found that orthotropic
subdivision shells are able to capture the wrinkling behavior
of sheets accurately for coarse meshes without the use of an
additional wrinkling model.

Keywords Finite elements · Rotation-free shells ·
Orthotropic materials · Subdivision surfaces · Wrinkling

1 Introduction

Shells possess a unique curved shape which allows them to
carry transversal loads primarily by in-plane forces [28]. This
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feature permits them to be extremely slender if necessary,
resulting in a wide range of potential applications. Efforts
to understand their mechanical capabilities have therefore
been crucial in the development of load carrying structures.
In conjunction with the finite element method (FEM), shells
can be numerically simulated to investigate how membrane-
like structures manage different loading conditions, thereby
greatly assisting in their design [1].

Biological structures like plant cell walls and skin often
possess very thin sheets which undergo large deformations
[10] that are difficult to capture using traditional simu-
lation methods. These sheets are generally heterogenous
in nature with anisotropic material properties [12]. Some
even have preferential orientations due to the presence of
crosslinked polymers, giving them orthotropic or trans-
versely isotropic material properties [3]. Due to their geom-
etry, these sheets are often modelled with computationally
efficient thin shell finite elements [15]. It is therefore essen-
tial that the type of shell elements used to approximate these
structures are capable of simulating non-isotropic material
properties.

A traditional way to treat thin shells numerically is with
the use of the Kirchhoff–Love theory. This theory uses a set
of assumptions to effectively capture the properties of geo-
metrically exact thin shells in terms of its middle surface.
These assumptions are that the shell is sufficiently thin, and
that straight material lines initially normal to the middle sur-
face of the shell remain unstretched, straight and normal after
deformation such that the normal stress in the thickness direc-
tion is negligible. Shells simulated with this approach have
been shown to be quite accurate on a variety of numerical
benchmarks [1,26].

The choice of shape functions is crucial in the analysis of
thin shells ofKirchhoff–Love type due to thewell-researched
C1 continuity requirement [40]. This requirement is due to
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the presence of second-order derivatives of displacement,
which leads to a fourth-order equilibrium equation. This in
turn calls for continuous first order derivatives across element
boundaries. In order to tackle the continuity requirement,
higher-order conforming shape functions with additional
degrees of freedom in Hsieh–Clough–Tocher triangles [7]
and Hermite quadrilaterals [40] have previously been used
in shell elements. Alternatively, this requirement has been
ignored and non-conforming elements with C0 continuity
have been combined with other assumptions [29]. Recently,
isogeometric analysis using NURBS [16], as well as subdivi-
sion surfaces [5,6] have also been developed to satisfy these
requirements. Subdivision surfaces in particular have been
implemented in triangular shells with a rotation-free formu-
lation, i.e. requiring only displacement degrees of freedom
at the mesh nodes. This rotation-free formulation greatly
saves on computational cost due to the significant reduc-
tion in the number of degrees of freedom, thereby gaining
prominence in recent years [2,20,25,26]. Due to their for-
mulation, triangular rotation-free elements like subdivision
shells pose a unique set of challenges to the simulation of
orthotropic material properties required to model deforming
sheets [34,35].

In this article, we present a straightforward method to
simulate orthotropy in Kirchhoff–Love rotation-free shell
elements. This method is based on the transformation of the
directional derivatives of the element shape functions. It is
computationally efficient, independent of the choice of shape
functions, and can be coupled to a wide range of problems
without further alterations. We use Loop subdivision shell
elements [22] to demonstrate its accuracy for geometrically
nonlinear problems, which include the pinched hemisphere
benchmark and the problem of thin sheets wrinkling under
applied shear.

This article is divided into the following sections: first,
the typical continuum formulation for geometrically exact
Kirchhoff–Love thin shells is described. Section 3 then pro-
vides a short overview on the development of the basis
orientation followed by a detailed explanation of the trans-
formation method. This is followed by a few words on
the constitutive law and discretization. Finally, the accu-
racy of the method using the pinched hemisphere benchmark
is demonstrated which culminates with the application of
orthotropic subdivision shells to the analysis of thin sheets
subjected to shear.

2 Kinematics

To begin, the standard formulation of geometrically exact
Kirchhoff–Love thin shells is revisited. The deformation of
the thin shell is constructed using the classical stress-resultant
formulation in curvilinear coordinates [31]. This formulation

describes the shell in terms of its middle surface by integrat-
ing the stress through its thickness.

We begin by introducing some standard notation. The ref-
erence geometry of the shell is characterized by amiddle sur-
faceΩ ⊂ E

3, with boundaryΓ = ∂Ω and thickness hwhich
is considered to be small compared to the planar dimensions
of the shell.With the actionof applied loads, the shell deforms
into a new configuration characterized by an altered middle
surface Ω ⊂ E

3. The position vectors of an arbitrary mate-
rial point in the shell, denoted by r and r in the reference
and deformed configurations respectively, are parametrized
in terms of their curvilinear coordinates {θ1, θ2, θ3} as

r(θ1, θ2, θ3) = x(θ1, θ2) + θ3 a3 (θ1, θ2),

r(θ1, θ2, θ3) = x(θ1, θ2) + θ3 a3 (θ1, θ2),
(1)

where θ3 ∈ [−h/2, h/2] represents the thickness coordi-
nate, x and x are the parametric representations of the middle
surfaces of the configurations Ω and Ω respectively, while
a3 and a3 are the shell director vectors in the reference
and deformed configurations respectively. The change in the
material point from x to x is described in terms of a dis-
placement field u = x − x. This parametrization allows the
description of themiddle surface coordinate basiswhich span
the tangent space T as

aα = ∂x
∂θα

= x, α, aα = ∂x
∂θα

= x, α, (2)

where Greek indices indicate integers 1 and 2, and a comma
indicates partial differentiation. In addition, it should be
noted that henceforth, Einstein summation is used and Latin
indices indicate integers from 1 to 3. By applying the Kirch-
hoff constraints, the shell directors can be described as

a3 = a1 × a2
J

, J = ‖a1 × a2‖

a3 = a1 × a2
J

, J = ‖a1 × a2‖
(3)

where J is the Jacobian determinant. The infinitesimal area
element is now expressed as dΩ = J dθ1dθ2. By differenti-
ating Eq. (1), the covariant basis of an arbitrary point in the
shell can be described as

∂r
∂θα

= ∂x
∂θα

+ θ3
a3
∂θα

,
∂r
∂θ3

= ∂x
∂θ3

,

∂r
∂θα

= ∂x
∂θα

+ θ3
a3
∂θα

,
∂r
∂θ3

= ∂x
∂θ3

.

(4)

Substituting Eq. (2) in the above yields

gα = aα + θ3 a3, α, g3 = a3,

gα = aα + θ3 a3, α, g3 = a3,
(5)
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while the corresponding covariant coefficients of the metric
tensors are

gi j = gi · g j , gi j = gi · g j . (6)

The covariant coefficients of the surface metric tensor are

aαβ = aα · aβ, aαβ = aα · aβ, (7)

while the covariant coefficients of the shape tensor are

bαβ = −a3, α · aβ = a3 · aα, β,

bαβ = −a3, α · aβ = a3 · aα, β .
(8)

This formulation uses the Green-Lagrange strain (Ei j ),
whose coefficients in curvilinear coordinates are defined as

Ei j = 1

2
(gi j − gi j ). (9)

Using additive decomposition, the Green-Lagrange strain
tensor can be split into the non-zero coefficients of the mem-
brane ααβ and bending βαβ strain tensors. Neglecting higher
order terms (O(θ3)2) and considering Eqs. (5) and (6), we
arrive at

Eαβ = ααβ + θ3βαβ, (10)

where the coefficients of the strain tensors are

ααβ = 1

2
(aαβ − aαβ), βαβ = bαβ − bαβ. (11)

This neglection of the higher order terms makes this a first
order shell theory, which is valid for small thickness h.

3 Shape function derivative transformation

Now that the basic notation has been reviewed, we describe
how the element basis is traditionally oriented based on
the shape functions, followed by our approach to simulate
orthotropy. As stated in the previous section, the tangent
space T of the middle surface of a shell is spanned by the
in-plane basis vectors of the reference and deformed con-
figurations aα and aα respectively. When the continuum is
discretized into elements, each quadrature point q of an ele-
ment acquires its own tangent spacewhichwe shall refer to as
Tq as can be seen in Fig. 1. It should be noted that the number
of quadrature points per element has no bearing on our pro-
posed method as the transformation occurs on all available
Tq . Due to this property, the reduced integration approach of
a single quadrature point per element is used henceforth.

By construction, triangular elements generally have non-
orthogonal basis vectors in Tq . This also applies to curved

Fig. 1 Thin shell with reference thickness h represented by its middle
surface Ω with non-orthogonal basis aα spanning tangent space Tq at
point q

Fig. 2 a The orientation of the basis is originally non-orthogonal and
non-aligned. b The transformed basis is orthonormal and aligned to the
preferred direction

regular meshes, where the orientation of each triangular ele-
ment varies from its neighbours, resulting in basis vectors
that are not aligned between elements (Fig. 2a). Isotropic
materials do not depend on the orientation or orthonormality
of the basis as their properties remain constant in all direc-
tions, unlike the case for orthotropic materials. Therefore, to
confer orthotropic properties to a surface, the element basis
vectors are transformed to an orthogonal basis and aligned
to a preferred direction across the surface as seen in Fig. 2b.
The discretized form of the basis vectors can be written as a
linear combination of shape function derivatives

a1 =
nsf∑

I=1

NI,ξ xI , a2 =
nsf∑

I=1

NI,η xI , (12)

where {NI , I = 1, . . . , nsf } are the shape functions and xI
are the nodal positions, with nsf being the number of mesh
nodes accounted for by each quadrature point. These deriva-
tives are defined by directions ξ , η ∈ E

3 along the sides of the
standard triangular master element as shown in Fig. 3. Basis
vectors are in factmanifold versions of directional derivatives
taken along the sides of this master element. Technically, the
basis can be transformed directly using an orthogonaliza-
tionmethod like theGram–Schmidt process [14]. This would

123



788 Comput Mech (2015) 56:785–793

Fig. 3 The basis transformation corresponds to a change in the shape
of the master triangle from ξ and η to the directions stipulated by ξ ′ and
η′

result in an orthonormal basis that spans the same space Tq
as the original shown in Fig. 1. However, this basis would
be mismatched with the shape function derivatives shown in
Eq. (12) and its second derivatives. Alternatively, one could
directly transform the covariant strain tensors ααβ and βαβ in
Eq. (11) and the contravariant resultant stresses shown later in
Sect. 4 using the principal directions of orthotropy [9]. This
procedure would need to be performed at every time step,
which can be very computationally costly. Furthermore, the
shape function derivatives would now be mismatched with
the strains and resultant stresses.

A straightforward procedure to create a basis which
matches with the first and second derivatives of its shape
functions is to use a transformation that directly alters the
first and second derivatives of the shape functions NI in Ω

leading to a new orthogonal basis without further adjust-
ments. By ensuring that the new basis vectors in each Tq are
individually aligned to the preferred direction, this method
is able to simultaneously transform and align the basis of
triangular elements. An advantage of this procedure is that
it only needs to be performed once for every element in the
mesh for the reference configuration in a Total Lagrangian
formulation. Other works [34,35] have used alternate trans-
formation matrices built using the deformed configuration.
This implies that, as with the direct transformation of the
strains and resultant stresses, the process of orthogonaliza-
tion is repeated for every deformed configuration.

The first step in this procedure is to introduce a vector to
indicate the preferred direction of the material. This shall be
denoted by the unit vector d ∈ E

3, which is not parallel to
a3 anywhere on the middle surfaceΩ . In order to ensure that
the reference basis of each element is aligned, d is identical
for every quadrature point in the mesh. The curvature of the
shell surface predicates that d will most likely not lie in Tq .

Therefore, it needs to be projected onto Tq using the relation

â1 = d − (d · a3) a3, (13)

where â1 is the new unscaled in-plane basis vector that points
towards the preferred direction while lying in Tq . The other
new unscaled basis vector â2 points in the direction perpen-
dicular to the preferred direction, henceforth referred to as
the perpendicular direction

â2 = a3 × â1. (14)

The unscaled basis âα now needs to be rescaled by the
lengths of the original basis vectors aα to the new in-plane
basis in the reference configuration, a′

α . This is required as
the basis transformation is non-orthogonal, thereby not pre-
serving vector lengths. The angle between the original basis
a1 and the new preferentially aligned â1 is given by

θ = arctan

(‖â1 × a1‖
â1 · a1

)
. (15)

Since J has to remain constant, a3 can be treated as the
reference aroundwhich the original basis is rotated.Using the
relation ‖a3‖ = ‖a1‖ ‖a2‖ sin θ , the new orthogonal basis
a′
α can be defined as

a′
α = âα

‖a3‖
‖aβ‖ sin θ

where α �= β. (16)

Since a′
α has been constructed, and a′

3 = a3, we can
look at altering the shape function derivatives, NI,ξ and NI,η

respectively. In their original state, ξ and η correspond to the
three-dimensional Cartesian unit vectors e1 and e2 respec-
tively.

ξ = [ξ1 ξ2 ξ3] = [1 0 0],
η = [η1 η2 η3] = [0 1 0]. (17)

These directions need to bemodified to ξ ′ and η′ respectively.
These new directions are found by constructing a transfor-
mation matrix T between a′

k and ak

T = (ak ⊗ ek)−1 (a′
k ⊗ ek) = [Ti j ] =

[[Tαβ ] 0
0 1

]
, (18)

where ek denotes the in-plane Cartesian unit vectors and
[Tαβ ] is a non-orthogonal 2 × 2 matrix representing an in-
plane basis transformation with coefficients
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[Tαβ ] =
⎡

⎢⎣
η′
1 ξ ′

1

η′
2 ξ ′

2

⎤

⎥⎦ , (19)

which describes the shape of the new non-right angledmaster
triangle as can be seen in Fig. 3. Application of [Tαβ ]T mod-
ifies NI,ξ and NI,η to derivatives with directions ξ ′ and η′
respectively. This transformation also applies to the second
derivatives of NI if higher-order shape functions are used.
This is shown by

∇′(NI ) = [Tαβ ]T ∇(NI ),

H ′(NI ) = [Tαβ ]T H(NI ) [Tαβ ], (20)

where ∇′(NI ) and H ′(NI ) represent the modified gradient
and Hessian matrix of the shape functions respectively. In
tensor form, this can be rewritten as

⎡

⎢⎣
NI,η′

NI,ξ ′

⎤

⎥⎦ =
⎡

⎢⎣
η′
1 η′

2

ξ ′
1 ξ ′

2

⎤

⎥⎦

⎡

⎢⎣
NI,η

NI,ξ

⎤

⎥⎦ , (21)

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

NI,η′η′

NI,ξ ′ξ ′

NI,ξ ′η′

NI,η′ξ ′

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

η′
1 η′

1 η′
2 η′

2 η′
1 η′

2 η′
1 η′

2

ξ ′
1 ξ ′

1 ξ ′
2 ξ ′

2 ξ ′
1 ξ ′

2 ξ ′
1 ξ ′

2

η′
1 ξ ′

1 η′
2 ξ ′

2 η′
1 ξ ′

2 η′
2 ξ ′

1

η′
1 ξ ′

1 η′
2 ξ ′

2 η′
2 ξ ′

1 η′
1 ξ ′

2

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

NI,ηη

NI,ξξ

NI,ξη

NI,ηξ

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

.

(22)

The first and second derivatives of the shape functions
have now been transformed, allowing the new orthogonal
basis to be constructed by replacing NI,ξ and NI,η with
NI,ξ ′ and NI,η′ in Eq. (12). The altered second derivatives
of the shape functions given in Eq. (22) are used to build
the first derivatives of the basis aα, β . The coefficients of the
surface metric tensor and shape tensor defined in Eq. (7–
8) respectively are then determined using this altered basis.
This finally results in updated membrane ααβ and bending
βαβ strain tensors shown in Eq. (11). Once these geometric
quantities have been built, the constitutive law in curvilinear
coordinates needs to be defined for the orthotropic case. This
combined with the assembly of the stress resultants with the
new orthogonal and aligned basis is described in the next
section.

4 Constitutive model and discretization

The material properties of the shell are determined by the St.
Venant–Kirchhoff constitutive law. The strain energy density

function for the orthotropic case is altered from the Koiter
energy density functional [19] to

W = K αβ

2

[
h Hαβγ δ ααβ αγ δ + h3

12
Hαβγ δ βαβ βγ δ

]
, (23)

where the coefficients of the elasticity tensor Hαβγ δ are

Hαβγ δ = ν1a
αβ aγ δ + (1 − ν1)

2
(aαγ aβδ + aαδaβγ ), (24)

and the coefficients of the stiffness K αβ are

[
K 11 K 22 K 12

]
=

[
E1

1 − ν1ν2

E2

1 − ν1ν2

G12

1 − ν1

]
.

(25)

The above relation includes the elastic modulus E , the
Poisson ratio ν and the shear modulus G, where the index
1 represents the preferred direction d of the material, and 2
represents the perpendicular direction. The moduli and Pois-
son ratios are related by E1 ν2 = E2 ν1. The derivative of the
strain energy density functionalwith respect to themembrane
strains ααβ and bending strains βαβ gives the resultant mem-
brane stresses nαβ and bending stresses mαβ of the element
respectively

nαβ = ∂W

∂ααβ

= h K αβ Hαβγ δ αγ δ,

mαβ = ∂W

∂βαβ

= h3

12
K αβ Hαβγ δ βγ δ.

(26)

Now that the form of the stress resultants has been elu-
cidated, we can proceed to the discretized form of the
equilibrium equations. This is achieved by approximating the
minimization of the total potential energy, which is obtained
by summing the contribution of the internal elastic energy
(φint) with the external energy (φext) according to

φ[u] = φext[u] + φint[u], (27)

The internal energy is the Koiter strain energy density is inte-
grated over the reference middle surface, and the external
energy is the sum of the external load q per unit surface area
and the traction N per unit edge length, given as

φint[u] =
∫

Ω

W dΩ,

φext[u] = −
∫

Ω

q · u dΩ −
∫

Γ

N · u dΓ ,

(28)

respectively. To solve the elastic energy minimization prob-
lem for the displacement field u, the first variation of φ is
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taken and augmented with the inertial term containing the
mass matrix. This results in

0 = f intI − f extI +
∑

J

MI J üJ , (29)

where

f intI = −
∫

Ω

(
nαβ ∂ααβ

∂uI
+ mαβ ∂βαβ

∂uI

)
dΩ,

f extI =
∫

Ω

q NI dΩ +
∫

Γ

N NI dΓ ,

MI J =
∫

h ρ NI NJ dΩ.

(30)

In the above relation, MI J is the mass matrix for dynamic
analysis. Eq. (29) can now be evaluated element-wise using a
quadrature rule. The constant-average acceleration method
is used for time integration. This is obtained by setting γ =
1/2 and β = 1/4 in the widely used Newmark family of
methods [23,29]. Further details on this setup can be found
in Refs. [5,6].

Methods that directly transform the components of f int

will require the additional transformation of f ext to the
new local coordinate system in order to implement bound-
ary conditions which involve shape function derivatives.
All rotation-free shells require this supplementary step for
their implementation of certain natural boundary conditions
[2,4,13,18,20,24,25] including frictional contact [39], in-
plane shear traction based conditions [21] and displacement-
dependent pressure loads [30]. Some widely used formula-
tions additionally require these shape function derivatives
for curvature gradient calculations [20,25] or hourglass sta-
bilization [2]. Our proposed method does not require these
further transformations.

The details of the simulation method and its advantages
have been presented and are now followed by two numerical
studies in the next section to demonstrate the efficiency and
accuracy of orthotropic subdivision shells.

5 Numerical studies

We present two examples to demonstrate the accuracy of
the described transformation method. The first is a standard
numerical benchmark of orthotropic behaviour for geo-
metrically nonlinear problems. The second showcases the
efficiency of orthotropic subdivison shell elements by ana-
lyzing wrinkling behavior of sheets. Both examples have
been simulated using a single quadrature point per element
(reduced integration), located at its barycenter. It has been
argued in Refs. [5,6] that a single quadrature point in ade-

quate for the simulation of geometrically nonlinear large
deformation problems with subdivison shells.

5.1 Pinched hemispherical shell

This example is used to study how the shell performs when
subjected to coupled stretching and bending stresses with
large rigid body rotations. While this setup was originally
developed for isotropic shells, it was modified to take into
account the orthotropic case in Refs. [34,35]. The problem
consists of a hemisphere with a 18◦ hole at its north pole
loaded by four equal point loads on its equator 90◦ from
each other. These forces are diametrically opposite in direc-
tion, with a pair of tensile and compressive loads. The shell
radius R is 10, with a thickness h of 0.04, elastic modulus in
the circumferential direction Ec of 6.825×107, and a Poisson
ratio νc of 0.3. The elasticmodulus in themeridional direction
Em and shear modulus Gcm are given in Table 1 for differ-
ent material properties. For clarity, the degree of orthotropy
is defined as λ = Em/Ec. The meshes were constructed
by subdividing each triangular element into four until a
fine enough discretization was obtained. Further data on the
relevent isotropic case can be found in Refs. [32,33]. Due
to the small number of degrees of freedom (DOF) required
for an accurate result and the lack of symmetry, the entire
hemisphere was modelled. The hemispherical mesh consists
of 16 × 64 subdivision elements as used by Ref. [36] with
3264 DOF (3 DOF per node). Figure 4 illustrates two of
the four diametrically opposite point loads (at A and B) on
which an increasing load with a maximum of 100 is placed.
Table 2 shows the maximum displacements of each material
property scenario. The orthotropic subdivision shells (SD3R)
are compared with quadratic shell elements with reduced
integration (S8R) from the commercially available Abaqus
software [8] and the rotation-free basic shell triangle (BST)
[34,35] in Fig. 5. Very good agreement with existing data
leads us to conclude that the orthotropic subdivision shell is
able to accurately model problems with large deformations
and both stretching and bending with a substantially lower
number of DOF than the BST and S8R elements found in
literature.

Table 1 Material properties for the pinched hemisphere benchmark
[34,35]

λ Em Gcm

1.0 6.825 × 107 2.625 × 107

0.9 6.143 × 107 2.518 × 107

0.5 3.413 × 107 1.896 × 107

0.1 6.825 × 106 5.884 × 106
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Fig. 4 Control mesh for deformed hemisphere (λ = 0.5) with its
associated bending energy density after being loaded at A and B with
pairwise opposite point loads

Table 2 Displacements of A and B at maximum load 100

λ 1.0 0.9 0.5 0.1

A 5.918 6.125 7.019 8.716

B 3.350 3.407 3.629 3.978

5.2 Wrinkling of orthotropic sheets

The wrinkling of sheets has been studied extensively with
shell andmembrane elements [11,17,27,38]. The membrane
element formulation needs to be augmented with a wrinkling
model, but can be applied on coarser meshes, making it rela-
tively computationally inexpensive. Subdivision shells have
been used in the past to simulate the deformations of thin
membranes [37]. To demonstrate the ability of orthotropic
subdivision shell elements to reproduce the wrinkling phe-
nomenonon coarsemeshes, the reference shear test described
in Ref. [27] is simulated.

The test consists of a prestressed sheet sheared by dis-
placement control. The objective is to find the critical shear
displacement (uc); a bifurcation point signaling the onset of
wrinkling, and the maximum amplitude of the wrinkles at
the maximum specified shear displacement. The 200 mm
× 100 mm sheet is first prestressed with a displacement
of 1 mm along its short axis, and then sheared by con-
tinuously displacing its upper edge by 10 mm along its
long axis. The lower edge of the sheet remains pinned for
the duration of the simulation (Fig. 6). The material is 0.2
mm thick and has a preferred orientation of α = 30◦ to

Fig. 5 Load–displacement curves for the deforming hemispherical
shell with different degrees of orthotropy λ. The hemispherical SD3R
mesh contains 3264 DOF for the entire hemisphere. For comparison
with other methods, the number of DOF for a quarter of the hemisphere
is (16 × 17) × 3 = 867 where 16 is the number of elements along the
meridional axis. The S8R results were obtained using Abaqus [8] and
the BST results from Refs. [34,35]

Fig. 6 Boundary and loading conditions of sheet to investigate wrin-
kling behavior [27]

the y-axis. The material properties for the isotropic case
are E = 600 N/mm2 and ν = 0.45 [27], while for the
orthotropic case E1 = E2 = 106.6 N/mm2, ν = 0.22 and
G12 = 11.3 N/mm2 [11]. Meshes with resolution ranging
from 8× 4 (135 DOF) to 56× 28 (4959 DOF) are simulated.

In these simulations, a wrinkle is defined as a single fold in
the sheet, which begins from the baseline uz = 0, rises to its
maximum value and back to uz = 0. As seen from the results
in Fig. 7, the isotropic case shows a critical shear displace-
ment of uc = 1.67 mm, with a maximum wrinkle amplitude
at a shear displacement of uy = 10 mm of 1.9 mm which
exactly corresponds to the value obtainedwith 3Dmembrane
elements in Ref. [27]. The number of wrinkles (14) for the
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Fig. 7 Convergence of the critical shear displacement and number of
wrinkles with mesh resolution

(a)

(b)

Fig. 8 Wrinkling of sheet with a isotropic [27] and b orthotropic [11]
properties using a resolution of 56 × 28 elements with 4959 DOF.
The displacement in the normal direction (uz) is given in mm and the
wrinkles are marked with black dashes

maximum resolution of 56 × 28 elements (4959 DOF) also
agrees with the existing data. In the orthotropic case, the crit-
ical shear displacement is uc = 1.81 mm which compares
favorably with Ref.[11]. The maximum amplitude at a shear
displacement of uy = 10 mm is 2.2 mm, which is slightly
larger than the 2 mm specified in the original study, while the
sheet develops 10 wrinkles following the same profile.

Strikingly, even a coarse mesh resolution of 16 × 8 ele-
ments (459 DOF) yields critical shear displacements of 1.68
mm and 1.81 mm for the isotropic and orthotropic case
respectively, which are very small deviations from the high

resolution meshes. The number of wrinkles converge more
slowly for the isotropic case, requiring the 48 × 24 (3675
DOF) resolution to reach 14 wrinkles, while 10 wrinkles are
already obtained for the 32 × 16 (1683 DOF) resolution in
the orthotropic case (Fig. 8a,b).

6 Conclusions

A method to simulate orthotropy in rotation-free shell finite
elements was proposed. This approach transforms the deriv-
atives of the shape functions to orthogonalize and align the
basis for each triangular element. The implementation was
performed using Kirchhoff–Love type subdivision shells.
This approach requires negligible computational overhead as
the transformation is only performed once in the undeformed
configuration. The standard pinched hemispherical shellwith
18◦ hole benchmark for orthotropic behaviour proved that the
method is accurate.

The combination of orthotropic material behaviour and
the efficiency and robustness of subdivision finite elements
has many advantages in simulating smooth membranes with
arbitrary topologies. This implementation was then used to
simulate the wrinkling of sheared orthotropic sheets where
its efficiency was compared to existing methods.

The shape function derivative transformation applied
to traditional subdivision shell finite elements has been
shown to be very well suited for the simulation of material
anisotropies. The analysis of the sheared membrane showed
that the wrinkling of an orthotropic sheet was accurate even
for coarse meshes, with the added advantage that no specific
wrinkling models are required to compensate for the lack of
bending stiffness in membrane elements.
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