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Abstract We estimate the selection constant in the following geometric selection
theorem by Pach: For every positive integer d, there is a constant cd > 0 such that
whenever X1, . . . , Xd+1 are n-element subsets of Rd , we can find a point p ∈ R

d

and subsets Yi ⊆ Xi for every i ∈ [d + 1], each of size at least cdn, such that p
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belongs to all rainbow d-simplices determined by Y1, . . . , Yd+1, i.e., simplices with
one vertex in each Yi . We show a super-exponentially decreasing upper bound cd ≤
e−(1/2−o(1))(d ln d). The ideas used in the proof of the upper bound also help us to prove

Pach’s theorem with cd ≥ 2−2d2+O(d)
, which is a lower bound doubly exponentially

decreasing in d (up to some polynomial in the exponent). For comparison, Pach’s
original approach yields a triply exponentially decreasing lower bound. On the other
hand, Fox, Pach, and Suk recently obtained a hypergraph density result implying a
proof of Pach’s theorem with cd ≥ 2−O(d2 log d). In our construction for the upper
bound, we use the fact that the minimum solid angle of every d-simplex is super-
exponentially small. This fact was previously unknown and might be of independent
interest. For the lower bound, we improve the ‘separation’ part of the argument by
showing that in one of the key steps only d + 1 separations are necessary, compared
to 2d separations in the original proof. We also provide a measure version of Pach’s
theorem.

Keywords Pach’s selection theorem · d-Dimensional simplex · Solid angle · Borel
probability measure · Weak convergence of measures

Mathematics Subject Classification 52C35 · 52C10 · 28A75 · 28A33

1 Introduction

Selection theorems have attracted a lot of interest in discrete geometry. We focus on
the positive fraction selection theorem by Pach [20]. For a more compact statement,
we first introduce the following terminology. Let S1, . . . , Sd+1 be subsets ofRd . By an
(S1, . . . , Sd+1)-simplex wemean the convex hull of points s1, . . . , sd+1 where si ∈ Si

for i ∈ [d +1]. Note that an (S1, . . . , Sd+1)-simplex might be degenerate if the points
si are not in general position. Figure 1 illustrates the statement of the theorem.

Theorem 1 (Pach [20]) For every positive integer d, there exists a constant cd > 0
with the following property. Let X1, . . . , Xd+1 be n-element subsets of Rd . Then there
exist a point p ∈ R

d and subsets Yi ⊆ Xi for i ∈ [d + 1], each of them of size at least
cdn such that the point p belongs to all (Y1, . . . , Yd+1)-simplices.

For a fixed d, we denote by csupd the supremum of the constants with which the
theorem remains valid and we call this value Pach’s (selection) constant.1 We do
not need this fact but it is not hard to verify that the supremum coincides with the
maximum in this case, using the finiteness of the sets Xi . Our aim is to estimate csupd .
Although Pach’s proof of Theorem 1 is nice and elegant, it uses several advanced
tools: a weaker selection theorem, the weak hypergraph regularity lemma, and the
same-type lemma. These tools yield a lower bound on csupd , which is roughly triply
exponentially decreasing in d.

1 Although we are interested in the dependence of c
sup
d on d, we call it a constant emphasizing its inde-

pendence on the size of the sets Xi .
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Fig. 1 Pach’s theorem: initial configuration (left) and the resulting sets Yi and the resulting point p (right)

The goal of this paper is to establish tighter bounds on csupd . We will show a
super-exponentially decreasing upper bound on csupd . The idea for the construction
for the upper bound is relatively straightforward. We just place the points of the sets
X1, . . . , Xd+1 uniformly in the unit ball. The analysis of this construction requires
two important ingredients. One ingredient is the analysis of the regions where the sets
Yi from Theorem 1 can appear. Using a certain separation lemma (see Lemma 11), we
can deduce that they appear in “corner regions” of arrangements of d +1 hyperplanes.
The second ingredient is an upper bound on the minimum solid angle in a simplex.
This bound helps us to bound the sizes of the corner regions for Yi . We could not find
any bound on the minimum solid angle in a simplex in the literature. We provide a
super-exponentially decreasing upper bound, which might be of independent interest.

The description of the corner regions and Lemma 11 also allow us to obtain a
doubly exponentially decreasing lower bound on csupd . More concretely, we will show

that csupd ≥ 2−2d2+O(d)
. Shortly before making a preprint version of this paper publicly

available, we have learned that Fox, Pach, and Suk expected to obtain an impressive
lower bound csupd ≥ 2−O(d3 log d). Later, they improved the lower bound to csupd ≥
2−O(d2 log d) [8].

Theorem 2 Pach’s selection constant can be bounded as follows:

(1) csupd ≤ e−(1/2−o(1))d ln d and

(2) csupd ≥ 2−2d2+3d
.

The minimum solid angle of a simplex is discussed in Sect. 2. Section 3 contains
the description of the corner regions and the separation lemma (Lemma 11) we need.
Section 4 contains the proof of Theorem 2(1), and Sect. 5 contains the proof of The-
orem 2(2).

Other Selection Theorems

The following weaker selection theorem is related to the positive fraction selection
theorem of Pach. By general position in R

d we mean that each set of at most d + 1
points is affinely independent; the general position assumption in the theorem below
is not crucial but we choose the simplest statement in this case.
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Theorem 3 For every d ∈ N, there is a constant kd > 0 with the following property.
Let P be a set of n points in general position in R

d . Then there is a point in at least
kd · ( n

d+1

) − O(nd) d-simplices spanned by P.

Note that
( n

d+1

)
is the number of all d-simplices spanned by P; thus the statement of

Theorem 3 says that we can indeed select a positive fraction of simplices sharing a
point. It is not hard to see that Theorem 3 follows from Theorem 1 as soon as only the
existence of kd is concerned (by splitting P into X1, . . . , Xd+1, possibly forgetting
few points).

The planar case of Theorem3 is due toBoros andFüredi [6] (d = 2); it was extended
to arbitrary dimension by Bárány [3]. Bárány proved the theorem with kd = 1

(d+1)d .
A significant improvement to kd was found by Gromov [10] using topological

methods in a much more general setting (obtaining a proof with kd = 1
(d+1)! ). The

first author [13] found a simpler proof (still in quite general setting) andMatoušek and
Wagner [16] extracted the combinatorial essence of Gromov’s proof allowing them to
get a further (slight) improvement on kd . Král’,Mach and Sereni [14] obtained a further
improvement of the value focusing on the combinatorial part extracted by Matoušek
and Wagner. We do not attempt to enumerate the bounds obtained in [14,16].

The following variant of Theorem 3 for rainbow simplices is an important step in
the proof of Theorem 1.

Theorem 4 For every d ∈ N, there is a constant k′
d > 0 with the following property.

Let X1, . . . , Xd+1 be pairwise disjoint n-element subsets of Rd whose union is in
general position. Then there is a point p ∈ R

d which is contained in the interior of at
least k′

d · nd+1 − O(nd) rainbow d-simplices, where a rainbow simplex meets each
Xi in exactly one vertex and k′

d > 0 is a constant depending only on d.

Theorem 4 is implicitly proved in [20] with k′
d roughly around 1

(5d)d2
. The proof

in [13] (following Gromov) gives the result with k′
d = 1

(d+1)! . The constant has been
recently improved to k′

d = 2d
(d+1)!(d+1) [11]. We note that the main result in [13]

and [11] is in the settingof absolutely continuousmeasures. It canbe easily transformed
into the setting of Theorem 4 by replacing each point x ∈ X1 ∪ · · · ∪ Xd+1 by a
sufficiently small ball centered in x and using the fact that for a sufficiently small ε,
any point of Rd can be ε-close to the boundary of at most O(nd) simplices spanned
by X1 ∪ · · · ∪ Xd+1. This follows from the fact that every point of Rd is in at most
O(nd−1) hyperplanes spanned by X1 ∪ · · · ∪ Xd+1 [17, Lem. 9.1.2].

An interesting selection theorem in a ‘dual’ settingwas recently obtained by Bárány
and Pach [4]. A variant of Pach’s theorem for hypergraphs with bounded degree was,
also recently, obtained by Fox et al. [7].

Measure Version of Pach’s Theorem

Due to the similarity of Pach’s theorem to other geometric selection theorems, such
as Theorem 4, one can expect that Pach’s theorem also admits a measure version,
where point sets are replaced with probability measures. We will indeed verify this
expectation (with the same value for the selection constant). We prove the theorem
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for Borel probability measures, which generalize both finite point sets and bounded
absolutely continuous measures.

We recall thatμ is a Borel probability measure onRd ifμ is a nonnegative measure
defined on the σ -algebra of Borel subsets of Rd and μ(Rd) = 1.

Theorem 5 Let μ1, . . . , μd+1 be Borel probability measures on R
d . Then there

exist sets Zi ⊆ R
d with μi (Zi ) ≥ 2−2d2+3d

and a point p ∈ R
d contained in all

(Z1, . . . , Zd+1)-simplices.

Theorem 5 follows from Theorem 2(2) by approximating Borel measures as weak
limits of discrete measures. The reduction relies on the fact that each of the sets Yi

in Pach’s theorem can be obtained as an intersection of Xi with a simplicial cone, a
region of small “geometric complexity.” We prove Theorem 5 in Sect. 6.

2 The Minimum Solid Angle in a Simplex

We start our preparations for the proof of Theorem 2(1) by bounding the minimum
solid angle in a simplex.

Let Δ be a d-simplex and v be a vertex of Δ. By the solid angle at v in Δ we mean
the value

sa(v;Δ) := Vol(B(v; ε) ∩ Δ)

Vol(B(v; ε))
,

where B(x; r) denotes the ball centered in x with radius r ; ε is small enough (so that
B(v; ε) does not meet the hyperplane determined by the vertices of Δ except v); and
Vol denotes the d-dimensional volume (i.e., the d-dimensional Lebesgue measure).
Note that in our case the solid angle is normalized, i.e., it measures the probability that
a random point of B(v; ε) belongs to the simplex. Note also that the solid angle can be
equivalently defined as the ratio of the (d − 1)-dimensional volume of the spherical
simplex ∂ B(v; ε) ∩ Δ and the (d − 1)-dimensional volume of the sphere ∂ B(v; ε).
For our needs, however, the definition via d-volumes is much more convenient.

Our goal is to give the upper bound on the minimum solid angle of Δ:

msa(Δ) := min{sa(v;Δ) : v is a vertex of Δ}.

Theorem 6 The minimum solid angle of any d-simplex Δ satisfies

msa(Δ) ≤ e−(1/2−o(1))(d ln d).

Before we prove Theorem 6, let us remark that in general we consider determining
the upper bound on msa(Δ) as an interesting question. Let ρd be the solid angle in
the regular d-simplex. Obviously any upper bound on msa(Δ) for a d-simplex Δ is at
least ρd . On the other hand, we are not aware of any example of a d-simplex Δ with
msa(Δ) > ρd . Thus, we suggest the following question.
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Question 7 Is it true thatmsa(Δ) ≤ ρd for any d-simplex Δ? If the answer is negative,
what is the least upper bound on msa(Δ) and for which simplex is it attained?

Akopyan and the first author show [1] that the answer is affirmative if d ≤ 4.
Rogers [22] derived an asymptotic formula for the surface area of a regular spherical

simplex, which implies the following asymptotic formula for ρd :

ρd =
√

d + 1√
2e2d

·
(
2e

πd

)d/2

·
(
1 + O

(
1

d

))
.

Further asymptotic simplification gives ρd = e−(1/2+o(1))(d ln d). This shows that our
bound in Theorem 6 is tight up to lower order terms in the exponent. Rogers’ proof is
also reproduced in a book by Zong [24, Lem. 7.2]. We have learnt about this from an
answer of Joseph O’Rourke [19] to a question of Boris Bukh at MathOverflow.

The simplified asymptotic formula for ρd , up to lower order terms in the exponent,
also follows by the following easy approximation. Let Δ = Δ1 be a regular unit
d-simplex, let v be a vertex of Δ, and let Δκ be a homothetic copy of Δ under a
homothety centered at v with coefficient κ > 0. Simple computation shows that the
length of the median in Δ is at least 1/

√
2, and therefore Δε ⊆ B(v; ε) ∩ Δ ⊆ Δ√

2ε.
This gives

Vol(Δε) ≤ εdρdβd ≤ Vol(Δ√
2ε),

where βd = πd/2

Γ (d/2+1) is the volume of the unit d-ball. Using that

Vol(Δκ) = κd

√
d + 1

d!2d/2

and the estimates Γ (d/2 + 1) = e(1/2−o(1))·d ln d and d! = e(1−o(1))·d ln d , we obtain
that ρd = e−(1/2±o(1))·d ln d .

Normal Cones and Spherical Blaschke–Santaló Inequality

Now,we focus on a proof ofTheorem6.Themain step is to use theSphericalBlaschke–
Santaló inequality, which allows us to bound the solid angle (of a cone) if we know
the solid angle of the polar cone. The idea with polar cones was suggested by Yoav
Kallus [12]. In a previous version of this paper, we obtained Theorem 6 with a weaker,
exponentially decreasing, bound with a self-contained proof [15]. Later we found the
current proof using the spherical Blaschke–Santaló inequality.

We start with a few definitions and known results. Let C ⊆ R
d be a closed convex

cone with apex in the origin. By the (restricted) volume of the cone C we mean the
value Vol′(C) := Vol(C ∩ Bd), where Bd is the unit ball centered in the origin. The
polar (or normal) cone to C is the cone

C∗ = {x ∈ R
d : x · y ≤ 0 for any y ∈ C}.
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A closed convex cone C with apex in the origin is round if the intersection ∂C ∩ ∂ Bd

is a (geometric) (d − 2)-sphere. We need the following theorem which relates the
(restricted) volumes of C and C∗. By βd we denote the volume of Bd .

Theorem 8 (Spherical Blaschke–Santaló inequality [9, Eq. (21)]) . Let w ∈ (0, 1
2βd)

be a fixed number. Let C be a closed convex cone with apex in the origin such that
Vol′(C) = w. Then Vol′(C∗) is maximal if C is a round cone.

Note that Theorem 8 is stated in [9] in the setting of spherical (d − 1)-volumes
of C ∩ ∂ Bd . However, our small change in the setting does not affect the extremal
property.

Given a d-simplex Δ with vertices v1, . . . , vd+1 and i ∈ [d + 1], let Ci be the cone
with apex in the origin obtained by shifting the cone with apex vi determined by Δ.
Then the spherical angle sa(vi ,Δ) can be expressed as Vol′(Ci )/βd . An important
well-known observation is that the polar cones C∗

i cover the space (they form the
so-called normal fan).

Lemma 9 The cones C∗
i cover R

d . Consequently, there is i ∈ [d + 1] such that
Vol′(C∗

i ) ≥ 1
d+1βd .

Proof For completeness, we sketch a proof. Let x ∈ R
d and let i ∈ [d + 1] be such

that x · vi is maximal among all choices of i . Then x · (y − vi ) ≤ 0 for any y ∈ Δ

which implies that x ∈ C∗
i . ��

By Lemma 9, there is a polar cone C∗
i with large volume. By Blaschke–Santaló

inequality, the coneCi must have small volume.Using the concentration of themeasure
on the sphere, we estimate Vol′(Ci ) from above. We present an elementary argument,
since we do not need the concentration of the measure in its full strength.

Lemma 10 Let C∗ ⊆ R
d be a round cone such that Vol′(C∗) ≥ 1

d+1βd . Then

Vol′(C) ≤ e−(1/2−o(1))(d ln d)βd .

Proof Without loss of generality, we assume that the x-axis (i.e., the first-coordinate
axis in R

d ) is the axis of symmetry of C∗. Let h be the hyperplane determined by
the (d − 2)-sphere ∂C∗ ∩ ∂ Bd . Let γ be the distance of h from the origin. Since
Vol′(C∗) ≥ 1

d+1βd , we deduce that γ ≤ 1
2 and therefore C∗ ∩ Bd fits into a ball of

radius
√
1 − γ 2, centered in the intersection of h and the x-axis; see Fig. 2 (left). (We

have borrowed this idea from [21], aiming at a reasonable estimate without precise
computation.) Consequently, Vol′(C∗) ≤ (1 − γ 2)d/2βd , which implies

γ 2 ≤ 1 −
(

1

d + 1

)2/d

≤ 2

d
ln(d + 1), (1)

using the estimate 1 − x ≤ − ln x .
On the other hand, C fits into the cylinder [0, 1] × Bd−1

γ where we temporarily

consider Rd as the product R × R
d−1 and Bd−1

γ ⊂ R
d−1 is the ball with radius γ
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h

(1 2)

C Bd
Bd

(1 2)

Bd

C Bd

*

Fig. 2 C∗ ∩ Bd fits into a dashed ball of radius
√
1 − γ 2, whereas C ∩ Bd fits into a dashed cylinder

[0, 1] × Bd−1
γ

centered in the origin; seeFig. 2 (right). Therefore, using (1) andβd−1 ≤ βd−2 = d
2π βd

for d ≥ 2, we get

Vol′(C) ≤ γ d−1βd−1 ≤
(
2

d
ln(d + 1)

) d−1
2 d

2π
βd ≤ e−(1/2−o(1))(d ln d)βd .

��
Proof of Theorem 6 By Lemma 9 we know that Vol′(C∗

i ) ≥ 1
d+1βd for some

i ∈ [d + 1]. Let C∗ be the round cone such that Vol′(C∗
i ) = Vol′(C∗). By

Theorem 8 (for C∗) we know that Vol′(Ci ) ≤ Vol′(C) and Lemma 10 implies that
Vol′(C) ≤ e−(1/2−o(1))(d ln d)βd . Consequently,

msa(Δ) ≤ Vol′(Ci )

βd
≤ e−(1/2−o(1))(d ln d)

as required. ��

3 Corner Regions

In this section we describe a geometric structure we are essentially looking for in order
to prove Theorem 2.

Although Theorem 1 does not assume any kind of general position, we will need
general position in our intermediate steps. We work with arrangements of d + 1
hyperplanes. We say that such an arrangement is in general position if the normal
vectors of arbitrary d hyperplanes from the arrangement are linearly independent
(in particular any d of the hyperplanes have a single point in common) and if the
intersection of all d + 1 of the hyperplanes is empty.

Let H = (H1, . . . , Hd+1) be an arrangement of hyperplanes in R
d in general

position. For i ∈ [d +1] let hi denote the intersection point of all hyperplanes fromH
but Hi . It is easy to see that the arrangement H has exactly one bounded component,
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H1

H2

H3

h1

h3h2 Δ( )

C1

C2
C3

p

Y1

Y2 Y3

H −
2

H +
2

Fig. 3 Corner regions of an arrangement of d + 1 hyperplanes

Fig. 4 Illustration for
Lemma 11. In this case, the point
p belongs to H−

1 ∩ H+
2 ∩ H+

3 .
The regions of H where the sets
Y1, Y2, and Y3 may appear are
shaded or striped

p

H

H1

H2 H3

Y2Y3

Y1

Y2 Y3

Y1

namely the simplex with vertices hi . We denote this simplex byΔ(H). We also denote
by H+

i and H−
i the two closed subspaces determined by Hi in such a way that H−

i
contains Δ(H). Finally, we define the corner regions Ci = Ci (H) by setting

Ci :=
⋂

j∈[d+1]\{i}
H+

j .

Note that each Ci is a cone with apex hi ; see Fig. 3, left.
The following separation lemma captures the core idea of our approach. Given a k-

tuple (S1, . . . , Sk) of subsets ofRd , by Ŝi wemean the set S1∪· · ·∪Si−1∪Si+1∪· · ·∪Sk

for any i ∈ [k]. The interior of a set S ⊆ R
d is denoted by int(S).

Lemma 11 Let p be a point in R
d , let H be an arrangement of d + 1 hyperplanes

in general position in R
d , and let Y1, . . . , Yd+1 be finite nonempty subsets of Rd such

that Hi strictly separates p from Ŷi for every i ∈ [d + 1] (in particular, p does not
belong to any Hi ). Then either

• p ∈ Δ(H) and Yi ⊆ int(Ci ) for any i ∈ [d + 1]; or
• p /∈ Δ(H) and there is a hyperplane strictly separating p from Y1 ∪ · · · ∪ Yd+1;

see Fig. 4.

Proof Without loss of generality, we assume that p = 0. For i ∈ [d + 1], let ui be
the unit vector normal to Hi so that Hi = {x ∈ R

d; x · ui = ci } for some ci > 0. Let
K = conv{u1, u2, . . . , ud+1}.
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h2

h3

h4

h1

y1

y2 y3

y4
z1z2 z3

z4

Fig. 5 The case d = 3

By the hyperplane separation theorem for p and K , either p ∈ K or p is strictly
separated from K by a hyperplane.

If p ∈ K , then p is in the interior of K , since the hyperplanes Hi are in general
position. It follows that the intersection of the halfspaces {x ∈ R

d ; x · ui ≤ ci } is
bounded, and thus p belongs toΔ(H) according to our definitions. Given i, j ∈ [d+1]
such that i �= j , we get Yi ⊆ int(H+

j ) since Hj separates p and Ŷ j . For every fixed i ,
the previous inclusions imply that Yi ⊆ int(Ci ).

Now suppose that p is strictly separated from K by a hyperplane H . For i ∈ [d +1],
let Zi := {x ∈ R

d ; x · yi > 0 for all yi ∈ Yi }. The set Zi is an open convex cone and
consists of all vectors x such that, for some c′ > 0, the hyperplane {y ∈ R

d ; y ·x = c′}
strictly separates p from Yi . By the assumption, every d-tuple of the cones Zi contains
a common point in K , and thus it also contains a common point in H . By Helly’s
theorem for the intersections Zi ∩ H , we conclude that H ∩ Z1 ∩ Z2 ∩ · · · ∩ Zd+1 is
nonempty, and the lemma follows. ��

For the proof of part (2) of Theorem 2, we need to verify an intuitively obvious fact
that if we pick one point in each of the corner regions of an arrangement H of d + 1
hyperplanes, then the simplex formed by these points covers Δ(H).

This fact is not needed for part (1) of Theorem 2.

Lemma 12 Let H = (H1, . . . , Hd+1) be an arrangement of d + 1 hyperplanes in
general position in R

d . Let p be a point in Δ(H) and y1, . . . yd+1 be points in R
d

such that yi ∈ Ci for any i ∈ [d + 1]. Then p belongs to the simplex determined by
y1, . . . , yd+1.

Proof We prove the lemma by induction on d. For d = 1 the proof is obvious. Now
assume that d > 1.

We recall that each Ci is a cone with apex hi . Since p is a convex combination of
the points hi , it is sufficient to show that each hi belongs to the simplex determined
by y1, . . . , yd+1.

We fix i and consider points zi := hi yi ∩Hi and z j := yi y j ∩Hi for j ∈ [d+1]\{i},
where ab is the line spanned by points a and b. See Fig. 5.
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We claim that z j , for j �= i , belongs to C ′
j := C j ∩ Hi , which is the cor-

ner region with apex h j in the induced arrangement H′ := (H \ {Hi }) ∩ Hi of d
hyperplanes in Hi � R

d−1. Indeed, since y j ∈ C j = ⋂
k∈[d+1]\{ j} H+

k , we have

yi y j ⊆ ⋂
k∈[d+1]\{i, j} H+

k ; thus z j ∈ Hi ∩ ( ⋂
k∈[d+1]\{i, j} H+

k

)
, which is by defini-

tion the corner region C ′
j . We also observe that zi ∈ Δ(H′). Therefore, by induction,

zi is in the convex hull of the points z j (for j ∈ [d + 1] \ {i}). Since all these points
z j are by definition convex combinations of the points y1, . . . , yd+1 and since hi is a
convex combination of yi and zi , we deduce that hi is in the simplex determined by
y1, . . . , yd+1 as required. ��

4 Upper Bound

The goal of this section is to give an exponentially decreasing upper bound on csupd .
As we sketched in Sect. 1, we set Xi , for i ∈ [d + 1], to be a set of n points uniformly
distributed in the unit d-ball Bd . We will explain later what we mean exactly by a
uniform distribution. The idea is that if A is a ‘sufficiently nice’ subset of Bd , then
Vol(A)

Vol(Bd )
is approximately equal to |Xi ∩A|

|Xi | .
By a generic Pach’s configuration we mean a collection (Y1, . . . , Yd+1, p) of d +1

finite pairwise disjoint nonempty sets Yi and a point p not belonging to any Yi such that
the set Y1∪· · ·∪Yd+1∪{p} is in general position and p belongs to all (Y1, . . . , Yd+1)-
simplices.

Note that if we consider (Y1, . . . , Yd+1, p) as the output of Theorem 1, we need
not obtain a generic Pach’s configuration even if X := X1 ∪ · · · ∪ Xd+1 is in general
position, since the point p might be on some of the hyperplanes determined by X . In
such case, forgetting few points only, we can still get a generic Pach’s configuration;
this is shown in Lemma 13.

In Lemma 13 we require a stronger notion of general position, which generalizes
the following situation in the plane. Let X be a set inR2 and let �1 = a1b1, �2 = a2b2,
and �3 = a3b3 be three lines in the plane determined by six distinct points of X . Then
we require that these three lines do not meet in a point.

In general, we say that a set X of points in Rd satisfies condition (G) if

(1) X is in general position, and
(2) whenever X1, . . . , Xd+1 are pairwise disjoint subsets of X , each of size at most

d, aff(X1) ∩ · · · ∩ aff(Xd+1) = ∅. Here aff(Xi ) denotes the affine hull of Xi .

For every set X ′ that does not satisfy (G), we may obtain a set satisfying (G) by an
arbitrarily small perturbation of points in X ′.
Lemma 13 Let Y ′

1, . . . , Y ′
d+1 be d +1 finite pairwise disjoint sets of size at least d +1

such that Y ′
1 ∪ · · · ∪ Y ′

d+1 satisfies condition (G). Let p′ be a point contained in all
(Y ′

1, . . . , Y ′
d+1)-simplices. Then there are subsets Yi ⊆ Y ′

i for i ∈ [d + 1] such that
|Yi | ≥ |Y ′

i | − d and a point p ∈ R
d such that (Y1, . . . , Yd+1, p) is a generic Pach’s

configuration.

Remark Condition (G) is set up in such a way that the proof of Lemma 13 is simpler.
Another approach would be to assume only the (standard and more intuitive) general
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position instead of condition (G). This would, however, yield a more complicated
proof of Lemma 13 with a worse bound |Yi | ≥ |Y ′

i | − f (d), where we could achieve
f (d) to be slightly less than 2d . However, any function of d would be fully sufficient
for our needs.

Proof LetΔ1, . . . , Δk be a maximal collection of (Y ′
1, . . . , Y ′

d+1)-simplices such that
p′ is on the boundary of each Δi for i ∈ [k] and any two simplices of this collection
have disjoint vertex sets.

Let Fi be the set of vertices of a proper face of Δi containing p′. Since p′ ∈
aff(F1) ∩ · · · ∩ aff(Fk), condition (G) implies that k ≤ d.

Now, we remove all vertices of Δ1, . . . , Δk from each Y ′
i , obtaining sets Yi ,

removing atmost d points from each Y ′
i . Thenp′ is in the interior of all (Y1, . . . , Yd+1)-

simplices due to the maximality of Δ1, . . . , Δk . By a small perturbation of p′ we get
a point p still in the interior of all (Y1, . . . , Yd+1)-simplices. Then (Y1, . . . , Yd+1, p)

is the required generic Pach’s configuration. ��
The main idea of our proof of the upper bound is that if (Y1, . . . , Yd+1, p) is a

generic Pach’s configuration in the unit ball Bd , then some Yi is contained in a tiny
part of the ball. By βd we denote the volume of the unit ball Bd .

Proposition 14 Let (Y1, . . . , Yd+1, p) be a generic Pach’s configuration such that
Y1 ∪ · · · ∪ Yd+1 ∪ {p} is a subset of Bd . Then there is an arrangement of hyperplanes
H = (H1, . . . , Hd+1) in general position such that each Yi belongs to the corner region
Ci = Ci (H) (see the definitions in Sect. 3). The smallest of the volumes Vol(Ci ∩ Bd)

is at most 2d msa(Δ(H))βd (we recall that msa denotes the minimum solid angle).

For a proof we need the following property of generic Pach’s configurations.

Lemma 15 Let (Y1, . . . , Yd+1, p) be a generic Pach’s configuration. Then for every
i ∈ [d + 1] there is a hyperplane Hi strictly separating p from Ŷi . (We recall that
Ŷi = ⋃

j∈[d+1]\{i} Y j .) Moreover, the hyperplanes Hi can be chosen in such a way
that the arrangement H = (H1, . . . , Hd+1) is in general position, p ∈ Δ(H) and
Yi ⊆ int(Ci (H)) for any i ∈ [d + 1].
Proof Suppose for contradiction that for some i ∈ [d + 1] the point p is not strictly
separated from Ŷi by a hyperplane. This means that p belongs to the convex hull
conv(Ŷi ). Consequently, there are points z j ∈ conv(Y j ) for j ∈ [d + 1] \ {i} such that
p is a convex combination of them. (Indeed, consider p as a convex combination of
points from Ŷi and put together points of each Y j with appropriate weights.)

Let H be ahyperplanepassing through thepoints z j for j ∈ [d+1]\{i}. In particular,
p belongs to H . Let y+

i be a point of Yi and let H+ and H− be the closed halfspaces
determined by H chosen in such a way that y+

i ∈ H+. For each j ∈ [d + 1] \ {i}
we can find a point y+

j in H+ ∩ Y j since conv(Y j ) ∩ H �= ∅. Let Δ ⊆ H+ be the

(Y1, . . . , Yd+1)-simplex with vertices y+
j for j ∈ [d + 1]; see Fig. 6. Since Δ ⊆ H+

and since p belongs to H , p cannot be in the interior of Δ. This contradicts our
genericity assumption.

It follows that there is a hyperplane Hi strictly separating p from Ŷi . Finally, we
rotate the hyperplanes Hi a little bit, so that we keep their separation property and
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Fig. 6 The point p cannot be in
the interior of Δ

H

H+

H−

py+1 y+3

y+2

Fig. 7 C ∩ B(p, 1 + α)

contains C� ∩ Bd

0
p

h = h3

B (p , 2) C

B (p , 2)

Bd

H3

H1

H2

H 1

H 2

C Bd

get an arrangement H in general position. Since p is in all (Y1, . . . , Yd+1)-simplices,
Lemma 11 implies that p ∈ Δ(H) and that each Yi belongs to the interior of the corner
region Ci (H). ��
Proof of Proposition 14 LetH = (H1, . . . , Hd+1) be the arrangement of hyperplanes
from Lemma 15. Since each Yi belongs to the corner region Ci = Ci (H), it remains to
bound the smallest of the volumes Vol(Ci ∩ Bd). We refer to Fig. 7, which illustrates
the rest of the proof. We use the same notation for the vertices of Δ(H) as in Sect. 3.
We fix � ∈ [d + 1] such that the solid angle ϑ at vertex h� is the minimum of all solid
angles ofΔ(H). For each i ∈ [d+1]\{�}, let H ′

i be a hyperplane parallel to Hi passing
through p and let C be the cell of the arrangement of hyperplanes (H ′

i )i∈[d+1]\{�} that
contains h�. Then C contains C� and moreover C ∩ B(p, 2) contains C� ∩ Bd since
B(p, 2) contains Bd . The volume of C ∩ B(p, 2) is 2dϑ = 2d msa(Δ(H))βd . This
gives the required upper bound. ��

Now we have all tools to prove the upper bound.

Proof of Theorem 2(1) Let u(d) be the upper bound function on the minimum solid
angle from Theorem 6, i.e., msa(Δ) ≤ u(d) for any simplex Δ and u(d) ≤
e−(1/2−o(1))d ln d . Let g(d) := 2du(d). This value is still of order e−(1/2−o(1))(d ln d). In
order to prove Theorem 2(1), it is sufficient to show that Theorem 1 cannot be valid
with cd = g(d) + ζ for any ζ > 0. For contradiction, we assume that Theorem 1 is
valid with such value of cd .

Take a very small ε > 0 and tile Rd with hypercubes of side ε. Let Q be the set
of the hypercubes in the tiling that intersect the interior of the unit ball Bd . For every
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Q ∈ Q and every i ∈ [d + 1], we select exactly one point from int(Q) ∩ int(Bd) and
add it into Xi in such a way that the set X1 ∪ · · · ∪ Xd+1 satisfies condition (G). This
finishes the construction of the sets Xi .

Let n := |Q|. By the construction, the size of each of the sets Xi is n. Since
⋃Q

fits into a ball of radius (1 + ε
√

d), we observe that n is well approximated in terms
of the volume βd of Bd as follows:

1

εd
βd ≤ n ≤ 1

εd

(
1 + ε

√
d
)d · βd . (2)

We apply Theorem 1with cd = g(d)+ζ to our sets Xi and obtain sets Y ′
1, . . . , Y ′

d+1
and a point p′ as an output. If ε is small enough, then n is large enough so that
Lemma 13 yields a generic Pach’s configuration (Y1, . . . , Yd+1, p), where Yi ⊆ Xi

and |Yi | > (g(d) + ζ/2)|Xi | for every i ∈ [d + 1].
By Proposition 14 and Theorem 6, there is an � ∈ [d + 1] such that Y� is contained

in the region G := C� ∩ Bd with volume at most 2du(d)βd = g(d)βd .
We want to bound the number of points in Y� by the volume of G. Let Q� be a

subset of Q consisting of those cubes that meet the interior of G. Note that

|Y�| ≤ |Q�|. (3)

We further splitQ� into two disjoint setsQ∂
� andQint

� whereQ∂
� contains those cubes

that meet the boundary of G andQint
� contains those cubes that are fully contained in

the interior of G. See Fig. 8.
We have an obvious upper bound on the size of Qint

� :

|Qint
� | ≤ 1

εd
Vol(G) ≤ ε−d g(d)βd . (4)

For the size ofQ∂
� we can get the following upper bound. Each cube ofQ∂

� belongs
to the (ε

√
d)-neighborhood Nε of the boundary ∂G of G. The (d − 1)-dimensional

volume of ∂G can be bounded by some function f (d) depending only on d (note that
G was obtained by cutting Bd at most d-times). Therefore

lim
ε→0

Vol(Nε) = 0 (5)

Fig. 8 Splitting Q� intoQ∂
�

andQint
�
. With decreasing ε, the

volume of
⋃Q∂

�
tends to 0 int
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considering d fixed. In addition,

|Q∂
� | ≤ 1

εd
Vol(Nε). (6)

Combining |X�| = n with (2), (3), (4), and (6) yields

|Y�|
|X�| ≤ |Q�|

n
≤ ε−d g(d)βd + ε−d Vol(Nε)

ε−dβd
= g(d) + Vol(Nε)

βd
.

Using (5), this is a contradiction with |Y�||X�| > g(d) + ζ
2 if ε is small enough. ��

5 Lower Bound

In this section we prove Theorem 2(2). We reuse many steps from Pach’s original
proof [20] and we also follow an exposition of Pach’s proof by Matoušek [17, Chap-
ter 9].

Lemma 16 (Few separations) Let S1, . . . , Sd+1 be disjoint finite sets of points in R
d

and let p be a point in R
d such that S1 ∪ S2 ∪ · · · ∪ Sd+1 ∪ {p} is in general position.

Then there exist sets Y1 ⊆ S1, . . . , Yd+1 ⊆ Sd+1 satisfying

(1) |Yi | ≥ 1
2d |Si |, and

(2) the point p either lies in all (Y1, . . . , Yd+1)-simplices or in none of them.

Proof Wewill reduce the sizes of the sets Si in d +1 steps; after these steps we obtain
the required sets Yi . For each i ∈ [d +1]we set S(0)

i := Si . In the j th step we construct

a hyperplane H ′
j and sets S( j)

i for all i ∈ [d + 1] with the following properties:

(i) S( j)
i ⊆ S( j−1)

i for i, j ∈ [d + 1];
(ii) |S( j)

i | ≥ |S( j−1)
i |/2 for i, j ∈ [d + 1], i �= j ;

(iii) S( j)
j = S( j−1)

j for j ∈ [d + 1]; and
(iv) H ′

j strictly separates p from S( j)
i for i, j ∈ [d + 1], i �= j .

This can be easily done inductively using the ham sandwich theorem. In the j th step

we assume that we have already constructed the sets S( j ′)
i and the hyperplanes H ′

j ′ for
j ′ < j . By the general position variant of the ham sandwich theorem [18, Cor. 3.1.3],
there is a hyperplane H ′′

j simultaneously bisecting the d sets S( j−1)
i for i �= j . That is,

both open halfspaces determined by H ′′
j contain at least �|S( j−1)

i |/2� points of each

S( j−1)
i for i ∈ [d +1]\{ j}. To obtain the required conclusion, we would like to choose

S( j)
i to be the half of S( j−1)

i that belongs to the opposite halfspace than p.
We just have to be careful when p actually belongs to H ′′

j or when H ′′
j intersects

some S( j−1)
i for i ∈ [d + 1] \ { j}. If p ∈ H ′′

j , we consider the (possibly empty) set
U := H ′′

j ∩ (S1 ∪ · · · ∪ Sd+1). We realize that the flat determined by U (i.e., the affine
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hull of U ) is strictly contained in H ′′
j and p does not belong to this flat, both by the

general position assumption on {p} ∪ U . Therefore, we can perturb H ′′
j a bit so that

it still contains U but it avoids p and no other point of S1 ∪ · · · ∪ Sd+1 switched the
side. So we can assume that p does not belong to H ′′

j .
Asp does not belong to H ′′

j , we consider the hyperplane H ′
j obtained by shifting H ′′

j

a small bit toward p. For i ∈ [d +1]\ j we set S( j)
i to be the subset of S( j−1) belonging

to the open halfspace on the other side of H ′
j than p. We also set S( j)

j := S( j−1)
j . Then

these sets satisfy the required conditions (i)–(iv).
Finally, we set Yi := S(d+1)

i for i ∈ [d + 1]. Then Yi ⊆ Si and |Yi | ≥ 1
2d |Si | by (i),

(ii), and (iii). We slightly perturb the hyperplanes H ′
j obtaining new hyperplanes Hj

in general position such that each Hj still strictly separates p and Yi . If we letH to be
the arrangement of these hyperplanes, we get either p ∈ Δ(H) or not.

In the first case, Lemmas 11 and 12 imply that p is in all (Y1, . . . , Yd+1)-simplices.
In the second case, Lemma 11 implies that p is in no (Y1, . . . , Yd+1)-simplex. ��

The last tool we need for the proof of Theorem 1 is the weak hypergraph regularity
lemma. We will be given a k-partite k-uniform hypergraph H on the vertex set X1 ∪
· · · ∪ Xk , where the sets Xi are pairwise disjoint and each edge of the hypergraph
contains exactly one point from each of the sets Xi . For any subsets Yi ⊆ Xi , i ∈ [k],
we define e(Y1, . . . , Yk) as the number of edges in the subhypergraph H[Y1, . . . , Yk]
induced by Y1, . . . , Yk . We also define the density function

ρ(Y1, . . . , Yk) := e(Y1, . . . , Yk)

|Y1| · · · |Yk |
as the ratio of the number of edges in H[Y1, . . . , Yk] and the number of all possible
edges in a k-partite hypergraph with vertex set Y1 ∪ · · · ∪ Yk . We also set ρ(H) :=
ρ(X1, . . . , Xk).

Theorem 17 (Weak regularity lemma for hypergraphs [20]; see also [17, Thm. 9.4.1]).
Let H be a k-partite k-uniform hypergraph on a vertex set X1∪· · ·∪Xk, where |Xi | = n
for i ∈ [k]. Suppose that its edge density satisfies ρ(H) ≥ β for some β > 0. Let
0 < ε < 1

2 . Suppose also that n is sufficiently large in terms of k, ε, and β.

Then there exist subsets Si ⊆ Xi of equal size |Si | = s ≥ β1/εk
n for any i ∈ [k]

such that

(1) (High density) ρ(S1, . . . , Sk) ≥ β, and
(2) (Edges on large subsets) e(Y1, . . . , Yk) > 0 for any Yi ⊆ Si with |Yi | ≥

εs, for i = 1, 2, . . . , k.

We are finally ready to prove the lower bound on the maximum Pach’s constant
from Theorem 1.

Proof of Theorem 2(2) It is convenient to start the proof with additional assumptions.
Later on we will show how to remove these assumptions. We start assuming that
X1 ∪ · · · ∪ Xd+1 is in general position and also assuming that the size n of the sets Xi

is large enough, i.e., n ≥ n0, where n0 depends only on d.
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By Theorem 4, there is a point p contained in the interior of at least 1
(d+1)!n

d+1 −
O(nd) (X1, . . . , Xd+1)-simplices.Weperturb the pointp a little so that X1∪· · · Xd+1∪
{p} is in general position but p does not leave the interior of any (X1, . . . , Xd+1)-
simplex during the perturbation. We require that n0 is large enough so that p actually
belongs to the interior of at least 1

2d2
nd+1 (X1, . . . , Xd+1)-simplices, using a very

rough estimate (d + 1)! < 2d2
(a better estimate would not improve the bound signif-

icantly).
Next, we consider the (d +1)-partite hypergraph H with vertex set X1 ∪ X2 ∪· · ·∪

Xd+1 whose edges are precisely the (X1, . . . , Xd+1)-simplices containing the point p.
Let ε = 1

2d and let us further require that n0 is large enough so that the assumptions of
Theorem17 aremet.We apply theweak regularity lemma (Theorem17) toH. Note that
β ≥ 1

2d2
. This yields sets Si ⊆ Xi with size |Si | = s ≥ β1/εd+1

n such that any subsets

Yi ⊆ Si of size at least εs induce an edge; that is, there is a (Y1, . . . , Yd+1)-simplex
containing the point p.

Finally, we apply Lemma 16 with the sets S1, . . . , Sd+1 and point p. We obtain sets
Yi ⊆ Si with |Yi | ≥ 1

2d s = εs. Moreover, the point p either lies in all (Y1, . . . , Yd+1)-
simplices or in none of them. But the latter possibility is excluded by the fact that Yi

are large enough.
Because csup1 = 1/2,we assume d ≥ 2 in the following calculations. Sowe obtained

the desired sets Yi ’s of size cd |Xi |, where

cd ≥ 1

2d
β1/εd+1 ≥ 1

2d
·
(

1

2d2

)2d(d+1)

= 2−d−d2·2d(d+1) ≥ 2−2d2+3d
.

This finishes the proof under the assumptions that X1∪· · ·∪Xd+1 is in general position
and n ≥ n0.

First, by a standard compactness argument we can remove the general position
assumption. Here we can even assume that Xi aremultisets, i.e., some of the points can
be repeatedmore than once. Indeed,we choose sets X (m)

i of size n such that X (m)
1 ∪· · ·∪

X (m)
d+1 is in general position for every positive integer m and such that X (m)

i converges

to Xi . We obtain the corresponding sets Y (m)
i and Pach points p(m) using the general

position version of the theorem. Since the sizes of the sets X (m)
i are uniformly bounded

by n, there is an infinite increasing sequence (mk) such that, for every i ∈ [n + 1], the
sequence Y (mk )

i converges to a certain set Yi ⊆ Xi . Since all the sets X (m)
i belong to

a compact region in Rd , the sequence of Pach points p(mk ) has an accumulation point
p. It is routine to check that the sets Yi and the point p satisfy the required conditions.

Next, we can remove the assumption n ≥ n0 in the following way. If n < n0 we
find an integer m such that m · n ≥ n0. We make multisets X ′

i where each X ′
i consists

of points of Xi , each repeated m times. Using the theorem for the sets X ′
i , we find a

point p′ and sets Y ′
i of sizes at least cd · m · n. Forgetting the m-fold repetitions in Y ′

i ,
we the get the required sets Yi of sizes at least |Y ′

i |/m, and we set p := p′. ��
Remark The argument at the end of the previous proof also shows that the assumption
that all Xi have equal size can be easily removed. Indeed, let X1, . . . , Xd+1 be subsets
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of Rd of various sizes. We set γ := |X1| · · · |Xd+1|. We create multisets X ′
i where

each point of Xi is repeated γ /|Xi | times. That is, X ′
i has size γ and so we can find

p′ and sets Y ′
i of sizes at least cdγ . Forgetting the repetitions in Y ′

i , we get sets Yi of
sizes at least cd |Xi |.

6 Measure Version of Pach’s Theorem

6.1 Borel Probability Measures

First we review some essential measure-theoretic background. A sequenceμn of Borel
probability measures on Rd is weakly convergent to a Borel probability measure μ on
R

d if for every bounded continuous function f : Rd → R, we have

lim
n→∞

∫

Rd
f dμn =

∫

Rd
f dμ.

Alexandroff [2] established several equivalent definitions of weak convergence. The
following one shows that it is sufficient to test the measure of closed sets.

Theorem 18 ([2]; see also [5, Cor. 8.2.10]) A sequence μn of Borel probability mea-
sures on R

d is weakly convergent to a Borel probability measure μ on R
d if and only

if for every closed set F ⊆ R
d , we have

lim sup
n→∞

μn(F) ≤ μ(F).

The weak convergence of Borel probability measures on Rd can be also defined as
the convergence in the weak topology on the space of Borel probability measures on
R

d ; see [5, Def. 8.1.2]. Moreover, this space is metrizable.

Theorem 19 ([5, Thm. 8.3.2]) The weak topology on the space of Borel probability
measures on R

d is generated by the Lévy–Prohorov metric:

dP (μ, ν) := inf
{
ε > 0 : for every Borel set B ⊆ R

d , ν(B) ≤ μ(Bε) + ε

and μ(B) ≤ ν(Bε) + ε
}
,

where Bε = {x ∈ R
d ; dist(x, B) < ε}.

A measure μ on R
d is outer regular if for every μ-measurable set S we have

μ(S) = inf{μ(U ); S ⊆ U, U open}.
Lemma 20 (see [23, Thm. 1.10.10 and Exer. 1.10.12]) Every Borel probability mea-
sure on R

d is outer regular.

The Dirac’s measure δx at x ∈ R
d is a measure on R

d satisfying δx ({x}) = 1 and
δx (R

d \{x}) = 0. It iswell known that Borel probabilitymeasures can be approximated
by finite linear combinations of Dirac’s measures in the following sense.
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Lemma 21 For every Borel probability measure μ on R
d , there is a sequence of

measures μn weakly convergent to μ such that each μn has the following form: μn =∑kn
i=1 cn,iδxn,i , where cn,i ∈ (0, 1] and xn,i ∈ R

d .

Proof By [5, Ex. 8.1.6(i)], finite nonnegative convex combinations ofDirac’smeasures
are dense in the space of Borel probability measures with the weak topology. Since
this topological space is metrizable by Theorem 19, every point μ has a countable
base of open neighborhoods and the lemma follows. ��
Corollary 22 For every Borel probability measure μ on R

d , there is a sequence
of probability measures μ′

n weakly convergent to μ such that each μ′
n is a finite

nonnegative rational combination of Dirac’s measures on R
d .

Proof For every n, letμn = ∑kn
i=1 cn,iδxn,i be the measure from Lemma 21. For every

i ∈ [kn], select a rational number c′
n,i ∈ ((1 − 1/n) · cn,i , cn,i ]. Let c′ := ∑kn

i=1 c′
n,i .

It is easy to see that μ′
n := ∑kn

i=1(c
′
n,i/c′) · δxn,i is a probability measure and that

the sequence μ′
n weakly converges to μ, since for every bounded continuous function

f : Rd → R we have (1 − 1/n)
∫
Rd f dμn ≤ ∫

Rd f dμ′
n ≤ (n/(n − 1))

∫
Rd f dμn . ��

Let μ be a finite nonnegative linear combination of Dirac’s measures on R
d . The

support supp(μ) of μ is the set of points x such that μ({x}) > 0. For our application,
it is convenient to approximate a given Borel measure with uniform discrete measures
whose support is in general position.

Corollary 23 Let μ1, . . . , μd+1 be Borel probability measures on R
d . For every i ∈

[d +1], there is a sequence of probability measures μ′′
i,n weakly convergent to μi such

that each μ′′
i,n is of the form (1/ki,n)

∑ki,n
j=1 δxi,n, j , where xi,n, j ∈ R

d , and moreover,
the supports supp(μ′′

1,n), . . . , supp(μ′′
d+1,n) are pairwise disjoint and supp(μ′′

1,n) ∪
· · · ∪ supp(μ′′

d+1,n) is in general position.

Proof For every i ∈ [d + 1], let μ′
i,n be a sequence of measures from Corollary 22

weakly convergent toμi . Suppose thatμ′
i,n = ∑k′

i,n
j=1 c′

i,n, jδx ′
i,n, j

. Since the coefficients

c′
i,n, j are rational, we have c′

i,n, j = ri,n, j/sn for some positive integers ri,n, j and sn .
For every n, we define the measures μ′′

i,n as follows: For every i ∈ [d + 1] and
for every x ′

i,n, j ∈ supp(μ′
i,n), we select a set X ′′

i,n, j of ri,n, j unique points, each of
them at a distance smaller than 1/n from x ′

i,n, j , so that for every fixed n, the set
⋃

i, j X ′′
i,n, j of all these (d + 1) · sn new points is in general position. For every n and

i , let X ′′
i,n := ⋃

j X ′′
i,n, j be the set of the sn new points created from the points x ′

i,n, j .
We set μ′′

i,n := ∑
x ′′∈X ′′

i,n
(1/sn)δx ′′ .

We use Theorem 19 to verify the convergence of the measures μ′′
i,n . We claim that

μ′
i,n and μ′′

i,n are (1/n)-close in the Lévy–Prohorov metric. Indeed, for every Borel

set B ⊆ R
d and for every point x ′

i,n, j ∈ supp(μ′
i,n), if x ′

i,n, j ∈ B then X ′′
i,n, j ⊂ B1/n .

This implies thatμ′
i,n(B) ≤ μ′′

i,n(B1/n). The inequalityμ′′
i,n(B) ≤ μ′

i,n(B1/n) follows
analogously.

Since dP (μ′
i,n, μ′′

i,n) < 1/n and dP (μ′
i,n, μi ) → 0, we conclude that dP (μ′′

i,n, μi )

→ 0 and the statement follows. ��
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h1,n

h2,n

h3,n

h 4,n

Z1,n

v1,3,n = u1,{1,3} ,n
v1,2,n

v1,4,n

u1,F,n

u1,F ,n

h1,n

h3,n

h4,n

H1,F,n

u1,F,n

σF,n

F = {1, 3, 4}

F = {1, 2, 3, 4}

arc where u1,F,n may point from h1,n due to b)

Fig. 9 Some of the (unit) vectors u1,F,n and v1, j,n in the 3-dimensional case. The right part of the picture
shows the affine hull of σF,n for F = {1, 3, 4}

6.2 Proof of Theorem 5

Let γ (d) := 2−2d2+3d
. Let μ1, . . . , μd+1 be Borel probability measures on R

d . For
i ∈ [d + 1], let μ′′

i,n be the sequence of measures from Corollary 23.
For everyn,we applyTheorem2(2) to the supports of themeasuresμ′′

1,n, . . ., μ′′
d+1,n .

We obtain sets Y1,n, . . . , Yd+1,n and a point pn such that Yi,n ⊆ supp(μ′′
i,n), the point

pn is in all (Y1,n, . . . , Yd+1,n)-simplices, and μ′′
i,n(Yi,n) ≥ γ (d). Moreover, we know

from the proof of Theorem 2(2) that there is an arrangementHn of d + 1 hyperplanes
in general position such that the sets Yi,n are in the interiors of the corner regions of
Hn and pn is in the interior of the simplex Δ(Hn) determined by this arrangement. In
this section, we denote the corner regions of Hn by Zi,n .

The key observation is that we can encode the output of Theorem 2(2) as a (d +2)-
tuple of points of Rd that consists of the vertices h1,n, . . . , hd+1,n of the simplex
Δ(Hn) and the point pn . In order to handle passing to the limit, we enrich the data by
a ((d + 1) · (2d − 1))-tuple of vectors defined as follows: For every F ⊆ [d + 1], let
σF,n be the face conv({h j,n; j ∈ F}) of Δ(Hn). In addition, if i ∈ F and F �= {i}, let
ui,F,n be a unit vector satisfying the following two conditions (see Fig. 9):

(a) The ray {hi,n − λui,F,n; λ ≥ 0} intersects the relative interior of σF,n .
(b) Let Hi,F,n be the affine hyperplane in the affine hull of σF,n orthogonal to ui,F,n

and containing hi,n . Then Hi,F,n ∩ σF,n = {hi,n}. Equivalently, for every j ∈
F \ {i}, we have ui,F,n · (h j,n − hi,n) < 0. Here we write u · v for the dot product
of u and v.

In particular, if F = {i, j}, then ui,F,n = vi, j,n := (hi,n − h j,n)/‖hi,n − h j,n‖.
Here ‖v‖ denotes the Euclidean norm of v.

The existence of the vector ui,F,n satisfying both conditions a) and b) is not
immediately obvious, especially when the dimension of the face σF,n is large. Let
Ci,F,n := (Zi,n ∩ aff(σF,n)) − hi ; that is, Ci,F,n is the (|F | − 1)-dimensional convex
cone with apex at the origin generated by the vectors vi, j,n , j ∈ F \ {i}. Condition
a) now says that ui,F,n belongs to the relative interior of Ci,F,n if |F | ≥ 3. Simi-
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larly, condition b) says that ui,F,n belongs to the relative interior of the dual cone
C ′

i,F,n := {y ∈ aff(σF,n); y · vi, j,n ≥ 0, j ∈ F \ {i}}. The existence of ui,F,n thus
follows from the following generalization of Farkas’ lemma.

Lemma 24 Let C be a simplicial cone inRk with apex in the origin, where a simplicial
cone in R

k is a convex hull of k extremal rays emanating from the apex with linearly
independent directions. Let C ′ := {y ∈ R

k; y · x ≥ 0 for all x ∈ C} be the dual cone
of C. Then their intersection C ∩ C ′ has nonempty interior.

Proof Suppose that the interior of C ∩ C ′ is empty. Since C is simplicial, both C
and C ′ have dimension k and thus nonempty interior. By the nonstrict version of the
hyperplane separation theorem, there is a hyperplane H separating the interiors of C
and C ′ and passing through the origin. That is, there is a vector a ∈ R

k such that
‖a‖ = 1, a · x ≥ 0 for all x ∈ C , and a · y ≤ 0 for all y ∈ C ′. This implies that a ∈ C ′,
and consequently a · a ≤ 0, which is a contradiction. ��

Clearly, for every F ⊆ [d + 1] such that i ∈ F and F �= {i}, and for every λ ≥ 0,
the point hi,n + λui,F,n is contained in Zi,n . Moreover, Zi,n is the convex hull of the
d rays {hi,n + λvi, j,n; λ ≥ 0} for j ∈ [d + 1] \ {i}.

Let xn be the point in R
(d+1)2d+1 representing the ordered sequence of the points

pn, h1,n, . . . , hd+1,n and the vectors ui,F,n .
Let B be a closed ball centered in the origin such that, for every i ∈ [d + 1], we

have μi (B) > 1− γ (d)/2. By Theorem 18, there is an n0 such that for every n > n0
and for every i ∈ [d + 1], we have μ′′

i,n(B) > 1 − γ (d).
We claim that, for every n > n0, the whole simplex Δ(Hn) is contained in B.

Suppose the contrary. Then there is a point q ∈ int(Δ(Hn)) \ B, which can be strictly
separated from B by a hyperplane H . By Claim 25 applied to the generic Pach’s
configuration (Y1,n, . . . , Yd+1,n, q), some of the sets Yi,n is separated by H from B.
This is a contradiction as μ′′

i,n(B) + μ′′
i,n(Yi,n) > 1.

Claim 25 Let (Y1, . . . , Yd+1, p) be a generic Pach’s configuration. Let H be any
hyperplane passing through p. Then for any of the two open halfspaces determined
by H, there is � ∈ [d + 1] such that Y� is fully contained in that halfspace.

Proof Let H+ be the closed halfspace opposite to the open halfspace in which we
look for Y�. Suppose for contradiction that each Yi meets H+. Let yi be a point from
Yi ∩ H+ for every i ∈ [d +1]. Since p belongs to the simplex y1y2 . . . yd+1, it belongs
to the convex hull of those yi that are in H . This contradicts the general position
condition of a generic Pach’s configuration. ��

It follows that pn ∈ B and hi,n ∈ B for all i . Since ‖ui,F,n‖ = 1 for every i and F ,

the whole sequence xn is contained in a compact subset of R(d+1)2d+1, and so it has a
convergent subsequence xnk with a limit x. Let hi := limk hi,nk for every i ∈ [d + 1],
p := limk pnk , and ui,F := limk ui,F,nk for every i ∈ [d + 1] and F ⊆ [d + 1], i ∈ F ,
F �= {i}.

For every i ∈ [d + 1], the point hi and the vectors ui,F determine a (possibly
degenerate) convex cone Zi as follows:
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Zi

Ui,m

hi

hi
Z i

Ui,m

Fig. 10 A neighborhood Ui,m of a cone Zi . The neighborhood is nonconvex if hi is not an extreme point
of Zi (right)

Zi := conv

( ⋃

F⊆[d+1],i∈F,F �={i}

{
hi + λui,F , λ ≥ 0

} )
.

Note that if h1, . . . , hd+1 are affinely independent, and thus form a nondegenerate
simplex, then the cones Zi correspond to the corner regions Ci defined in Sect. 3, and
are limits of the regions Zi,nk , in a certain sense that we define shortly. However, if
h1, . . . , hd+1 span a subspace of dimension at most d − 1 (some of the points may
even coincide), these points alone do not provide enough information to reconstruct the
cones Zi . In particular, if hi is in the convex hull of the vertices h j for j ∈ [d +1]\{i},
we need some of the vectors ui,F , too.

We create an “epsilon of room” [23] around Zi . For every m ∈ N, we define a
neighborhood Ui,m of Zi as an infinite union of (possibly nonconvex) open cones
whose apices a are close to hi and whose rays have directions close to the directions
of the rays of Zi (see Fig. 10):

Ui,m :=
{

a + w; ‖a − hi‖ < 1/m, w �= 0, and dist

(
hi + w

‖w‖ , Zi

)
< 1/m

}
.

We show that for each i ∈ [d + 1], the cone Zi is a limit of the cones Zi,nk in the
following sense.

Claim 26 (1) Zi is in the pointwise limit of Zi,nk . That is, for every z ∈ Zi , there is
a sequence of points zk ∈ Zi,nk converging to z.

(2) Zi is an intersection of the sequence of open neighborhoods Ui,m, and for every
m, if xnk is sufficiently close to x, then Zi,nk ⊂ Ui,m.

Part (1) of Claim 26 follows directly from the definition of Zi and from the fact that
Zi,nk is a convex hull of rays {hi,nk +λui,F,nk , λ ≥ 0} for F ⊆ [d+1], i ∈ F, F �= {i},
and these rays pointwise converge to the rays {hi + λui,F , λ ≥ 0}.

It is also clear that Zi = ⋂∞
m=1 Ui,m . To establish the rest of part (2) of the claim,

we need the full data from the definition of Zi . Since the proof is rather technical, we
delegate it into Sect. 6.3.

We set Fi,m as the closure of Ui,m . Clearly, Fi,m+1 ⊂ Ui,m for every m. By
Lemma 20,

μi (Zi ) = inf
m∈N

μi (Ui,m) = inf
m∈N

μi (Fi,m). (7)
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By Claim 26(1) and since pnk is contained in all (Z1,nk . . . , Zd+1,nk )-simplices by
Lemma 12, we conclude that the point p is contained in all (Z1, . . . , Zd+1)-simplices.
Note that p is not necessarily in the interior of these simplices; moreover, the simplices
may be degenerate.

It remains to show that μi (Zi ) ≥ γ (d) for every i . Fix i ∈ [d + 1] and let ε > 0.
By (7), there is an m ∈ N such that

μi (Zi ) > μi (Fi,m) − ε. (8)

By Theorem 18, there is a k0 such that, for all k > k0, we have

μi (Fi,m) > μ′′
i,nk

(Fi,m) − ε. (9)

By Claim 26(2), there is a k > k0 such that Zi,nk ⊂ Ui,m ⊂ Fi,m , and therefore

μ′′
i,nk

(Fi,m) ≥ μ′′
i,nk

(Zi,nk ). (10)

Combining (8), (9) and (10) with the assumption μ′′
i,n(Yi,n) ≥ γ (d), we obtain

μi (Zi ) > μ′′
i,n(Zi,n) − 2ε ≥ μ′′

i,n(Yi,n) − 2ε ≥ γ (d) − 2ε.

Since the ε can be taken arbitrarily small, the theorem follows.

6.3 Proof of Claim 26(2)

Given a point a ∈ R
d and d unit vectors v1, . . . , vd ∈ R

d , the cone with apex a
induced by v1, . . . , vd is defined as

C(a, v1, . . . , vd) := conv({a + λvi ; λ ≥ 0, i ∈ [m]}).

If the vectors v1, . . . , vd ∈ R
d are linearly independent, the cone C(a, v1, . . . , vd)

is also called simplicial, and the rays {a + λvi , λ ≥ 0}, for i ∈ [d], are called the
extreme rays of C(a, v1, . . . , vd).

As we have already observed, the cone Zi,n is a simplicial cone with apex hi,n and
is induced by the d vectors vi, j,n , j ∈ [d + 1] \ {i}. When attempting to define the
limit of the sequence Zi,nk , a difficulty arises when the maximum angle between pairs
of rays in Zi,nk approaches π ; see Fig. 11. For d ≥ 3, this may happen even if all pairs
of extreme rays form an angle at most 2π/3, or, in general, arccos(−1/(d − 1)). We
have introduced the vectors ui,F,n to remedy this difficulty.

Observation 27 Suppose that i ∈ F ⊂ K ⊆ [d + 1]. Then ui,F,n · ui,K ,n > 0. That
is, ui,F,n and ui,K ,n form an angle smaller than π/2.

Proof By condition a) for the vector ui,F,n , the vector ui,F,n is a nonnegative linear
combination of the vectors vi, j,n for j ∈ F \ {i}. By condition b) for the vector ui,K ,n ,
we have ui,K ,n ·vi, j,n > 0 for every j ∈ K \{i}. The observation follows by combining
these inequalities. ��
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h1,n

h2,n h3,n

Z1,n

Z2,n Z3,n

Z3Z2

Z1?

h1h2 h3 Z3Z2 h1h2 h3

Z1

Fig. 11 The vectors vi, j,n provide a useful information about the convex cone Zi ; however, they are not
sufficient in general to determine Zi . Let us consider the case when h2 := h2,n and h3 := h3,n are fixed
points of a line � and h1,n approaches the midpoint h1 of h2h3 from above; see the series of pictures on the
left. The vectors vi, j,n are drawn as small arrows without labels. Then the (limit) vectors v2, j determine
the (limit) cone Z2, which is a ray in this case. However, the two vectors v1, j (around h1 on the bottom left
picture) are insufficient to determine the expected limit cone Z1. By using all the vectors u1,F,n , we can
determine the cone Z1 as depicted on the right

An i-chain is a sequenceF = (F0, F1, F2, . . . , Fd) of nonempty subsets of [d +1]
such that {i} = F0 ⊂ F1 ⊂ F2 ⊂ · · · ⊂ Fd = [d + 1]. In particular, |Fj | = j + 1 for
every j ∈ [d]. For every n, every i-chain F determines a simplicial cone C(F , n) :=
C(hi,n, ui,F1,n, ui,F2,n, . . . , ui,Fd ,n). It is easy to see that for fixed n and i , the cones
C(F , n) determined by all i-chainsF cover Zi,n ; we explain this in more detail below.
In fact, their interiors are also pairwise disjoint so they form a finite tiling of Zi,n . It is
therefore sufficient to prove the conclusion of Claim 26(2) for each sequence of cones
C(F , nk) separately.

In order to show that the cones C(F , n) cover Zi,n , it is sufficient to show that
C(F , n)∩H cover Zi,n∩H for any hyperplane H perpendicular to the vectorui,[d+1],n
such that |Zi,n ∩ H | > 1. Then Δ := H ∩ Zi,n is a (d − 1)-simplex meeting all
the rays {λui,F,n, λ ≥ 0}, in points rF (considering i and n as fixed). Similarly
Δ(F) := H ∩ C(F , n) is a (d − 1)-simplex. Its vertices are the points rF for F
belonging to F . See Fig. 12. Each rF is in the relative interior of some face ΔF of
Δ. If we were lucky and rF would coincide, for each F ⊆ [d + 1], i ∈ F , F �= {i},
with the barycenter bF of ΔF , then it is well known that the simplices Δ(F) form
the barycentric subdivision of Δ and therefore they tile Δ. If this is not the case, we
consider the piecewise-linear homeomorphism of Δ, linear on each Δ(F), sending
each rF to bF . This again shows that Δ(F) tile Δ because a homeomorphism maps a
tiling to a tiling.

A simplicial coneC(a, v1, . . . , vd) is acute if vi ·v j > 0 for any i, j ∈ [d]. Observe
that in an acute simplicial cone, every two (not necessarily extreme) rays form an acute
angle. Observation 27 implies that every cone C(F , n) is acute.
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h1,n

r{1,2}
r{1,3}

r{1,3,4}

r{1,4}

r{1,2,4}

r[4]

r{1,2,3}

Δ

Δ( )

= ({1}, {1, 2}, {1, 2, 3}, [4])

Fig. 12 Tiling the cone

An admissible vector of a cone C := C(a, v1, . . . , vd) is a unit vector v such that
a + v ∈ C . That is, admissible vectors form an intersection of the unit sphere with
C − a. Another equivalent definition is that v is admissible if it can be written as

v = λ1v1 + · · · + λdvd

‖λ1v1 + · · · + λdvd‖ ,

where λi ≥ 0 for i ∈ [d] and at least one of these λi is strictly positive. Since this
definition is not affected by multiplying each λi by a positive constant, we can further
require that λ1 + · · · + λd = 1.

Let Cn := C(an, vn
1 , . . . , vn

d) be a sequence of simplicial cones such that the
sequence (an, vn

1 , . . . , vn
d) converges to a point (a, v1, . . . , vd). Then the cone C :=

C(a, v1, . . . , vd) is the limit of Cn . Our aim is to show that the limit of acute cones
behaves nicely. Clearly, if the cones Cn are acute, then vi · v j ≥ 0 for any i, j ∈
[d]. Claim 26(2) now follows from the following claim, applied to every sequence
C(F , nk).

Claim 28 Let Cn := C(an, vn
1 , . . . , vn

d) be a sequence of acute simplicial cones with
a limit C := C(a, v1, . . . , vd). Then for every ε > 0, there is an n0 ∈ N such that for
every n ≥ n0 and every admissible vector vn of Cn, there is an admissible vector v of
C such that ‖v − vn‖ ≤ ε.

Proof For a given ε, we set δ := ε/(2d2) and we choose such n0 that for every n ≥ n0
and for every i ∈ [d], we have ‖vi − vn

i ‖ < δ.
Let vn be an admissible vector of Cn written as

vn = λ1vn
1 + · · · + λdvn

d

‖λ1vn
1 + · · · + λdvn

d‖
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with λ1 + · · · + λd = 1. Then

v := λ1v1 + · · · + λdvd

‖λ1v1 + · · · + λdvd‖
is an admissible vector of C . Our aim is to show that ‖v − vn‖ is small. Let x :=
λ1v1 + · · · + λdvd and xn := λ1vn

1 + · · · + λdvn
d .

By the triangle inequality, we have

∣∣‖x‖ − ‖xn‖∣∣ ≤ ‖x − xn‖ ≤ λ1‖v1 − vn
1‖ + · · · + λd‖vd − vn

d‖ ≤ dδ.

Clearly, ‖x‖ ≤ 1, since ‖x‖ is a convex combination of unit vectors. We further
prove that ‖x‖ ≥ 1/

√
d. Analogously, we also get the inequality ‖xn‖ ≥ 1/

√
d. We

have

‖x‖2 = x · x = λ21 + · · · + λ2d +
∑

1≤i< j≤d

2λiλ j (vi · v j ) ≥ λ21 + · · · + λ2d

≥ (λ1 + · · · + λd)2

d
= 1

d
,

using the observation that vi · v j ≥ 0 and the inequality of arithmetic and quadratic
means.

Finally,

‖v − vn‖ =
∥∥∥
∥

x
‖x‖ − xn

‖xn‖
∥∥∥
∥ ≤ d · ∥∥‖xn‖ · x − ‖x‖ · xn

∥∥

≤ d · (∥∥‖xn‖ · x − ‖x‖ · x
∥∥ + ∥∥‖x‖ · x − ‖x‖ · xn

∥∥)

= d · (∣∣‖x‖ − ‖xn‖∣∣ · ‖x‖ + ‖x‖ · ‖x − xn‖)

≤ 2d2δ = ε.

��
6.4 Final Remark

Wenote that any future improvement of Theorem2(2) yields a corresponding improve-
ment of Theorem 5. To see this, we have to modify the proof of Theorem 5 a
little bit, since we cannot rely on the proof of Theorem 2(2) to obtain the arrange-
ment Hn satisfying all the required conditions. Instead, we use Lemmas 13 and 15.
Also, when choosing the sequence of measures μ′′

i,n , we require, in addition, that
supp(μ′′

1,n) ∪ · · · ∪ supp(μ′′
d+1,n) satisfies condition (G) and that | supp(μ′′

i,n)| ≥ n,
which will compensate for the loss of some points after applying Lemma 13.
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