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Abstract A class of functions that satisfies intriguing explicit formulae of Ramanujan
and Titchmarsh involving the zeros of an L-function in the reduced Selberg class of
degree one and its associated Möbius function is studied. Moreover, a sufficient and
necessary condition for the truth of theRiemann hypothesis due toRiesz is generalized.
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1 Introduction and results

1.1 Motivation for studying the Möbius function

The Möbius function μ is defined as
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μ(n) =

⎧
⎪⎨

⎪⎩

1, if n = 1,

0, if p2|n for some prime p,

(−1)k, if n is a product of k distinct primes.

(1.1)

If x denotes a positive real, then the Mertens function M is defined by

M(x) =
∑

n�x

μ(n).

The interest in studyingμ(n) andM(x) comes from their connection to the distribution
of the prime numbers. For instance (see Hardy and Littlewood [18, Sect. 1.1]), the
prime number theorem is equivalent to the following statements:

M(x) = o(x),
∞∑

n=1

μ(n)

n
= 0. (1.2)

Estimates on Mertens’s function date back to the 1880s when Mertens [15] falsely
conjectured that M(x) � √

x for all sufficiently large x . Later in 1885, Stieltjes [15]
claimed a proof of this conjecture. It was not until 100 years later that Odlyzko and te
Riele [37] disproved theMertens’ conjecture. Specifically, they showed the following.

There are explicit constants C1 > 1 and C2 < −1 such that

lim sup
x→∞

M(x)√
x

� C1, lim inf
x→∞

M(x)√
x

� C2.

This means that each of the inequalities −√
x ≤ M(x) and M(x) ≤ √

x fails for
infinitely many x , or, equivalently, M(x) = �±(

√
x). The proof of te Riele and

Odlyzko does not provide a specific value of x for which M(x) ≥ √
x , but it is known

that there is such an x for x < 10156. In [6] Best and Trudigan give an alternative
disproof of Mertens’ conjecture and they show that C1 can be taken to be 1.6383 and
C2 to be −1.6383. The best unconditional estimate on the Mertens’ function is (see
Ivić [21, Sect. 12])

M(x) � x exp

(

−c1log
3
2 x(log log x)−

1
5

)

,

for c1 > 0; and the bound on the assumption of the Riemann hypothesis is (see
Titchmarsh [48, Sect. 14.26])

M(x) � x
1
2 exp

(
c2 log x

log log x

)

,

for c2 > 0. The best unconditional � result for the Mertens function is

M(x) = �±(x
1
2 ),
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Explicit formulae of the Möbius function 385

and if ζ(s) has a zero of multiplicity m with m > 1 then

M(x) = �±
(

x
1
2 (log x)m−1

)

.

On the other hand, if the Riemann hypothesis is false, then

M(x) = �±(xθ−δ),

where θ = supρ,ζ(ρ)=0 Re(ρ) and δ is any positive constant (see Ingham [20]).

1.2 Explicit formulae

An explicit formula is an equationwhich encapsulates certain arithmetical information
and which involves the non-trivial zeros ρ of an L-function.

1.2.1 Ramanujan explicit formula

In 1918 Hardy and Littlewood (see [18, Sect. 2.5] and [48, Sect. 9.8]) published an
explicit formula suggested to them by Ramanujan. Under the benign assumption that
the non-trivial zeros ρ are all simple, their explicit formula can be stated as follows.

Let a and b be two positive real numbers such that ab = π . Let ϕ and ψ be a
pair of suitable cosine reciprocal functions.1 Let Z1(s) and Z2(s) be the Mellin
transforms of ϕ(s) and ψ(s), respectively. Then

√
a

∞∑

n=1

μ(n)

n
ϕ
(a

n

)
− √

b
∞∑

n=1

μ(n)

n
ψ

(
b

n

)

= 1√
a

∑

ρ

aρ Z1(1−ρ)

ζ ′(ρ)

= − 1√
b

∑

ρ

bρ Z2(1 − ρ)

ζ ′(ρ)
, (1.3)

provided the series involving ρ are convergent.

If we take ϕ(x) = ψ(x) = exp(−x2), then it is easily seen that these functions are
cosine reciprocal functions and that

Z1(s) = Z2(s) = 1

2


( s

2

)
.

1 Two functions f (x) and g(x) are cosine reciprocal if

√
π

2
f (x) =

∞∫

0

g(u) cos(2ux)du,

√
π

2
g(x) =

∞∫

0

f (u) cos(2ux)du.
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In this case (1.3) becomes

√
a

∞∑

n=1

μ(n)

n
e−a2/n2 − √

b
∞∑

n=1

μ(n)

n
e−b2/n2 = 1

2
√
a

∑

ρ

aρ

(

1−ρ
2 )

ζ ′(ρ)

= − 1

2
√
b

∑

ρ

bρ

(

1−ρ
2 )

ζ ′(ρ)
, (1.4)

provided, once again, that the series

∑

ρ

αρ

(

1−ρ
2 )

ζ ′(ρ)

is convergent for α > 0. Hardy and Littlewood credit Ramanujan for first providing
(1.4) and later on for suggesting the generalization (1.3). They do not, however, state
the conditions that ϕ andψ must satisfy for (1.3) to hold. The arithmetical information
is contained in the Möbius function on the left-hand side of (1.3) and (1.4) and the
analytic information is encoded in the sums involving the non-trivial zeros on either
of the right-hand sides.

In 2013 Dixit [12] gave a one-variable generalization of (1.4). He showed the
following result.

If we let a and b be positive reals such that ab = 1 and z ∈ C, then

√
ae

z2
8

∞∑

n=1

μ(n)

n
e−πa2/n2 cos

(√
πaz

n

)

− √
be− z2

8

∞∑

n=1

μ(n)

n
e−πb2/n2 cosh

(√
πbz

n

)

= − e− z2
8

2
√

πb

∑

ρ


(
1−ρ
2 )

ζ ′(ρ)
1F1

(
1 − ρ

2
; 1
2
; z

2

4

)

πρ/2bρ (1.5)

provided the series involving ρ are convergent, and where 1F1 denotes the con-
fluent hypergeometric function.

Clearly, if z = 0 then (1.5) becomes (1.4).
In [11], Dixit obtained a character analogue of (1.4). To state his result, we recall

the following notation of the theory of Dirichlet L-functions. Suppose that χ is a
character mod q. The indicator h is defined by

h =
{
0 if χ is even,

1 if χ is odd.
(1.6)

The Gauss sum τ(χ) is defined by

τ(χ) =
q∑

m=1

χ(m)e2π im/q .
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Explicit formulae of the Möbius function 387

With this in mind, Dixit’s second result is as follows:

Let a and b be two positive reals such that ab = π and let χ denote a primitive
Dirichlet character mod q such that χ(−1) = (−1)h. If the non-trivial zeros ρ

of L(s, χ) are all simple then one has

ah+1/2
√

τ(χ)

∞∑

n=1

χ(n)μ(n)

n1+h
e−a2/(qn2) − bh+1/2

√
τ(χ̄)

∞∑

n=1

χ̄(n)μ(n)

n1+h
e−b2/(qn2)

= q

√
τ(χ)

2
√
a

∑

ρ

(
b

q1/2

)ρ 
(
1+h−ρ

2 )

L ′(ρ, χ)
= −q

√
τ(χ̄)

2
√
b

∑

ρ

(
b

q1/2

)ρ 
(
1+h−ρ

2 )

L ′(ρ, χ̄)

(1.7)

provided the series involving ρ are convergent.

Later in [13] one of the authors, Dixit and Zaharescu found the character analogue of
(1.5) and in [14] a generalization of (1.5) to Hecke forms.

The transformations in (1.3), (1.4), (1.5) and (1.7) exhibit a transformation of the
type x → 1/x , which is an analogue of the Poisson summation formula. These kinds
of transformation formulas have broad interest in different branches ofmathematics. In
this article we establish a class of reciprocal functions, as well as a class of arithmetical
functions obtained from a reduced Selberg class, which satisfies the transformation
formula mentioned above. At the end of the introduction we provide examples where
we obtained the above transformations as special cases. Furthermore, we obtain some
new transformations that are not in the literature.

Let us suppose that A1 > 0 and T > 0. We define the bracketing condition B on
a sum involving the zeros ρ = β + iγ and ρ′ = β ′ + iγ ′ of ζ(s) to be a summation
where the terms are bracketed in such a way that two terms for which

|γ − γ ′| < exp(−A1|γ |/ log |γ |) + exp(−A1|γ ′|/ log |γ ′|) (1.8)

are included in the same bracket. When a sum over ρ satisfies the bracketing condition
B, we will write∑ρ∈B f (ρ).

We define the bracketing condition Bχ on a sum involving the zeros ρ = β + iγ
and ρ′ = β ′ + iγ ′ of L(s, χ) to be a summation where the terms are bracketed in such
a way that two terms for which

|γ − γ ′| < exp(−A1|γ |/ log |γ | + 3) + exp(−A1|γ ′|/ log |γ ′| + 3) (1.9)

are included in the same bracket. Similarly, when a sum over ρ satisfies the bracketing
condition Bχ , we will write

∑
ρ∈Bχ

f (ρ). If we assume that the zeros of ζ(s) satisfy
the bracketing condition B then one can drop the assumption of convergence of the
series in the right-hand sides of (1.3)–(1.5). Likewise, if we assume that the zeros
of L(s, χ) satisfy the bracketing condition Bχ , then we can drop the assumption of
convergence in the right-hand side of (1.7).

123



388 P. Kühn et al.

The size and the distribution of such bracketings are unknown but their existence
is widely accepted. In fact, it is expected that the pairs of zeros {ρ, ρ′} that need to
be bracketed together in Ramanujan’s explicit formula will occur rarely. For results
on the correlation of zeros of L-functions, the reader is referred to Montgomery [32],
Rudnick and Sarnak [43], Katz and Sarnak [26,27], Murty and Perelli [34], andMurty
and Zaharescu [35].

1.2.2 Titchmarsh explicit formula

An explicit formula for theMertens functionwas first published in 1951 by Titchmarsh
on the assumption of theRiemann hypothesis (see [48, Sect. 14.27]), i.e. letρ = 1

2+iγ
with γ ∈ R. Specifically,

On RH and the simplicity of the non-trivial zeros, there exists a sequence Tν ,
ν ≤ Tν ≤ ν + 1, such that

M(x) = −2 + lim
ν→∞

∑

|γ |<Tν

xρ

ρζ ′(ρ)
+

∞∑

n=1

(−1)n−1(2π/x)2n

(2n)!nζ(2n + 1)
(1.10)

if x is not an integer. If x is an integer, M(x) is to be replaced by

M(x) − 1
2μ(x).

Note that, unlike RH, the assumption that the zeros are all simple is made for con-
venience. Indeed, this condition can be relaxed and zeros with higher multiplicity can
be accommodated at the cost of making the explicit formula much more complicated.
Since it is widely believed that all zeros of the Riemann zeta-function are simple we
shall operate under this assumption throughout.

In 1991Bartz (see [3,4]) proved (1.10) unconditionally. A generalization to Cohen–
Ramanujan sums of Bartz’s results is established in [28] by the first two authors.

1.2.3 Weil explicit formula

The von Mangoldt function is defined by

�(n) =
{
log p, if n = pm for some m ∈ N and prime p,

0, otherwise.

In 1952 Weil (see [22, Sect. 5.5] and [50]) published an explicit formula for the
von Mangoldt function.

Suppose that f is C∞ and compactly supported. Moreover, denote by F its
Mellin transform. Then
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Explicit formulae of the Möbius function 389

∑

ρ

F(ρ) +
∞∑

n=1

F(−2n) = F(1) +
∞∑

n=1

�(n) f (n). (1.11)

In order to state the main theorems proved in this note, we first need to introduce
some further concepts.

1.3 Hankel transformations

Two functionsϕ(x) andψ(x) are said to be reciprocal under theHankel transformation
of order ν if

ϕ(x) =
∞∫

0

(ux)
1
2 Jν(ux)ψ(u)du and ψ(x) =

∞∫

0

(ux)
1
2 Jν(ux)ϕ(u)du, (1.12)

where Jν(x) is the Bessel function of the first kind of order ν defined by

Jν(x) =
∞∑

n=0

(−1)n(x/2)ν+2n

n!
(ν + n + 1)
.

The existence of such reciprocity was first shown by Titchmarsh, see [46,47]. In
particular he showed the following.

If ϕ(s) is integrable in the sense of Lebesgue and ν ≥ − 1
2 then

a∫

0

(ux)
1
2 Jν(ux)ϕ(u)du

converges in mean to a function ψ(x) of integrable square in (0,∞) as a → ∞.

Hankel transformations reduce to Fourier’s cosine and sine transforms for ν = − 1
2

and ν = 1
2 , respectively. TheMellin transforms of ϕ(x) andψ(x) are defined, as usual,

by

Z1(s) =
∞∫

0

xs−1ϕ(x)dx, Z2(s) =
∞∫

0

xs−1ψ(x)dx . (1.13)

Their inverse Mellin transforms are given by

ϕ(x) = 1

2π i

c+i∞∫

c−i∞
Z1(s)x

−sds, ψ(x) = 1

2π i

c+i∞∫

c−i∞
Z2(s)x

−sds. (1.14)

The value of c will depend on the nature of the functions ϕ and ψ .
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390 P. Kühn et al.

Definition 1.1 Let 0 < ω ≤ π and α < 1
2 . If f (z) is such that

(i) f (z) is analytic of z = reiθ regular in the angle defined by r > 0, |θ | < ω,
(ii) f (z) satisfies the bounds

f (z) =
{
O(|z|−α−ε) if |z| is small,

O(e−|z|) if |z| is large, (1.15)

for every positive ε and uniformly in any angle |θ | < ω,

then we say that f belongs to the class K and write f (z) ∈ K (ω, α).

1.4 The Selberg class

In [44], Selberg introduced a general class S of L-functions. Let F be an L-function
in S then the completed L-function is defined by

�(s) = Qs
d∏

i=1


(αi s + ri )F(s) (1.16)

where Q > 0, αi > 0, ri ∈ C with Re(ri ) ≥ 0. The degree dF and conductor qF are
defined by

dF = 2
d∑

j=1

α j and qF = (2π)dF Q2
d∏

j=1

α
2α j
j , (1.17)

respectively. It is conjectured that the degree dF and conductor qF are both integers.
For a non-negative integer n, the H -invariants are defined by

HF (n) = 2
d∑

j=1

Bn(r j )

αn−1
j

,

where Bn(x) are the familiar n-th Bernoulli polynomials. The first few Bn(x)’s are
given by

B0(x) = 1, B1(x) = x − 1

2
, B2(x) = x2 − x + 1

6
, . . . .

Hence we find that

HF (0) = dF , HF (1) = 2
∑

(r j − 1/2), . . . . (1.18)

1.5 Main results

Equipped with these notions our first result is as follows:
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Explicit formulae of the Möbius function 391

Theorem 1.1 Suppose that F is an element of the Selberg class with dF = 1. Let
ν ≥ − 1

2 and HF (1) = −ν − 1
2 . Let

π
4 < ω ≤ π , α < 1

2 and ϕ,ψ ∈ K (ω, α) be
reciprocal functions under the Hankel transformation of order ν. Let Z1(s) and Z2(s)
defined as above and let x be a positive real. Then there exists a sequence {Tl} of
positive numbers that satisfies the following.

(i) If qF = 1 then

∞∑

n=1
μ(n)ϕ

(n

x

)
= lim

l→∞
∑

−Tl<Im(ρ)<Tl

Z1(ρ)

ζ ′(ρ)
xρ +√

2π
∞∑

k=1

(−1)k Z2(1+k)

(k!)2ζ(1 + k)

( x

2π

)−k
.

(1.19)

(ii) If q := qF ≥ 2 then there exists a primitive Dirichlet character χ mod q with
χ(−1) = −2ν such that

∞∑

n=1

μ(n)χ(n)ϕ
(n

x

)
= lim

l→∞
∑

−Tl<Im(ρ)<Tl

Z1(ρ)

L ′(ρ, χ)
xρ

+ i
1
2+ν

√
2π

τ(χ)

∞∑

k=0

(−1)k Z2(1+k)

(k!)2L(1+k, χ̄)

( qx

2π

)−k+ Z1(s0)

L ′(s0, χ)
xs0

(1.20)

on the assumption that the Riemann hypothesis for Dirichlet L-functions is true and
where s0 denotes a hypothetical Landau–Siegel zero.

Equation (1.19) is reminiscent of theWeil explicit formula except that�(n) is replaced
by μ(n). Similar formulae due to Berndt [5] and Ferrar (see [16,17], and [47, Sect.
2.9]) for the divisor function d(n) exist as well. Extensions of theWeil explicit formula
(1.11) to generalized von Mangoldt functions and other arithmetical functions such as
the Liouville λ function can be found in another article by the last two authors [42].
The second result is as follows:

Theorem 1.2 Suppose that F is an element of the Selberg class with dF = 1. Let
ν ≥ − 1

2 and HF (1) = ν − 1
2 . Let

π
4 < ω ≤ π , α < 1

2 and ϕ,ψ ∈ K (ω, α) be
reciprocal functions under the Hankel transformation of order ν. Let Z1(s) and Z2(s)
defined as above. If a and b are two positive reals such that ab = 2π , then one has
the following.

(i) If qF = 1 then

√
a

∞∑

n=1

μ(n)

n
ϕ
(a

n

)
− √

b
∞∑

n=1

μ(n)

n
ψ

(
b

n

)

= 1√
a

∑

ρ∈B
aρ Z1(1 − ρ)

ζ ′(ρ)

= − 1√
b

∑

ρ∈B
bρ Z2(1 − ρ)

ζ ′(ρ)
. (1.21)
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392 P. Kühn et al.

(ii) If q := qF ≥ 2 then there exists a primitive Dirichlet character χ mod q with
χ(−1) = −2ν such that

√
a
√

τ(χ)

∞∑

n=1

χ(n)μ(n)

n
ϕ

(
a

q1/2n

)

− √
b
√

τ(χ̄)

∞∑

n=1

χ̄ (n)μ(n)

n
ψ

(
b

q1/2n

)

= q1/2
√

τ(χ)

a1/2
∑

ρ∈Bχ

(
a

q1/2

)ρ Z1(1−ρ)

L ′(ρ, χ)
=−q1/2

√
τ(χ̄)

b1/2
∑

ρ∈Bχ

(
b

q1/2

)ρ Z2(1−ρ)

L ′(ρ, χ̄)
.

(1.22)

If one changes (1.15) to the following

f (z) =
{
O(|z|−α−ε) if |z| is small,

O(|z|−β−ε) if |z| is large, (1.23)

with α = 0 and β > 1, then Theorem 1.2 would also hold for ϕ and ψ satisfying the
above growth conditions.

One can see the condition HF (1) = ν − 1
2 is necessary. This condition naturally

leads us to make the following conjecture.

Conjecture 1.1 Let F be an element in the Selberg class with dF = 1. Let ν ≥ − 1
2 ,

π
2 < ω ≤ π and ϕ,ψ ∈ K (ω, α) be reciprocal under Hankel transformation of order
ν. Then (1.21) holds only when ν = −1/2 and (1.22) holds only when ν = ±1/2.

Remark 1.1 The following special cases are to be noted.

(1) Let ϕ(x) = ψ(x) = x (ν+1/2)e− x2
2 for ν = ±1/2. Clearly, ϕ,ψ ∈ K (ω, a) . Also

Z1(s) = Z2(s) =
(
1

2

)( ν
2− 3

4 )

2
s
2 


(
s + ν + 1/2

2

)

.

If we substitute the above values of ϕ,ψ, Z1 and Z2 in (1.22) then we obtain
(1.7).

(2) Let ϕ(x) = e−x2−z2/2 cosh(zx) and ψ(x) = e−x2+z2/2 cos(zx). One can see that
ϕ,ψ ∈ K (ω, a) and that they are reciprocal under cosine transformations, i.e.
ν = −1/2. Their Mellin transformations are given by

Z1(s) = 1

2
e− z2

8 

( s

2

)

1F1

(
s

2
,
1

2
; z

2

4

)

,

Z2(s) = 1

2
e
z2
8 


( s

2

)

1F1

(
s

2
,
1

2
;− z2

4

)

.

If we substitute the above values of ϕ,ψ, Z1 and Z2 in (1.21) and (1.22) then we
obtain (1.5) and [13, Theorem 1.2, part i)], respectively.
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Explicit formulae of the Möbius function 393

(3) Let ϕ(x) = e−x2−z2/2 sinh(zx) and ψ(x) = e−x2+z2/2 sin(zx). One can see that
ϕ,ψ ∈ K (ω, a) and that they are reciprocal under sine transformations, i.e.
ν = 1/2. Their Mellin transformations are given by

�(s) = z

2
e− z2

8 


(
1 + s

2

)

1F1

(
1 + s

2
,
3

2
; z

2

4

)

,

Z2(s) = z

2
e
z2
8 


(
1 + s

2

)

1F1

(
1 + s

2
,
3

2
;− z2

4

)

.

If we substitute the above values of ϕ,ψ,� and Z2 in (1.22) then we obtain [13,
Theorem 1.2, part ii)].

The following corollaries are new transformations in the literature. It is not difficult to
find pairs of reciprocal functions and obtain new formulae from (1.21). For instance,
one could take the pair of cosine reciprocal functions

ϕ(x) = e−x , ψ(x) = 2√
π

1

1 + x2
,

which are in K , and which have Mellin transforms given by

Z1(s) = 
(s), Z2(s) =
√

π

2
csc

(πs

2

)
,

valid for Re(s) > 0 and 0 < Re(s) < 2, respectively, and obtain the following.

Corollary 1.2 One has

√
a

∞∑

n=1

μ(n)

n
e−a/n − 2

√
b

π

∞∑

n=1

nμ(n)

n2 + b2

= 1

a1/2
∑

ρ∈B
aρ 
(1 − ρ)

ζ ′(ρ)
= −1

2

√
π

b

∑

ρ∈B

bρ

ζ ′(ρ)
csc

(
π(1 − ρ)

2

)

.

However, the symmetry is more striking on the left-hand side whenwe take a pair of
self-reciprocal functions. For the coming corollaries a and b will denote two positive
real numbers satisfying ab = 2π and the non-trivial zeros of ζ(s) and L(s, χ) are all
assumed to be simple. Here χ denotes the primitive Dirichlet character mod q.

Corollary 1.3 Let χ be odd. Then we have

√
aτ(χ)

∞∑

n=1

χ(n)μ(n)

n

(
1

ea
√
2π/qn − 1

− n

a

√
q

2π

)

− √
bτ(χ̄)

∞∑

n=1

χ̄(n)μ(n)

n

(
1

eb
√
2π/qn − 1

− n

b

√
q

2π

)
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=
√
qτ(χ)

2πa

∑

ρ∈Bχ

(
(2π)1/2a

q1/2

)ρ

(1 − ρ)ζ(1 − ρ)

L ′(ρ, χ)
. (1.24)

Corollary 1.4 Let χ be even. Then we have the following

√
a

∞∑

n=1

μ(n)

n
sech

(√
π

2

a

n

)

− √
b

∞∑

n=1

μ(n)

n
sech

(√
π

2

a

n

)

=
√

1

2πa

∑

ρ∈B
(2

3
2π

1
2 a)

ρ 
(1 − ρ)(ζ(1 − ρ, 1
4 ) − ζ(1 − ρ, 3

4 ))

ζ ′(ρ)
(1.25)

as well as

√
aτ(χ)

∞∑

n=1

χ(n)μ(n)

n
sech

(√
π

2q

a

n

)

− √
bτ(χ̄)

∞∑

n=1

χ̄(n)μ(n)

n

(√
π

2q

b

n

)

=
√
qτ(χ)

2πa

∑

ρ∈Bχ

(
2
3
2π

1
2 a

q1/2

)ρ


(1 − ρ)(ζ(1 − ρ, 1
4 ) − ζ(1 − ρ, 3

4 ))

L ′(ρ, χ)
, (1.26)

where ζ(s, α) denotes the Hurwitz zeta-function.

Corollary 1.5 Let Kν(x) be themodified Bessel function of second kind. Letχ(−1) =
−2ν. Then for Re(z) > 0 we have

√
a

∞∑

n=1

μ(n)

n

(
a2

n2
+z2

)−1
8
K 1

4

(

z

√

z2+ a2

n2

)

− v
√
b

∞∑

n=1

μ(n)

n

(
b2

n2
+z2

)−v
1
8
K 1

4

(

z

√

z2+ b2

n2

)

= 1√
2a

∑

ρ∈B

( a

21/2

)ρ

(

1−ρ
2 )K− 1

2 (
1
2−ρ)

(z2)

ζ ′(ρ)
, (1.27)

and for ν = ±1/2

a1+ν
√

τ(χ)

q
1
2 (

1
2+ν)

∞∑

n=1

χ(n)μ(n)

n1+
1
2+ν

(

z2 + a2

qn2

) 1
4 (−ν−1)

K 1
2 (ν+1)

(

z

√

z2 + a2

qn2

)

− a1+ν
√

τ(χ̄)

q
1
2 (

1
2+ν)

∞∑

n=1

χ̄(n)μ(n)

n1+
1
2+ν

(

z2 + b2

qn2

) 1
4 (−ν−1)

K 1
2 (ν+1)

(

z

√

z2 + b2

qn2

)

= 2
2ν−1
4

√
qτ(χ)

a

∑

ρ∈Bχ

(
a

(2q)1/2

)ρ 
( 34 + 1
2ν − 1

2ρ)K− 1
2 (

1
2−ρ)

(z2)

L ′(ρ, χ)
. (1.28)
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Let us recall that the Weber parabolic cylinder functions Dn(x) are defined by (see
Mitra [31])

Dn(x) = 
( 12 )2
n
2 e− 1

4 x
2


( 12 − n
2 )

1F1(− n
2 ; 1

2 ; x2
2 ) + 
(− 1

2 )2
n
2− 1

2 e− 1
4 x

2


(− n
2 )

1F1(
1
2 − n

2 ; 3
2 ; x2

2 )

for all reals n and x .

Corollary 1.6 Let χ(−1) = −2ν. Then for every m = 0, 1, 2, . . . we have

√
a

∞∑

n=1

μ(n)

n
D4m

(
2a

n

)

− √
b

∞∑

n=1

μ(n)

n
D4m

(
2b

n

)

= 22n−1√π

a1/2
∑

ρ∈B

aρ
(1 − ρ)


( 12 (2 − 4n − ρ))ζ ′(ρ)
2F1

( 1−ρ
2 ,

2−ρ
2

2−4n−ρ
2

; 1
2

)

, (1.29)

and for χ(−1) = −2ν we have

√
aτ(χ)

∞∑

n=1

χ(n)μ(n)

n
D
4m+ν+ 1

2

(
2a

q1/2n

)

−√bτ(χ̄)

∞∑

n=1

χ̄ (n)μ(n)

n
D
4m+ν++ 1

2

(
2b

q1/2n

)

=22n− 2
3+2ν

√
πqτ(χ)

a

∑

ρ∈Bχ

(
a

q1/2

)ρ

(1 − ρ)


( 12 ( 32 − ν−4n − ρ))L ′(ρ, χ)

2F1

( 1−ρ
2 ,

2−ρ
2

1
2 ( 32 − ν − ρ − 4n)

; 1
2

)

, (1.30)

where 2F1 is the hypergeometric function.

Corollary 1.7 One has

√
a

∞∑

n=1

μ(n)

n
exp

(
a2

4n2

)

D−2

(a

n

)
− √

b
∞∑

n=1

μ(n)

n
exp

(
b2

4n2

)

D−2

(
b

n

)

= 1

21/2a1/2
∑

ρ∈B
(21/2a)

ρ 
(1 − ρ)
( 12 + 1
2ρ)

ζ ′(ρ)
.

If ν = ± 1
2 then

(
a

q1/2

)ν+1/2√
aτ(χ)

∞∑

n=1

χ(n)μ(n)

n3/2+ν
exp

(
a2

4qn2

)

D−2ν−3

(
a

q1/2n

)

−
(

b

q1/2

)ν+1/2√
bτ(χ̄)

∞∑

n=1

χ̄ (n)μ(n)

n3/2+ν
exp

(
b2

4qn2

)

D−2ν−3

(
b

q1/2n

)

= 1


(2ν + 3)

√
qτ(χ)

2ν+3/2a

∑

ρ∈Bχ

(
21/2a

q1/2

)ρ

(ν − ρ + 3

2 )
(ν + 3
2 + ρ

2 )

L ′(ρ, χ)
.
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We remark that [36, p. 266]

D−1(z) =
√

π
2 e

1
4 z

2
Erfc(2−1/2z) (1.31)

where Erfc is the complementary error function

Erfc(x) = 1 − 2π−1/2

x∫

0

e−t2dt .

Corollary 1.8 For χ(−1) = −1 one has

√
aτ(χ)

∞∑

n=1

χ(n)μ(n)

n
Erfc

(
a√
2qn

)

− √
bτ(χ̄)

∞∑

n=1

χ̄ (n)μ(n)

n
Erfc

(
b√
2qn

)

= 2

√
qτ(χ)

a

∑

ρ∈B

(
a√
2q

)ρ 
(1 − ρ
2 )

(1 − ρ)L ′(ρ, χ)

Straightforward computation shows that

cosh
(
x
√

π
2

)

cosh(x
√
2π)

and
1

1 + 2 cosh
(
2x
√

π
3

) (1.32)

are self-reciprocal Hankel transformations of order ν = −1/2 and

sinh
(
x
√

π
2

)

cosh(x
√
2π)

and
sinh

(
x
√

π
3

)

2 cosh
(
2x
√

π
3

)
− 1

(1.33)

are self-reciprocal Hankel transformations of order ν = 1/2. In a similar fashion to
the above corollaries one can obtain transformation formulas for the functions (1.32)
and (1.33). There exist many self-reciprocal Hankel transformations of order ν = ± 1

2
in the literature and a transformation formula can be obtained from each one of them.
The functions mentioned in the above Corollaries are well known in literature and
have many applications.

Finally, on inspiration coming from (1.4), Hardy and Littlewood [18] found an
equivalent condition for the validity of the Riemann hypothesis. This kind of result
was first published by Riesz in [41]. The analogues of the conditions for the Dirichlet
L-functions and Hecke forms were obtained in [13,14], respectively. The motivation
for the coming theorem comes from the following heuristics. Let us suppose that ϕ

andψ meet the conditions of the previous theorems and that dF = qF = 1. For y > 0,
let us define the functions
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Pϕ(y) :=
∞∑

n=1

μ(n)

n
ϕ
( y

n

)
, Pψ(y) :=

∞∑

n=1

μ(n)

n
ψ
( y

n

)
.

Now we perform a Maclaurin expansion of ϕ around y = 0 to obtain

Pϕ(y)=
∞∑

n=1

μ(n)

n

∞∑

k=0

( y

n

)k ϕ(k)(0)

k! =
∞∑

k=0

ϕ(k)(0)

k! yk
∞∑

n=1

μ(n)

nk+1
=

∞∑

k=0

ϕ(k)(0)

k!
yk

ζ(1+k)
,

with a similar formula holding for Pψ(y). The interchange is justified by the fact that
ϕ is in K (ω, α) so that ϕ can be written as a convergent Taylor series at 0. The explicit
formula (1.21) can be written as

a
1
2 Pϕ(a) − b

1
2 Pψ(b) = −

∑

ρ

bρ− 1
2
Z2(1 − ρ)

ζ ′(ρ)
. (1.34)

If we assume the Riemann hypothesis, ρ = 1
2 + iγ with γ ∈ R, and the absolute

convergence of

∑

ρ

biγ
Z2(1 − ρ)

ζ ′(ρ)
, (1.35)

then the right-hand side of (1.34) is of the form O(1)when b → ∞. Thus, the left-hand

side of (1.34) is now −b
1
2 Pψ(b) � 1, or, equivalently

∞∑

k=0

ψ(k)(0)

k!
bk

ζ(1 + k)
� b− 1

2 , (1.36)

as b → ∞. Seeing how the Riemann hypothesis and the convergence of (1.35) implies
the bound (1.36), we will now establish the following theorem which provides an
equivalence of the Riemann hypothesis.

Theorem 1.3 Let us suppose that ϕ is in K (ω, 0) and that it is analytic at 0. Consider
the function

Pϕ(y) :=
∞∑

k=0

ϕ(k)(0)

k!
yk

ζ(1 + k)
.

One has the following:

(i) The Riemann hypothesis implies Pϕ(y) � y− 1
2+δ as y → ∞ for all δ > 0.

(ii) If Z1(−s) has no zeros in the interval − 1
2 < Re(s) ≤ 0, then the estimate

Pϕ(y) � y− 1
2+δ as y → ∞ for all δ > 0 implies the Riemann hypothesis.
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Remark 1.2 If Z1(−s) had zeros then all the zeros of ζ(s)would still lie on the critical
line except for the zeros that coincidewith the zeros of Z1(−s). Inmost of the examples
that we considered in the corollaries we see that Z1(−s) has at most finitely many
zeros in the region − 1

2 < Re(s) ≤ 0.

2 Preliminary lemmas

We will use the following lemmas to prove our main theorems.

Lemma 2.1 Let ϕ,ψ ∈ L2(0,∞) be two reciprocal Hankel transforms of order ν.
Then

ϕ(x) = 1

2π

∞∫

−∞
2

i t
2 


(
ν

2
+ 1

2
+ i t

2

)

�

(
1

2
+ i t

)

x− 1
2−i t dt, (2.1)

ψ(x) = 1

2π

∞∫

−∞
2

i t
2 


(
ν

2
+ 1

2
+ i t

2

)

�

(
1

2
+ i t

)

x− 1
2−i t dt, (2.2)

the integrals are mean square integral, 2
i t
2 
(ν

2 + 1
2 + i t

2 )�( 12 + i t) and 2
i t
2 
(ν

2 + 1
2 +

i t
2 )�( 12 + i t) belong to L2(−∞,∞), and

�

(
1

2
− i t

)

= �

(
1

2
+ i t

)

. (2.3)

Proof Suppose that ϕ belongs to L2(0,∞). One can see that

∞∫

0

ϕ2(x)dx =
∞∫

−∞
ϕ2(ex )exdx .

Hence F(x) := ϕ(ex )ex/2 ∈ L2(−∞,∞). Then from the theory of Fourier trans-
forms, see [47], it follows that

Z1

(
1

2
+ i t

)

=
∞∫

−∞
F(x)eitxdx =

∞∫

0

ϕ(x)x− 1
2+i t dx (2.4)

exists as a mean square integral for almost all t . Also Z1(
1
2 + i t) ∈ L2(−∞,∞) and

F(x) = 1

2π

∞∫

−∞
Z1

(
1

2
+ i t

)

e−i xt dt. (2.5)
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The above integral is also a mean square integral. In other words, (2.5) can be written
as

ϕ(x) = 1

2π

∞∫

−∞
Z1

(
1

2
+ i t

)

x− 1
2+i t dt. (2.6)

Similarly, we obtain

ψ(x) = 1

2π

∞∫

−∞
Z2

(
1

2
+ i t

)

x− 1
2+i t dt. (2.7)

Let us consider two functions � and � such that

Z1

(
1

2
+ i t

)

= 2
i t
2 


(
ν

2
+ 1

2
+ i t

2

)

�

(
1

2
+ i t

)

(2.8)

and

Z2

(
1

2
+ i t

)

= 2
i t
2 


(
ν

2
+ 1

2
+ i t

2

)

�

(
1

2
+ i t

)

. (2.9)

Replacing the above equalities in (2.6) and (2.7) we obtain (2.1) and (2.2). Now we
complete the proof by proving (2.3). For all n ≥ −1/2, y > 0 and x > 0 we have

y∫

0

√
ux Jν(ux)du =

y(xy)ν+ 1
2 1F2

(
ν
2 + 3

4
ν
2 + 7

4 , ν + 1
; − x2 y2

4

)

2ν(ν + 3/2)
(ν + 1)
. (2.10)

The right-hand side of (2.10) belongs to L2(0,∞) and the Mellin transform is given
by

∞∫

0

y(xy)ν+ 1
2 1F2

(
ν
2 + 3

4
ν
2 + 7

4 , ν + 1
; − x2 y2

4

)

2ν(ν + 3/2)
(ν + 1)
x− 1

2+i t dt = 2i t y
1
2−i t
(ν

2 + 1
2 + i t

2 )

( 12 − i t)
( ν
2 + 1

2 − i t
2 )

.

(2.11)
We also have that ϕ ∈ L2(0,∞) and its Mellin transform is given by (2.4). Hence by
an analogue of Plancherel’s theorem for Mellin transform (see [47, Theorem 72]) we
have

∞∫

0

ϕ(x)

y(xy)ν+ 1
2 1F2

(
ν
2 + 3

4
ν
2 + 7

4 , ν + 1
; − x2 y2

4

)

2ν(ν + 3/2)
(ν + 1)
dx
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= 1

2π

∞∫

−∞

2i t y
1
2−i t
(ν

2 + 1
2 + i t

2 )

( 12 − i t)
( ν
2 + 1

2 − i t
2 )

Z1

(
1

2
− i t

)

dt (2.12)

= 1

2π

∞∫

−∞
2

i t
2 


(
ν

2
+ 1

2
+ i t

2

)

�

(
1

2
− i t

)
y

1
2−i t

1
2 − i t

dt,

in the ultimate step we have used (2.8). Now from (1.12) we have

ψ(u) = lim
a→∞

a∫

0

√
ux Jν(ux)ϕ(x)dx,

where the limit converges in the sense of mean square. Therefore, for all x > 0, y > 0
and ν ≥ −1/2 we find that

y∫

0

ψ(u)du = lim
a→∞

y∫

0

a∫

0

√
ux Jν(ux)ϕ(x)dxdu (2.13)

= lim
a→∞

a∫

0

ϕ(x)

y(xy)ν+ 1
2 1F2

(
ν
2 + 3

4
ν
2 + 7

4 , ν + 1
; − x2 y2

4

)

2ν(ν + 3/2)
(ν + 1)
dx

=
∞∫

0

ϕ(x)

y(xy)ν+1
2 1F2

(
ν
2v + 3

4
ν
2 + v 7

4 , ν+1
;−x2 y2

4

)

2ν(ν+3/2)
(ν+1)
dx .

The left-hand side of (2.13) is

y∫

0

ψ(u)du = 1

2π

y∫

0

∞∫

−∞
2

i t
2 


(
ν

2
+ 1

2
+ i t

2

)

�

(
1

2
+ i t

)

u− 1
2−i t dtdu (2.14)

= 1

2π

(

lim
X→∞

y∫

0

X∫

0

+ lim
Y→∞

y∫

0

0∫

−Y

)

2
i t
2 


(
ν

2
+ 1

2
+ i t

2

)

�

(
1

2
+ i t

)

u− 1
2−i t dtdu

= 1

2π

∞∫

−∞
2

i t
2 


(
ν

2
+ 1

2
+ i t

2

)

�

(
1

2
+i t

)
y

1
2−i t

1
2 −i t

dt.

By (2.13) we see the right-hand sides of (2.12) and (2.14) are equal. Hence from [47,
Theorem 32] we conclude that

�

(
1

2
− i t

)

= �

(
1

2
+ i t

)

,
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and this ends the proof. 
�
Lemma 2.2 Let ϕ and ψ be reciprocal functions under Hankel transformation of
order ν defined in (1.12). Let ϕ,ψ ∈ K (ω, α). Then there exist two regular functions
� and � such that

ϕ(x) = 1

2π i

c+i∞∫

c−i∞
2

s
2− 1

4 


(
s

2
+ ν

2
+ 1

4

)

�(s)x−sds, (2.15)

ψ(x) = 1

2π i

c+i∞∫

c−i∞
2

s
2− 1

4 


(
s

2
+ ν

2
+ 1

4

)

�(s)x−sds (2.16)

for c > 0. Moreover, � and � satisfy the following:

(1) �(s) = �(1 − s) for all s ∈ C,
(2) �(s) = O(e( π

4 −ω+ε)|t |) for every positive ε and uniformly for σ ∈ R.

Remark 2.1 If ϕ and ψ satisfy (1.23), then conditions (1) and (2) in Lemma 2.2 hold
uniformly for α < σ < β.

Proof Sinceϕ,ψ ∈ K (ω, α), the right-hand sides of (1.13) are absolutely convergent.
Then it follows that Z1(s) and Z2(s) are regular in α < σ . Let

Z1(s) = 2
s
2− 1

4 


(
s

2
+ ν

2
+ 1

4

)

�(s), (2.17)

and

Z2(s) = 2
s
2− 1

4 


(
s

2
+ ν

2
+ 1

4

)

�(s). (2.18)

Hence by (2.8) and (2.9) of Lemma (2.1), we deduce that �(s) and �(s) also regular
in this region. One can see ϕ,ψ ∈ L2. Therefore, from (2.3) of Lemma (2.1), �(s) =
�(1−s) for σ = 1/2. Thus, by analytic continuation�(s) = �(1−s) for α < σ and
hence for all s ∈ C. Also (2.15) and (2.16) hold for α < c = σ . Let us consider the
line along any radius vector r and angle θ , where |θ | < ω. Then by Cauchy’s theorem
we can deform the integral (1.13) to

Z1(σ + i t) =
∞∫

0

rσ+i t−1eiθ(σ+i t)ϕ(reiθ )dr,

where θ, t > 0. Therefore,

|Z1(σ+i t)| = e−θ t
∣
∣
∣
∣

∞∫

0

rσ+i t−1eiθ(σ+i t−1)ϕ(reθ )dr

∣
∣
∣
∣≤e−θ t

∞∫

0

rσ−1|ϕ(reθ )|dr �e−|θ ||t |,

(2.19)
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since ϕ ∈ K (ω, α). By Stirling’s formula for
(σ + i t) in the vertical strip p ≤ σ ≤ q
we have

|
(s)| = √
2π |t |σ− 1

2 e− π |t |
2

(

1 + O

(
1

|t |
))

, (2.20)

as |t | → ∞. Now combining (2.17), (2.19) and (2.20) we get

�(1 − s) = �(s) � e( π
4 −|θ |)|t | � e( π

4 −ω+η)|t |, (2.21)

for every positive η. This proves the Lemma. 
�
Remark 2.2 For self-reciprocal Hankel transformation functions, similar results of
Lemma 2.1 and 2.2 were obtained in [19] for a vertical strip.

The following result is Theorem 3 from Kaczorowski and Perelli [23].

Lemma 2.3 Let F ∈ S. Suppose that dF = 1 and Re(HF (1)) is either 0 or 1.
If qF = 1 then F(s) = ζ(s). If qF ≥ 2 then there exists a primitive Dirichlet
character χ mod qF with χ(−1) = −(2Re(HF (1)) + 1) such that F(s) = L(s +
i Im(HF (1)), χ).

Remark 2.3 It is worthwhile to mention pertinent observations which motivated the
authors to study the case dF = 1. The following results are due to Conrey and Ghosh
[8] and Kaczorowski and Perelli [23–25].

(1) One has dF = 0 precisely when F = 1.
(2) There is no function F ∈ S with 0 < dF < 1.
(3) There is no function F ∈ S with 1 < dF < 2.

The following results due to Montgomery [33], Ramachandra and Balasubramanian
[2,39,40] will enable us to prove Theorem 1.1 with dF = qF = 1 without the
assumption of the Riemann hypothesis.

Lemma 2.4 For any given ε > 0 there exists a T0 = T0(ε) such that if T ≥ T0 then
the following holds: between T and 2T there exists a t for which

|ζ(σ ± i t)|−1 < c1t
ε

for −1 ≤ σ ≤ 2 with an absolute constant c1 > 0.

For the case where qF > 1, the analogues results are due to Soundararajan [45],
Lamzouri [29]. However, this latter depends on the truth of the Riemann hypothesis
for Dirichlet L-functions.

Lemma 2.5 Assume the Riemann hypothesis for Dirichlet L-functions. For any given
ε > 0 and primitive Dirichlet character χ mod q there exists a T0 = T0(ε, q) such
that if T ≥ T0 then the following holds: between T and 2T there exists a real number
t for which

|L(σ ± i t, χ)|−1 < c(q)tε

for −1 ≤ σ ≤ 2 with an absolute constant c(q) > 0.
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An intermediate result we will be using is due to Ahlgren et al. [1].

Lemma 2.6 If χ is a primitive character of conductor N and k is an integer ≥ 2 such
that χ(−1) = (−1)k then one has

(k − 2)!Nk−2τ(χ)

2k−1πk−2i k−2 L(k − 1, χ̄) = L ′(2 − k, χ). (2.22)

3 Proof of Theorem (1.1)

(i) Let F be a Selberg L-function of degree dF = 1 and conductor qF = 1. Then
by Lemma (2.3) we see that F(s) = ζ(s), where ζ(s) is the Riemann zeta-function.
Therefore, there is only one gamma factor in the completed Selberg L-function of
F for which r j = 0 and λ j = 1/2. From (1.18) we see that HF (1) = −1 when
r j = 0 and hence ν = 1/2. Therefore, ϕ,ψ ∈ K (ω, α) is a pair of reciprocal sine
transformations. Now

∞∑

n=1
μ(n)ϕ

(n

x

)
= 1

2π i

∞∑

n=1
μ(n)

λ+i∞∫

λ−i∞
Z1(s)

( x

n

)s
ds

= 1

2π i

λ+i∞∫

λ−i∞
Z1(s)x

s
( ∞∑

n=1

μ(n)

ns

)

ds. (3.1)

By Lemma (2.2) Z1(s) � e(−ω+η)|t | for every positive η. For 1 < λ < 2 the sum
inside the above integral is absolutely convergent. Therefore, the far right-hand side
of above equalities is absolutely convergent, which justifies the interchange of the
summation and integration. Recall the Dirichlet series valid for Re(s) > 1 of the
Möbius function ∞∑

n=1

μ(n)

ns
= 1

ζ(s)
.

From (2.8)wefind that the simple poles of Z1(s) are at s = −2k+1 for k = 0, 1, 2, . . ..
For 1 < λ < 2 and −1 < c < 0 we consider the positively oriented closed contour
� = [c − iT, c + iT, λ + iT, λ − iT ] where T > 0. Therefore, by residue theorem

1

2π i

∮

�

Z1(s)

ζ(s)
xsds =

∑

−T<Im(ρ)<T

lim
s→ρ

(s − ρ)
Z1(s)

ζ(s)
xs =

∑

−T<Im(ρ)<T

Z1(ρ)

ζ ′(ρ)
xρ.

(3.2)
The functional equation of ζ(s) is given by

ζ(s) = π s− 1
2


( 1−s

2

)



( s
2

) ζ(1 − s). (3.3)
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From Lemma (2.2) we have

Z1(s) = 2s−
1
2



( 1+s

2

)


(1 − s
2 )

Z2(1 − s). (3.4)

Hence by using (3.3), (3.4) and the duplication of the gamma function we find

c+iT∫

c−iT

Z1(s)

ζ(s)
xsds = √

2π

c+iT∫

c−iT

( x

2π

)s 
(s)


(1 − s)

Z2(1 − s)

ζ(1 − s)
ds. (3.5)

Now we consider the positive-oriented contour �′ with sides [−N − 1
2 − iT, c− iT ],

[c− iT, c+ iT ], [c+ iT,−N − 1
2 + iT ] and [−N − 1

2 + iT,−N − 1
2 − iT ]. The poles

of the integrand of the right-hand side integral of (3.5) are at k = −1,−2,−3, . . . .
By the residue theorem we have

√
2π

2π i

∮

�′

( x

2π

)s 
(s)


(1 − s)

Z2(1 − s)

ζ(1 − s)
ds = √

2π
N∑

k=1

(−1)k Z2(1 + k)

(k!)2ζ(1 + k)

( x

2π

)−k
.

(3.6)
Stirling’s formula in exact form reads (see [10, p. 47])


(s) = √
2πe−sss−

1
2 exp(O(|s|−1)). (3.7)

Therefore, by Lemma (2.2) and Eq. (3.7) we have

−N− 1
2+iT∫

−N− 1
2−iT

( x

2π

)s 
(s)


(1 − s)

Z2(1 − s)

ζ(1 − s)
ds �

T∫

−T

( x

2π

)−N− 1
2 e2(N+1)−2(N+1) log(

√
t2+(N+1/2)2)

e(π+ω+η)|t | dt, (3.8)

which tends to zero as N → ∞ for any fixed T . Combining (3.6) and (3.8) we find

√
2π

c+iT∫

c−iT

( x

2π

)s 
(s)


(1 − s)

Z2(1 − s)

ζ(1 − s)
ds

= √
2π

∞∑

k=1

(−1)k Z2(1 + k)

(k!)2ζ(1 + k)

( x

2π

)−k

+ √
2π

( c−iT∫

−∞−iT

+
c+iT∫

−∞+iT

)( x

2π

)s 
(s)


(1 − s)

Z2(1 − s)

ζ(1 − s)
ds. (3.9)
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Similarly, with (3.8) we have

c±iT∫

−∞±iT

( x

2π

)s 
(s)


(1 − s)

Z2(1 − s)

ζ(1 − s)
ds �

c∫

−∞

( x

2π

)σ e1−2σ+(2σ−1) log(
√
T 2+σ 2)

e(π+ω+η)T
dσ

� 1

e(π+ω+η)T
. (3.10)

Now by Lemmas (2.2) and (2.4) we have

λ±iT∫

c±iT

Z1(s)

ζ(s)
xsds � T εe(−ω+η)T , (3.11)

where T runs through a sequence {Tl} with Tl > T0(ε). Here ε and η are any positive
numbers. Now combine (3.1), (3.2), (3.5), (3.6), (3.8) and (3.11) to conclude

∞∑

n=1

μ(n)ϕ
(n

x

)
= lim

l→∞
∑

−Tl<Im(ρ)<Tl

Z1(ρ)

ζ ′(ρ)
xρ +√

2π
∞∑

k=1

(−1)k Z2(1 + k)

(k!)2ζ(1 + k)

( x

2π

)−k
.

This proves part (i) of Theorem 1.1.
(ii) In this case we consider that F is an L-function of degree dF = 1 and conductor

qF ≥ 2. Using Lemma (2.3) we find F(s) = L(s, χ) for some Dirichlet primitive
character mod qF . Therefore, the completed L-function of F contains only one
gamma factor and hence r j = 0 or r j = 1/2. Since ν is real then Im(HF (1)) = 0
and hence HF (1) = −1 or HF (1) = 0. By Lemma (2.2) we know that �(s) is
analytic on the whole complex plane. Therefore, the poles of Z1(s) are at the poles of


( s
2 + ν

2 + 1
4

)
. If ν = −1/2 then s = 0 is a pole Z1(s). For the sake of brevity wewill

prove the case where χ is a even character mod qF ; that is, when ν = 1/2. The other
case is handled in a similar fashion. In this case Z1(s) is analytic for Re(s) > −1.
Arguing as in part (i) we have

∞∑

n=1

μ(n)χ(n)ϕ
(n

x

)
= 1

2π i

λ+i∞∫

λ−i∞

Z1(s)

L(s, χ)
xsds. (3.12)

Consider the positively oriented contour � mentioned in part (i). By the residue the-
orem one can find

1

2π i

∮

�

Z1(s)

L(s, χ)
xsds = Z1(0)

L ′(0, χ)
+

∑

−T<Im(ρ)<T

Z1(ρ)

L ′(ρ, χ)
xρ, (3.13)

where the ρs denote the non-trivial zeros L(s, χ), assumed to be simple for notational
convenience. If there is a Landau–Siegel zero (see Sect. 14 of [9]) at s = s0 then we
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would have to add the extra term

res
s=0

Z1(s)

L(s, χ)
xs = Z1(s0)

L ′(s0, χ)
xs0 .

We note that this hypothetical zero is real and simple. Moreover, in [7] it was proved
that for a conductor q up to 200000 there are no Landau–Siegel zeros. Using the
functional equation of Lemma (2.2) and the relation in Lemma (2.6) we find that

Z1(0)

L ′(0, χ)
=

√
2π

τ(χ)

Z2(1)

L(1, χ̄)
. (3.14)

Proceeding as in the proof of part (i) we have

c+iT∫

c−iT

Z1(s)

L(s, χ)
xsds =

√
2π

τ(χ)

c+iT∫

c−iT

( qx

2π

)s 
(s)


(1 − s)

Z2(1 − s)

L(1 − s, χ̄)
ds (3.15)

=
√
2π

τ(χ)

∞∑

k=1

(−1)k Z2(1 + k)

(k!)2L(1 + k, χ̄)

( qx

2π

)−k

+
√
2π

τ(χ)

( c−iT∫

−∞−iT

+
c+iT∫

−∞+iT

)( qx

2π

)s 
(s)


(1 − s)

Z2(1 − s)

L(1 − s, χ̄)
ds.

Using Lemma (2.2) and Eq. (3.7) we obtain the bounds for
∫ c−iT
−∞−iT and

∫ c+iT
−∞+iT of

the form (3.10). Using Lemmas (2.2) and (2.5) we obtain the bound for the horizontal
integral of (3.13) which is of the form (3.11). Combining (3.12)–(3.15) we conclude
the proof.

4 Proof of Theorem (1.2) and corollaries

(i) By repeating a similar argument as in the previous proof we deduce that if dF =
qF = 1 then F(s) = ζ(s). This case is already sketched in [18] and the missing
ingredient comes from the definition of the K class which allows us to get rid of the
far left and horizontal integrals in the path of integration.
(ii) In this case we consider F to be a Selberg L-function of degree dF = 1 and
conductor qF ≥ 2. Using Lemma (2.3) we find F(s) = L(s, χ) for some Dirichlet
primitive character mod qF . Therefore, the completed L-function of F contains only
one gamma factor and hence r j = 0 or 1/2. Since ν is real we have Im(HF (1)) = 0
and hence HF (1) = −1 or HF (1) = 0.
Suppose HF = −1, then ν = −1/2 and χ is an even primitive Dirichlet character
mod qF . Therefore, ϕ,ψ ∈ K (ω, α) is a pair of cosine reciprocal functions. For
1 < λ < 1 + δ and −1 < c < 0 we consider the positively oriented closed contour
� = [λ − iT, λ + iT, c + iT, c − iT ] where T > 0. Recall that the functions Z1 and

123



Explicit formulae of the Möbius function 407

Z2 both have a simple pole at s = 0. Hence from (2.17) and (2.18) we find that � and
� are analytic at s = 0. Furthermore, by the residue theorem

1

2π i

∮

�

x−s Z1(s)ds = res
s=0

x−s Z1(s) = 23/4�(0),

and
1

2π i

∮

�

x−s Z2(s)ds = res
s=0

x−s Z2(s) = 23/4�(0).

By the use of the bound in Lemma (2.2) and Stirling’s formula for 
(s) the integrals
along the horizontal lines of the contour � tend to zero as T → ∞. Since (2.15) and
(2.16) hold for λ > 1 we have the following cases

1

2π i

c+i∞∫

c−i∞
x−s Zk(s)ds =

{
ϕ(x) − 23/4�(0) if k = 1,

ψ(x) − 23/4�(0) if k = 2.
(4.1)

Let qF := q. If χ is an even primitive character of modulus q then L(s, χ) satisfies
the functional equation

1

L(1 − s, χ)
= τ(χ̄)

q1/2

( q

π

)1/2−s 
( 1−s
2 )


( s2 )

1

L(s, χ̄)

for all complex values s. If we use the fact that ab = 2π and couple this equation with
(2.17), (2.18) and the functional equation of � and � in Lemma (2.2), then we obtain

1

2π i

∮

�

(
a

q1/2

)−s Z1(s)

L(1 − s, χ)
ds = 1

2π i

∮

�

τ(χ̄)

(2π)1/2

(
b

q1/2

)s Z2(1 − s)

L(s, χ̄)
ds.

(4.2)

By absolute convergence, with c = Re(s) < 0, we may write

1

2π i

c+i∞∫

c−i∞

(
a

q1/2

)−s Z1(s)

L(1 − s, χ)
ds = 1

2π i

c+i∞∫

c−i∞

(
a

q1/2

)−s ∞∑

n=1

χ(n)μ(n)

n1−s
Z1(s)ds

=
∞∑

n=1

χ(n)μ(n)

n

1

2π i

c+i∞∫

c−i∞

(
a

q1/2n

)−s

Z1(s)ds

=
∞∑

n=1

χ(n)μ(n)

n
ϕ

(
a

q1/2n

)

− 23/4�(0)

L(1, χ)
,
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where we have used the case k = 1 of (4.1). Similarly, with λ = Re(s) > 1, we have

1

2π i

λ+i∞∫

λ−i∞

τ(χ̄)

(2π)1/2

(
b

q1/2

)s Z2(1 − s)

L(s, χ̄)
ds

= 1

2π i

λ+i∞∫

λ−i∞

τ(χ̄)bs

(2π)1/2qs/2

∞∑

n=1

χ̄ (n)μ(n)

ns
Z2(1 − s)ds

= τ(χ̄)b

(2π)1/2q1/2

∞∑

n=1

χ̄ (n)μ(n)

n

1

2π i

1−λ+i∞∫

1−λ−i∞

(
b

q1/2n

)−w

Z2(w)dw

= τ(χ̄)b

(2π)1/2q1/2

∞∑

n=1

χ̄ (n)μ(n)

n
ψ

(
b

q1/2n

)

− τ(χ̄)b

(2π)1/2q1/2
23/4�(0)

L(1, χ̄)
,

by making the change w = 1− s and using the case k = 2 of (4.1). Now, we may use
either side of (4.2) to evaluate the residues:

• for the non-trivial zeros ρ of L(s, χ) which we assume are all simple, we have

∑

ρ

res
s=ρ

τ (χ̄)

(2π)1/2

(
b

q1/2

)s Z2(1 − s)

L(s, χ̄)
= τ(χ̄)

(2π)1/2

∑

ρ

(
b

q1/2

)ρ Z2(1 − ρ)

L ′(ρ, χ̄)
;

• at s = 1 we have a simple pole coming from the Z2(1 − s) function

res
s=1

τ(χ̄)

(2π)1/2

(
b

q1/2

)s Z2(1 − s)

L(s, χ̄)
= − τ(χ̄)

(2π)1/2

b

q1/2
23/4�(0)

L(1, χ̄)
;

• at s = 0 we have a trivial and simple zero of L(s, χ̄) and we know that Z2(1− s)
is analytic and non-zero, so

res
s=0

τ(χ̄)

(2π)1/2

(
b

q1/2

)s Z2(1 − s)

L(s, χ̄)
= τ(χ̄)

(2π)1/2

Z2(1)

L ′(0, χ̄)
= 23/4�(0)

L(1, χ)
,

where we have used Lemma (2.6) with N = q and k = 2 in the last equality.
Consequently, by the residue theorem we have

τ(χ̄)b

(2π)1/2q1/2

∞∑

n=1

χ̄ (n)μ(n)

n
ψ

(
b

q1/2n

)

−
∞∑

n=1

χ(n)μ(n)

n
ϕ

(
a

q1/2n

)

= τ(χ̄)

(2π)1/2

∑

ρ

(
b

q1/2

)ρ Z2(1 − ρ)

L ′(ρ, χ̄)
.
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Multiplying both sides by −√
a
√

τ(χ) and using the fact that q1/2 = √
τ(χ)τ(χ̄) we

have the desired result for even characters

√
a
√

τ(χ)

∞∑

n=1

χ(n)μ(n)

n
ϕ

(
a

q1/2n

)

− √
b
√

τ(χ̄)

∞∑

n=1

χ̄ (n)μ(n)

n
ψ

(
b

q1/2n

)

= −q1/2
√

τ(χ̄)

b1/2
∑

ρ

(
b

q1/2

)ρ Z2(1 − ρ)

L ′(ρ, χ̄)
. (4.3)

We note that if we had used the other side of (4.2) instead, then the result would have
been

√
a
√

τ(χ)

∞∑

n=1

χ(n)μ(n)

n
ϕ

(
a

q1/2n

)

− √
b
√

τ(χ̄)

∞∑

n=1

χ̄ (n)μ(n)

n
ψ

(
b

q1/2n

)

= q1/2
√

τ(χ)

a1/2
∑

ρ

(
a

q1/2

)ρ Z1(1 − ρ)

L ′(ρ, χ)
. (4.4)

We denote by ρ = β + iγ a non-trivial zero of L(s, χ̄) and we choose T > 0 to tend
to infinity through values such that |T − γ | > exp(−A1|γ |/ log |γ | + 3) for every
ordinate γ of a zero of L(s, χ). Using

log |L(s, χ)| �
∑

|t−γ |�1

log |t − γ | + O(log(qt))

yields

log |L(σ + iT, χ)| � −
∑

|T−γ |�1

A1γ / log γ + O(log qT ) > −AχT, (4.5)

where Aχ < ω if A1 is small enough, and T > T0. Since the main technique behind
the proofs of explicit formulae is contour integration, this will enable us to make
unwanted horizontal integrals tend to zero as T → ∞ through the above values. To
prove that indeed these horizontal integrals tend to zero as T → ∞ for the chosen
values we note that from (4.5) we obtain

1

|L(1 − s, χ)| � exp(AχT )

where Aχ < ω. Then by Lemma (2.2) and Stirling’s formula for 
(s) one gets

1

2π i

c−iT∫

λ−iT

(
a

q1/2

)−s Z1(s)

L(1 − s, χ)
ds � exp

(
(Aχ − ω + ε)|t |) → 0
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for each ε > 0. This could alternatively be proved by using Remark 2.1. The other
horizontal integral is dealt with similarly.

Let us now consider HF = 0, then ν = 1/2 and χ is an odd primitive Dirichlet
character mod qF . Therefore, ϕ,ψ ∈ K (ω, 0,−δ) is a pair of sine reciprocal func-
tions. Note Z1 and Z2 are both analytic at s = 1 hence� and� both analytic at s = 1.
Then by the functional equation in (2.2) we see � and � are both analytic at s = 0.
Therefore, both Z1 and Z2 are analytic at s = 0. Similarly, as (4.1) we find

1

2π i

c+i∞∫

c−i∞
x−s Zk(s)ds =

{
ϕ(x) if k = 1,

ψ(x) if k = 2.
(4.6)

Let q := qF . If χ is an odd, primitive and non-principal character of mod q then
L(s, χ) satisfies the functional equation

1

L(1 − s, χ)
= τ(χ̄)

iq1/2

( q

π

)1/2−s 
(1 − s
2 )


( s+1
2 )

1

L(s, χ̄)
,

for all complex values s. If we use the fact that ab = 2π and couple this equation with
(2.8), (2.9) and the functional equation of � and � in Lemma (2.2), then we obtain

1

2π i

∮

�

(
a

q1/2

)−s Z1(s)

L(1 − s, χ)
ds = 1

2π i

∮

�

τ(χ̄)

i(2π)1/2

(
b

q1/2

)s Z2(1 − s)

L(s, χ̄)
ds.

By absolute convergence with Re(s) = c we can change summation and integration
to obtain

1

2π i

c+i∞∫

c−i∞

(
a

q1/2

)−s Z1(s)

L(1 − s, χ)
ds = 1

2π i

c+i∞∫

c−i∞

(
a

q1/2

)−s ∞∑

n=1

χ(n)μ(n)

n1−s
Z1(s)ds

=
∞∑

n=1

χ(n)μ(n)

n

1

2π i

c+i∞∫

c−i∞

(
a

q1/2n

)−s

Z1(s)ds

=
∞∑

n=1

χ(n)μ(n)

n
ϕ

(
a

q1/2n

)

, (4.7)
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where in ultimate step we have used (4.6) with k = 1. Moreover, also by absolute
convergence with Re(s) = λ, we have

1

2π i

λ+i∞∫

λ−i∞

τ(χ̄)

i(2π)1/2

(
b

q1/2

)s Z2(1 − s)

L(s, χ̄)
ds

= τ(χ̄)

i(2π)1/2

1

2π i

λ+i∞∫

λ−i∞

(
b

q1/2

)s ∞∑

n=1

χ̄(n)μ(n)

ns
Z2(1 − s)ds

= τ(χ̄)

i(2π)1/2

b

q1/2

∞∑

n=1

χ̄ (n)μ(n)

n

1

2π i

1−λ+i∞∫

1−λ−i∞

(
b

q1/2n

)−w

Z2(w)dw

= τ(χ̄)

i(2π)1/2

b

q1/2

∞∑

n=1

χ̄ (n)μ(n)

n
ψ

(
b

q1/2n

)

,

where we have made the change w = 1 − s. A similar reasoning as the one we used
for even primitive characters shows that the contribution from the horizontal integrals
of this contour will tend to zero as well. Next, we compute the residues

• for the non-trivial zeros ρ one has

∑

ρ

res
s=ρ

τ (χ̄)

i(2π)1/2

(
b

q1/2

)s Z2(1 − s)

L(s, χ̄)
= τ(χ̄)

i(2π)1/2

∑

ρ

(
b

q1/2

)ρ Z2(1 − ρ)

L ′(ρ, χ̄)
.

By the residue theorem one has

τ(χ̄)

i(2π)1/2

b

q1/2

∞∑

n=1

χ̄ (n)μ(n)

n
ψ

(
b

q1/2n

)

−
∞∑

n=1

χ(n)μ(n)

n
ϕ

(
a

q1/2n

)

= τ(χ̄)

i(2π)1/2

∑

ρ

(
b

q1/2

)ρ Z2(1 − ρ)

L ′(ρ, χ̄)
.

Multiplying by −√
a
√

τ(χ) and using the fact that
√

τ(χ)τ(χ̄) = iq1/2 one has

√
a
√

τ(χ)

∞∑

n=1

χ(n)μ(n)

n
ϕ

(
a

q1/2n

)

− √
b
√

τ(χ̄)

∞∑

n=1

χ̄ (n)μ(n)

n
ψ

(
b

q1/2n

)

= −q1/2

b1/2
√

τ(χ̄)
∑

ρ

(
b

q1/2

)ρ

(1 − ρ)

L ′(ρ, χ̄)
Z2(1 − ρ), (4.8)

and this proves the theorem.
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Proof of Corollary 1.3 By taking ν = 1
2 so that χ(−1) = −21

2 = −1, and choosing

ϕ(x) = 1

e
√
2πx − 1

− 1√
2πx

,

we have

ψ(x) =
∞∫

0

(ux)
1
2 Jν(ux)ϕ(u)du =

√
2

π

∞∫

0

sin(ux)ϕ(u)du

= −1

2
− 1√

2πx
+ 1

2
coth

(√
π

2
x

)

= 1

e
√
2πx − 1

− 1√
2πx

= ϕ(x).

We note that ϕ,ψ ∈ K . The Mellin transform is given (see Sect. 9.12 of [47] and Eq.
(2.7.1) of [48])

Zi (s) =
∞∫

0

xs−1
(

1

e
√
2πx − 1

− 1√
2πx

)

dx = (2π)
− 1
2 s
(s)ζ(s),

for 0 < Re(s) < 1 and i = 1, 2. We note that

Zi (1 − ρ) = (2π)
− 1
2 (1−ρ)


(1 − ρ)ζ(1 − ρ).

By plugging these into (1.22) we obtain

√
aτ(χ)

∞∑

n=1

χ(n)μ(n)

n

(
1

ea
√
2π/qn − 1

− n

a

√
q

2π

)

− √
bτ(χ̄)

∞∑

n=1

χ̄ (n)μ(n)

n

(
1

eb
√
2π/qn − 1

− n

b

√
q

2π

)

=
√
qτ(χ)

2πa

∑

ρ∈Bχ

(
(2π)1/2a

q1/2

)ρ

(1 − ρ)ζ(1 − ρ)

L ′(ρ, χ)
,

as it was to be shown. 
�
Proof of Corollary 1.4 First takeχ to be even, i.e. 1 = χ(−1) = −2ν so that ν = − 1

2 .
Choose ϕ(x) = sech( 1√

2

√
πx). We verify that this is cosine reciprocal by noting that

ψ(x) =
∞∫

0

(ux)
1
2 J− 1

2
(ux)ϕ(u)du =

√
2

π

∞∫

0

cos(ux)ϕ(u)du
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=
√

2

π

∞∫

0

cos(ux) sech( 1√
2

√
πu)du = sech( 1√

2

√
πx) = ϕ(x),

and that ϕ,ψ ∈ K . The Mellin transform is given (see entry 6.1 of [36]) by

Zi (s) = 21−
3
2 sπ

− s
2
(s)(ζ(s, 1

4 ) − ζ(s, 3
4 ))

for Re(s) > 0 and i = 1, 2. Plugging this into (1.22) we obtain

√
aτ(χ)

∞∑

n=1

χ(n)μ(n)

n
sech

(√
π

2q

a

n

)

− √
bτ(χ̄)

∞∑

n=1

χ̄(n)μ(n)

n

(√
π

2q

b

n

)

=
√
qτ(χ)

2πa

∑

ρ∈Bχ

(
2
3
2π

1
2 a

q1/2

)ρ


(1 − ρ)(ζ(1 − ρ, 1
4 ) − ζ(1 − ρ, 3

4 ))

L ′(ρ, χ)
.

Next, take the same choice of ϕ and plug it into (1.21) so that

√
a

∞∑

n=1

μ(n)

n
sech

(√
π

2

a

n

)

− √
b

∞∑

n=1

μ(n)

n
sech

(√
π

2

a

n

)

=
√

1

2πa

∑

ρ∈B
(2

3
2π

1
2 a)

ρ 
(1 − ρ)(ζ(1 − ρ, 1
4 ) − ζ(1 − ρ, 3

4 ))

ζ ′(ρ)

and this ends the proof. 
�
Proof of Corollary 1.4 In [38] it is shown that for Re(a) > 0 one has

x
1
2+μ

(x2 + a2)
1
4 (−μ−1)K 1

2 (μ+1)
(a
√
x2 + a2)

is Hankel reciprocal with respect to μ and that the Mellin transform is given by

φμ(s) =
∞∫

0

xs+μ− 1
2 (x2 + a2)

− 1
4 (μ+1)

K 1
2 (μ+1)

(a
√
x2 + a2)dx

= 2
1
2 s+

1
2μ− 3

4
( 12 s + 1
2μ + 1

4 )K− 1
2 (s− 1

2 )
(a2).

If we take μ = − 1
2 , i.e. if we deal with cosine reciprocity, then

(x2 + a2)−
1
8 K 1

4
(a
√
a2 + x2)

is cosine reciprocal and ϕ,ψ ∈ K . Thus,
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Z1(1 − ρ) = φ− 1
2
(1 − ρ) = 2

1
2 (1−ρ)−1


( 12 (1 − ρ))K− 1
2 (

1
2−ρ)

(z2).

Plugging these back into (1.21) gives us

√
a

∞∑

n=1

μ(n)

n

(
a2

n2
+ z2

)− 1
8
K 1

4

(

z

√

z2 + a2

n2

)

− √
b

∞∑

n=1

μ(n)

n

(
b2

n2
+ z2

)− 1
8
K 1

4

(

z

√

z2 + b2

n2

)

= 1√
2a

∑

ρ∈B

( a

21/2

)ρ

(

1−ρ
2 )K− 1

2 (
1
2−ρ)

(z2)

ζ ′(ρ)

and (1.22) gives us

√
aτ(χ)

∞∑

n=1

χ(n)μ(n)

n

(
a2

qn2
+ z2

)− 1
8
K 1

4

(

z

√

z2 + a2

qn2

)

− √
bτ(χ̄)

∞∑

n=1

χ̄(n)μ(n)

n

(
b2

qn2
+ z2

)− 1
8
K 1

4

(

z

√

z2 + b2

qn2

)

=
√
qτ(χ)

2a

∑

ρ∈Bχ

(
a

q1/221/2

)ρ 
(
1−ρ
2 )K− 1

2 (
1
2−ρ)

(z2)

L ′(ρ, χ)
.

If we take μ = 1
2 then the same procedure on φ gives

Z1(1 − ρ) = φ 1
2
(1 − ρ) = 2− 1

2ρ

(1 − 1

2ρ)K− 1
2 (

1
2−ρ)

(z2).

Therefore, (1.22) yields

a

q1/2
√
aτ(χ)

∞∑

n=1

χ(n)μ(n)

n2

(
a2

qn2
+ z2

)− 3
8
K 3

4

⎛

⎝z

√

z2 + a2

qn2

⎞

⎠

− b

q1/2
√
bτ(χ̄)

∞∑

n=1

χ̄(n)μ(n)

n2

(
b2

qn2
+ z2

)− 3
8
K 3

4

⎛

⎝z

√

z2 + b2

qn2

⎞

⎠

=
√
qτ(χ)

a

∑

ρ∈Bχ

(
a

21/2q1/2

)ρ 
(1 − 1
2ρ)K− 1

2 (
1
2−ρ)

(z2)

L ′(ρ, χ)
.

Combining both cases yields the Corollary. 
�
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Proof of Corollary 1.6 For Re(s) > 0 the Mellin transform of the Weber parabolic
cylinder function is given by entry 13.48 of [36]

∞∫

0

xs−1Dn(x)dx = 2
n−2
2

√
π


(s)


( 12 (1 − n + s))
2F1

(
s
2 ,

1+s
2

1
2 (1 − n + s)

; 1
2

)

,

where 2F1 is the hypergeometric function. Form = 0, 1, 2, . . . it is shown in [49] that
D4m(2x) = ϕ(x) is cosine reciprocal and ϕ,ψ ∈ K . Thus, (1.21) yields

√
a

∞∑

n=1

μ(n)

n
D4m

(
2a

n

)

− √
b

∞∑

n=1

μ(n)

n
D4m

(
2b

n

)

= 22n−1
√

π

a1/2
∑

p∈B

aρ


( 12 (2−4n−ρ))ζ ′(ρ)
2F1

( 1−ρ
2 ,

2−ρ
2

1
2 (2 − 4n − ρ)

; 1
2

)

,

and for even characters (1.22) yields

√
aτ(χ)

∞∑

n=1

χ(n)μ(n)

n
D4m

(
2a

q1/2n

)

− √
bτ(χ̄)

∞∑

n=1

χ̄ (n)μ(n)

n
D4m

(
2b

q1/2n

)

=22n−1
√

πqτ(χ)

a

∑

p∈Bχ

(
a

q1/2

)ρ 
(1−ρ)


( 12 (2−4n− vρ))L ′(ρ, χ)
2F1

(
1−ρ
2 ,

2−ρ
2

1
2 (2−4n−ρ)

; 1
2

)

.

Moreover, it is also shown in [49] that D4m+1(2x) is sine reciprocal for m =
0, 1, 2, . . .. Thus, for odd characters (1.22) yields

√
aτ(χ)

∞∑

n=1

χ(n)μ(n)

n
D4m+1

(
2a

q1/2n

)

− √
bτ(χ̄)

∞∑

n=1

χ̄(n)μ(n)

n
D4m+1

(
2b

q1/2n

)

= 2
4n−1
2

√
πqτ(χ)

a

∑

p∈Bχ

(
a

q1/2

)ρ 
(1 − ρ)


( 12 (1 − ρ − 4n))L ′(ρ, χ)
2F1

(
1−ρ
2 ,

2−ρ
2

1
2 (1 − ρ − 4n)

; 1
2

)

.

Putting these two results together yield the statement of the corollary. 
�
Proof of Corollary 1.6 In [49] it is shown that

xν+1/2ex
2/4D−2ν−3(x) =

∞∫

0

(xy)
1
2 Jν(xy)y

ν+1/2ey
2/4D−2ν−3(y)dy

for Re(ν) > −1, and that

f (s) =
∞∫

0

xs−1ex
2/4Dn(x)dx = 
(s)
(− 1

2n − 1
2 s)

2n/2+s/2+1
(−n)
,
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for 0 < Re(s) < Re(−n). Next, take ν = − 1
2 so that we have ϕ(x) = ex

2/4D−2(x) =
ψ(x) ∈ K , and

Z1(s) = f−2(s) = 
(s)
(1 − 1
2 s)

2s/2
(2)
, Z1(1 − ρ) = 
(1 − ρ)
( 12 + 1

2ρ)

21/22−ρ/2
(2)
.

Replace it in (1.21) to get

√
a

∞∑

n=1

μ(n)

n
exp

(
a2

4n2

)

D−2

(a

n

)
− √

b
∞∑

n=1

μ(n)

n
exp

(
b2

4n2

)

D−2

(
b

n

)

= 1

21/2a1/2
∑

ρ∈B
(21/2a)

ρ 
(1 − ρ)
( 12 + 1
2ρ)

ζ ′(ρ)
.

Replacing the above in (1.22) gives us

√
aτ(χ)

∞∑

n=1

χ(n)μ(n)

n
exp

(
a2

4qn2

)

D−2

(
a

q1/2n

)

− √
bτ(χ̄)

∞∑

n=1

χ̄ (n)μ(n)

n
exp

(
b2

4qn2

)

D−2

(
b

q1/2n

)

=
√
qτ(χ)

2a

∑

ρ∈Bχ

(
21/2a

q1/2

)ρ

( 12 − ρ)
( 12 + 1

2ρ)

L ′(ρ, χ)
.

Finally, taking instead ν = 1
2 so that ϕ(x) = xex

2/4D−4(x) = ψ(x) ∈ K as well as

Z1(s) = f−4(s + 1) = 
(s + 1)
(2 − 1
2 s − 1

2 )

2−1/2+s/2
(4)
Z1(1 − ρ) = 
(2−ρ)
(1+ 1

2ρ)

2−ρ/2
(4)
.

Replacing this in (1.22) yields

a

q1/2
√
aτ(χ)

∞∑

n=1

χ(n)μ(n)

n2
exp

(
a2

4qn2

)

D−4

(
a

q1/2n

)

− b

q1/2
√
bτ(χ̄)

∞∑

n=1

χ̄(n)μ(n)

n2
exp

(
b2

4qn2

)

D−4

(
b

q1/2n

)

= 1

6

√
qτ(χ)

a

∑

ρ∈Bχ

(
21/2a

q1/2

)ρ

(2 − ρ)
(1 + 1

2ρ)

L ′(ρ, χ)
,

and this ends the proof. 
�
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Proof of Corollary 1.8 From [49] we know that

xν− 1
2 e− 1

4 x
2
D−2ν(x) =

∞∫

0

(xy)
1
2 Jν(xy)y

ν− 1
2 e− 1

4 y
2
D−2ν(y)dy.

Taking ν = 1
2 we see that e− 1

4 x
2
D−1(x) is sine reciprocal. So we set ϕ(x) = ψ(x) =

e− 1
4 x

2
D−1(x) ∈ K . Recalling from (1.31) that

D−1(x) =
√

π
2 e

1
4 x

2
Erfc(2− 1

2 x)

and using entry 13.5 of [36], which says that

∞∫

0

xs−1eb
2x2 Erfc(ax)dx = π

− 1
2 s−1a−s


(
1

2
+ 1

2
s

)

2F1

(
s
2 ,

1+s
2

1 + 1
2 s

; b2

a2

)

for b < a and Re(s) > 0, we see that the Mellin transform is given by

Z1(s) =
∞∫

0

xs−1ϕ(x)dx =
∞∫

0

xs−1e− 1
4 x

2
D−1(x)dx =

√
π
2

∞∫

0

xs−1 Erfc(2− 1
2 x)dx

=
√

π
2 π

− 1
2 s−1(2

1
2 s)


(
1

2
+ 1

2
s

)

2F1

( s
2 ,

1+s
2

1 + 1
2 s

; 0
)

= 2s/2−1/2
( 12 + s
2 )

s
.

Replacing this in (1.22) yields

√
aτ(χ)

∞∑

n=1

χ(n)μ(n)

n
exp

(

− a2

4qn2

)

D−1

(
a

q1/2n

)

− √
bτ(χ̄)

∞∑

n=1

χ̄ (n)μ(n)

n
exp

(

− b2

4qn2

)

D−1

(
b

q1/2n

)

= 2
q1/2

√
τ(χ)

a1/2
∑

ρ∈Bχ

(
a

21/2q1/2

)ρ 
(1 − ρ
2 )

1 − ρ

1

L ′(ρ, χ)
,

as it was to be shown. 
�

5 Proof of Theorem (1.3)

A similar argument as in the beginning of the proof of Theorem 1.1 yields F(s) =
ζ(s) and ν = −1/2. Therefore, Z1(s) is meromorphic with simple poles at s =
0,−2,−4, . . .. Thus, for 0 < c < 1 we define
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W (x) := 1

2π i

c+i∞∫

c−i∞

Z1(−s)

ζ(1 + s)
xsds.

By using the fact that c > 0 we can write

W (x) = 1

2π i

c+i∞∫

c−i∞
Z1(−s)

∞∑

n=1

μ(n)

n1+s
xsds =

∞∑

n=1

μ(n)

n

1

2π i

c+i∞∫

c−i∞
Z1(−s)

(n

x

)−s
ds.

The change of variable w = −s yields

W (x) =
∞∑

n=1

μ(n)

n

1

2π i

−c+i∞∫

−c−i∞
Z1(w)

( x

n

)−w

dw =
∞∑

n=1

μ(n)

n

{

ϕ
( x

n

)
− res

w=0
Z1(w)

( x

n

)−w
}

=
∞∑

n=1

μ(n)

n

{
ϕ
( x

n

)
− 23/4�(0)

}
=

∞∑

n=1

μ(n)

n
ϕ
( x

n

)
= Pϕ(x),

where in the second line we have used the fact that −1 < −c < 0 and the prime
number theorem on the fourth line. By the theory of Mellin transforms we obtain

ϒ(s) :=
∞∫

0

Pϕ(x)x−s−1dx = Z1(−s)

ζ(1 + s)
. (5.1)

Therefore, multiplying both sides by s we have that

sζ(1 + s)ϒ(s) = sZ1(−s), (5.2)

for 0 < Re(s) < 1. Now we will study (5.1) for − 1
2 < Re(s) ≤ 0. To do this, we split

the integral representation of ϒ(s) at x =1 and apply the bound Pϕ(x) � x− 1
2+δ for

any δ > 0 as x → ∞ so that

ϒ(s)=
1∫

0

Pϕ(x)x−s−1dx+
∞∫

1

Pϕ(x)x−s−1dx = O(1)+O

( ∞∫

1

x−1
2 v+δx−σ−1dx

)

=O(1).

Thus, one can now see that the application of the bound Pϕ(x) � x− 1
2+δ makes the

integral analytic on the interval − 1
2 < Re(s) ≤ 0. We reason as follows. Since the

simple pole of ζ(1 + s) and Z1(−s) is annihilated by the zero of s at s = 0 we see
that the left-hand side of (5.2) is analytic. Since (5.2) holds for 0 < Re(s) < 1, by
the theory of analytic continuation, it also holds on − 1

2 < Re(s) ≤ 0. If Z1(−s) does
not have any zeros in the interval − 1

2 < Re(s) ≤ 0, then the left-hand side of (5.2) is
non-zero in − 1

2 < Re(s) ≤ 0. However, since ϒ(s) has been shown to be analytic in
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this interval when the bound on Pϕ(x) is applied, this implies that ζ(1 + s) does not
have zeros in − 1

2 < Re(s) ≤ 0. This implies the Riemann hypothesis.
If Z1(−s) actually had zeros then all the zeros of the Riemann zeta-function would

still lie on the critical line except for the zeros that coincide with the zeros of Z1(−s).

Let us now prove that the Riemann hypothesis implies the bound Pϕ(y) � y− 1
2+δ

as y → ∞ for all δ > 0. We recall a formulation of the Riemann hypothesis involving
Mertens’s function due to Littlewood [30] which says that

M(x) � x
1
2+ε

.

An application of partial summation allows us to transform this into

M(ν, n) :=
n∑

m=ν

μ(m)

m
�ε ν

− 1
2+ε (5.3)

uniformly in n. Recalling the definition of Pϕ we have

Pϕ(y) =
∞∑

n=1

μ(n)

n
ϕ
( y

n

)
=
(ν−1∑

n=1

+
∞∑

n=ν

)
μ(n)

n
ϕ
( y

n

)
=: Pϕ,1(y) + Pϕ,2(y),

where ν = �y1−ε
. We handle each sum separately. For the first sum

Pϕ,1(y) =
ν−1∑

n=1

μ(n)

n
ϕ
( y

n

)
�

ν−1∑

n=1

e−y/n

n
,

since ϕ ∈ K (ω, 0) and where we have used the asymptotic of ϕ for large y. Therefore,

Pϕ,1(y) � ye−y . (5.4)

For the second sum, we have

Pϕ,2(y) =
∞∑

n=ν

μ(n)

n
ϕ
( y

n

)
=

∞∑

n=ν

M(ν, n)

{

ϕ
( y

n

)
− ϕ

(
y

n + 1

)}

=
∞∑

n=ν

M(ν, n)

{

− y

λ2n
ϕ′
(

y

λn

)}

,

� ν
− 1
2+ε

(β−1∑

n=ν

+
∞∑

n=β

)∣
∣
∣
∣
y

λ2n
ϕ′
(

y

λn

)∣
∣
∣
∣

=: Pϕ,3(y) + Pϕ,4(y) (5.5)
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where in the last line we have used the mean value theorem with a = n < λn(= c) <

n + 1 = b and where

Pϕ,3(y) � ν
− 1
2+ε

β−1∑

n=ν

∣
∣
∣
∣
y

λ2n
ϕ′
(

y

λn

)∣
∣
∣
∣, Pϕ,4(y) � ν

− 1
2+ε

∞∑

n=β

∣
∣
∣
∣
y

λ2n
ϕ′
(

y

λn

)∣
∣
∣
∣

with β = �y1+ε
. We start with Pϕ,4(y) first. By the definition of the class K and by
Cauchy’s integral formula we see that

ϕ′
(

y

λn

)

� e−y/λn

for λn ≥ β. Thus,

Pϕ,4(y) � ν
− 1
2+ε

∞∑

n=β

∣
∣
∣
∣
y

λ2n
e−y/λn

∣
∣
∣
∣ � ν

− 1
2+εe−y/ββ−1+(δ+ε)y

∞∑

n=β

1

λ1+ε
n

� y− 1
2+ε′

.

(5.6)

For the sum Pϕ,3 we reason as follows. First, ϕ is analytic, thus ϕ′ is continuous in
a compact interval containing I (ε, y) = (y−ε, yε) ⊂ [0, y]. Therefore, there exists a
point c ∈ I (ε, y) such that

ϕ′(c) = max[0,y] ϕ′(x).

The value of c is independent of y. To see this, note that ϕ′(x) � e−x when x → ∞.
Then we can find a positive real number C independent of y such that ϕ′(c) > ϕ′(y)
for all y > C . Therefore,

Pϕ,3(y) � ν
− 1
2+ε y

ν2
ϕ′(c)

β−1∑

n=ν

1 � y− 1
2+ε′′

. (5.7)

Putting together (5.4)–(5.7) we see that the Riemann hypothesis implies the bound

Pϕ(y) � y− 1
2+δ as y → ∞ for all δ > 0.
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