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Abstract. Given a planar compact convex billiard table T , we give an algorithm to find the
shortest generalised closed billiard orbits on T . (Generalised billiard orbits are usual billiard
orbits if T has smooth boundary.) This algorithm is finite if T is a polygon and provides an
approximation scheme in general. As an illustration, we show that the shortest generalised
closed billiard orbit in a regular n-gon Rn is 2-bounce for n ≥ 4, with length twice the width
of Rn . As an application we obtain an algorithm computing the Ekeland–Hofer–Zehnder
capacity of the four-dimensional domain T ×B2 in the standard symplectic vector spaceR4.
Our method is based on the work of Bezdek–Bezdek (Geom. Dedicata 141:197–206, 2009)
and on the uniqueness of the Fagnano triangle in acute triangles. It works, more generally,
for planar Minkowski billiards.

1. Introduction and main results

Mathematical billiards is a fascinating topic, with an abundance of problems and
results. Almost every mathematical theory can be illustrated by and applied to a
problem in mathematical billiards, see [14,18–21] for excellent surveys. Here, we
study the most elementary problem one can ask: Describe the set of shortest closed
billiard orbits and their lengths on a planar convex billiard table.

By a planar convex billiard table we mean a compact convex set T in R2 with
non-empty interior

◦
T . The boundary ∂T may be smooth or not, and T may be

strictly convex or not. An outward support vector at q ∈ ∂T is a vector ν such that

〈x − q, ν〉 ≤ 0 for all x ∈ T .

A point q ∈ ∂T is called smooth if the outward support vector of T at q is unique.
Equivalently, there is a unique line through q that is disjoint from

◦
T .

N. Alkoumi: Mathematics Department, Birzeit University, PO Box 14 Birzeit, Ramallah
Palestine. e-mail: nalkoumi@birzeit.edu

F. Schlenk (B): Institut de Mathématiques, Université de Neuchâtel, Rue Emile-Argand 11,
2000 Neuchâtel, Switzerland. e-mail: schlenk@unine.ch

Mathematics Subject Classification: Primary 37D50, Secondary 37J05, 52A10, 52A40

NA partially supported by the research fellowship 2013.0061 granted by the Federal Depart-
ment of Home Affairs FDHA of the Swiss government.
FS partially supported by SNF Grant 200020-144432/1.

DOI: 10.1007/s00229-014-0724-4

http://crossmark.crossref.org/dialog/?doi=10.1007/s00229-014-0724-4&domain=pdf


366 N. Alkoumi, F. Schlenk

Fig. 1. The five generalised closed billiard orbits on the equilateral triangle

If ∂T is smooth, a billiard orbit in T is a polygonal curve in T with vertices
on ∂T , such that at each vertex the incidence angle is equal to the reflection angle.
Following [6,13] we define a generalised billiard orbit on T to be a sequence of
points qi ∈ ∂T , i ∈ Z, such that for every i ,

νi := qi − qi−1

‖qi − qi−1‖ + qi − qi+1

‖qi − qi+1‖
is an outward support vector of T at qi . We call the points qi the bounce points
of the generalised billiard orbit. A billiard orbit is called regular if all its bounce
points are smooth, and singular otherwise. If ∂T is smooth, then the generalised
billiard orbits on T are simply the billiard orbits on T .

A generalised billiard orbit c is closed or periodic if there exists n ≥ 2 such
that qi+n = qi for all i ∈ Z. The smallest n that works is the period of c, which is
then called an n-bounce billiard orbit. We throughout identify closed billiard orbits
with the same trace.

Example. On a equilateral triangle, there are three 2-bounce orbits (that are sin-
gular), and two 3-bounce orbits, the regular equilateral orbit and the singular orbit
running along the boundary, see Fig. 1.

The length of an n-bounce orbit is of course defined by

�(c) :=
n−1∑

i=0

‖qi+1 − qi‖.

Notation. It will be convenient to use the following notation.

P(T ) : the generalised closed billiard orbits on T
Pn(T ) : the n-bounce orbits inP(T )

Preg(T ) : the regular closed billiard orbits on T
Pn,reg(T ) : the n-bounce orbits inPreg(T )

Pmin(T ) : the orbits in P(T ) of minimal length.

Including singular orbits into the picture has many advantages. One advantage
is the variational characterisation of Pmin(T ) by Bezdek–Bezdek, that we recall in
Sect. 2.2. Another one is that generalised closed billiard orbits always exist.1 For

1 While it is unknown whether every convex billiard table carries a regular closed orbit.
In fact, this is unknown even for general obtuse triangles.
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instance there is a 2-bounce orbit of length 2 width (T ), where the width of T is
the thickness of the thinnest band containing T . We can thus define

�(T ) := min {�(c) | c ∈ P(T )} .

The inradius of T is the radius of the largest disc contained in T . Ghomi proved
in [13] that always

4 inradius (T ) ≤ �(T ) ≤ 2 width (T ) (1)

with sharp lower bound if and only if 2 inradius (T ) = width (T ), in which case
Pmin(T ) ⊂ P2(T ). Since width (T ) ≤ 3 inradius (T ) for any convex set T ⊂ R2

(see [11, Theorem 50]), the bounds (1) for �(T ) are sharp up to the factor 3
2 .

In this note we describe a combinatorial process to find all shortest generalised
billiard orbits on a planar convex billiard table T and hence also �(T ). We outline
the algorithm here. Details are given in Sect. 3.

1.1. The algorithm

Our algorithm is based on the following result of Bezdek–Bezdek from [6]:

Pmin(T ) ⊂ P2(T ) ∪ P3,reg(T ). (2)

Assumefirst that T is a polygon. The 2-bounce orbits, and in particular the 2-bounce
orbits of minimal length 2width (T ), are readily found. In order to determine the
shortest regular 3-bounce orbits we recall that in a triangle � there is such an orbit
if and only if � is acute, in which case this orbit is the Fagnano orbit, obtained
by connecting the feet of the three altitudes of �. If a polygon T has more than
three edges, any regular 3-bounce orbit on T is then found as the Fagnano orbit of
a triangle cut out by the lines supported by three edges of T . This leads to a finite
algorithm for finding Pmin(T ) and �(T ), that can be executed on a computer.

If T is not polygonal,we approximate T by a sequence of polygonal domains Tn .
Since �(T ) is continuous in theHausdorff topology, �(Tn) converges to �(T ).More-
over, if we take for each n a shortest orbit cn ∈ Pmin(Tn), then a subsequence of cn
converges to an orbit c ∈ Pmin(Tn), and every orbit in Pmin(T ) can be obtained in
this way.

Several problems on closed orbits on planar convex billiard tables are easier for
tables with smooth boundary than for polygons. For instance, Birkhoff’s famous
theorem from [7] asserts that every strictly convex billiard tablewith smooth bound-
ary carries infinitely many distinct closed orbits, while for general polygons the
existence of a regular closed orbit is unknown. In contrast, our method uses a com-
binatorial process on polygons to give information on shortest closed orbits on
general convex billiard tables.
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1.2. Applications

1. Some examples. To illustrate our method, we compute Pmin(T ) and �(T ) for
triangles, for two classes of 4-gons, and for regular n-gons, see Sect. 4. For instance,
the above algorithm immediately yields

Proposition 1.1. Let Rn be a regular n-gon with n ≥ 5 that is inscribed in the unit
circle. Then Pmin(Rn) = P2(Rn) and �(Rn) = 2width (Rn) = 2

(
1 + cos π

n

)
.

2. 2-bounce orbits versus 3-bounce orbits. A problem posed by Zelditch asks
whether the shortest billiard orbits on T are 2-bounce or 3-bounce (or both). Our
algorithm can decide this for polygons and also for some non-polygonal convex
billiard tables, see Sect. 5.

3. Computation of the Ekeland–Hofer–Zehnder symplectic capacity. Endow
R4 with its standard symplectic form ω0 = dq1 ∧ dp1 + dq2 ∧ dp2. Denote by B4

the open ball of radius 1 and by Z4 the symplectic cylinder B2 ×C. Let Symp(R4)

be the group of diffeomorphisms of R4 that preserve the symplectic form ω0.
A symplectic capacity on (R4, ω0) associateswith each subset S ofR4 a number

c(S) ∈ [0,∞] such that the following axioms are satisfied.
(Monotonicity) c(S) ≤ c(S′) if ϕ(S) ⊂ S′ for some ϕ ∈ Symp(R4);
(Conformality) c(r S) = r2 c(S) for all r > 0;
(Nontriviality) 0 < c(B4) and c(Z4) < ∞.

There aremany different symplectic capacities, reflecting dynamical, geometric
or holomorphic properties of a set (see [8] for a survey). The fascinating thing about
capacities is that (in)equalities among them imply relations between the different
aspects of “symplectic sets”. Two dynamically defined symplectic capacities are
the Ekeland–Hofer capacity and the Hofer–Zehnder capacity, [12,16,17]. They
agree on convex sets K . Following [3] we denote their common value by cEHZ(K ).
Denote by D∗T the unit ball bundle T × B2 ⊂ R2(q) × R2(p) in the cotangent
bundle of T .

Proposition 1.2. For every compact convex set T ⊂ R2 it holds that cEHZ(D∗T ) =
�(T ).

Proof. Monotonicity and conformality imply that cEHZ is continuous in the Haus-
dorff topology. The same holds true for the function � in view of its monotonicity
and conformality property, see the end of Sect. 2. We may thus assume that T
has smooth boundary. For such billiard tables, the proposition is a “folklore theo-
rem” known since the 1990th. A precise treatment was given, however, only in [4].
There, it is shown (in arbitrary dimensions) that cEHZ(D∗T ) is the minimum of
�(T ) and the length of the shortest “glide orbit”. On a planar smooth convex bil-
liard table T , a glide orbit is simply an orbit running along the boundary ∂T . Its
length is thus larger than 2width (T ). Since �(T ) ≤ 2width (T ) we conclude that
cEHZ(D∗T ) = �(T ). ��

Symplectic capacities are very hard to compute in general. In view of Propo-
sition 1.2 our algorithm for computing �(T ) provides an algorithm for computing
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the capacity cEHZ(D∗T ), finite if T is polygonal and approximate otherwise. For
instance, for a regular n-gonwith n ≥ 5 oddwe find cEHZ(D∗Rn) = 2

(
1 + cos π

n

)
.

We conclude with addressing two problems.

1. Is there an analogous algorithm for finding the shortest closed billiard orbits on
tables of dimension ≥ 3?

2. Does the algorithm also work for anisotropic billiards?

Ad 1. Many works on billiards, such as [6,13], deal with convex domains of
arbitrary dimension. Our method, however, seems to work only in dimension two.
Indeed, one of our main tools is the uniqueness of the Fagnano billiard orbit in
acute triangles, and this result has no analogue in higher dimensions.

Ad 2. While in this introduction we restricted ourselves to Euclidean bil-
liards, our method extends to anisotropic billiards, so-called Minkowski billiards.
In this generalisation of planar Euclidean billiards, there is given a (possibly non-
symmetric) strictly convex body K ⊂ R2 with smooth boundary, that determines
the length of (oriented) straight segments and a reflection law for billiard orbits on T .
The inclusion (2) for generalised closed K -billiard orbits then still holds true, but
determining all shortest 2-bounce and regular 3-bounce orbits is somewhat harder,
see Sect. 6. Since again cEHZ(T ×K ) is the K -length of shortest generalised closed
billiard orbits on T , we obtain an algorithm for computing the Ekeland–Hofer–
Zehnder capacity of domains in R4 of the form T × K with T, K ⊂ R2 convex.

2. Tools

In this section we first recall two lemmata on 3-bounce billiard orbits in triangles,
that we use to describe regular 3-bounce billiard orbits in convex polygons. We
then rephrase the variational characterisation of shortest generalised closed billiard
orbits found by Bezdek–Bezdek.

2.1. 3-bounce billiard orbits

A triangle is acute if all its angles are < π
2 , it is rectangular if one angle is

π
2 , and

it is obtuse if one angle is > π
2 .

Given an acute triangle T , the Fagnano triangle TF of T is the triangle whose
vertices are the feet of the three altitudes of T , see Fig. 2. It is named after J. F.
de Tuschis a Fagnano, who around 1775 showed that this triangle is the unique
shortest triangle inscribed in T , and who also observed that this triangle represents
a billiard orbit in T . For nice geometric proofs by Fejér and Schwarz see [10, §1.8]
and [9, VII, §4]. These proofs, or a direct argument [9, p. 350], also show that the
Fagnano triangle is shorter than twice the three altitudes of T . Another proof of
uniqueness, that also applies to Minkowski billiards, is given in Lemma 6.1.

We begin with two well-known lemmata (see e.g. Proposition 9.4.1.3 in [5]).

Lemma 2.1. Let T be a triangle containing a regular 3-bounce billiard orbit. Then
T is acute.
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Fig. 2. Two Fagnano triangles
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v wαα
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βγ

γ

Fig. 3. The proof of Lemma 2.1

Proof. Let c be a regular 3-bounce billiard orbit in T , as in Fig. 3. Then π =
α + β + γ , and

π = α + β + w = β + γ + u = γ + α + v.

Hence u = α, v = β, w = γ , and therefore π > 2α = 2u, π > 2v, π > 2w, i.e.,
T is acute. ��

Lemma 2.2. Let T be an acute triangle. Then T contains a unique regular 3-bounce
billiard orbit, forming the Fagnano triangle of T .

Proof. Let u, v, w be the angles of T , and let � be the triangle formed by a regular
3-bounce billiard orbit in T . As in the previous proof, u = α, v = β,w = γ . Hence
α′ = π −2u, β ′ = π −2v, γ ′ = π −2w, see Fig. 4. It follows that the directions of
the sides of � are determined. Therefore � is also determined. (A billiard orbit with
sides parallel to � is 6-periodic, rather than 3-periodic.) Hence � is the Fagnano
triangle. ��
Proposition 2.3. Let T be a polygonal convex billiard table, and let c be a regular
3-bounce billiard orbit on T . Let e1, e2, e3 be the edges of T hit by c (enumerated
counterclockwise). Denote by ei the line supporting ei . Then the lines e1, e2, e3 cut
out an acute triangle � containing T , and the trace of c is the Fagnano triangle
of �.

Proof. It is easy to see that e1, e2 are not parallel. Since T is convex, the point
e1 ∩ e2 lies on the right component of e1\ ◦e1. Similarly, e1 ∩ e3 lies on the left
component of e1\ ◦e1.
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Fig. 4. The proof of Lemma 2.2
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Fig. 5. The proof of Proposition 2.3

With the angles as denoted in Fig. 5 we have, as in the proof of Lemma 2.1,

v = β <
π

2
, w = γ <

π

2
.

Hence v + w < π . Hence e1, e2, e3 cut out a triangle � enclosing T and with
regular billiard orbit c. By Lemma 2.1, � is acute, and by Lemma 2.2, the trace
of c is the Fagnano triangle of �. ��

2.2. The variational characterisation of shortest closed billiard orbits

Let T be a convex billiard table inR2. Consider the set B(T ) of tuples (q1, q2) and
triples (q1, q2, q3) on the boundary ∂T that cannot be translated into the interior

◦
T .

Their length is defined as

�(q1, q2) = 2|q1 − q2|, �(q1, q2, q3) = |q1 − q2| + |q2 − q3| + |q3 − q1|.
By compactness, � = minq∈B(T ) �(q) is attained. Set Bmin(T ) = {q ∈ B(T ) |
�(q) = �}.
Proposition 2.4. (Bezdek–Bezdek [6]) Let T be a convex billiard table in R2.
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(i) Pmin(T ) = Bmin(T ).
(ii) A shortest generalised billiard orbit with 3 bounces is regular.

Proof. (i) LetF(T ) be the set of 2-gons and 3-gons inR2 that cannot be translated
into

◦
T . Define two elements in F(T ) to be equivalent if they are translates of

each other. It is shown in [6, Lemma 2.4] that the shortest elements of F(T ), up to
equivalence, are the elements ofPmin(T ). Since the vertices of elements inPmin(T )

lie on ∂T , each shortest equivalence class ofF(T ) contains an element ofBmin(T ).
(ii) If one of the vertices q1, q2, q3 of c, say q1, is a non-smooth point of ∂T , then
it can be slightly moved along the boundary to a point q ′

1 such that (q
′
1, q2, q3) still

cannot be translated into the interior
◦
T and so that the length of (q ′

1, q2, q3) is less
than �(c); see the proof of Sublemma 3.1 in [6]. ��

Denote again by �(T ) the length of the orbits in Pmin(T ). Proposition 2.4 (i)
implies the following scale properties of �.

(Monotonicity) �(T ) ≤ �(T ′) if T ⊂ T ′;
(Conformality) �(r T ) = r �(T ) for all r > 0.

These two properties are useful for estimating the shortest length �: If �(S) is known
and S ⊂ T ⊂ r S, then monotonicity and conformality imply that

�(S) ≤ �(T ) ≤ r �(S).

For instance, assume that S is a centrally symmetric convex billiard table with
S ⊂ T ⊂ r S. By Corollary 1.3 in [13] we have �(S) = 2width (S). Since the
width is also monotone and conformal, we find that

2width (S) ≤ �(T ) ≤ 2width (T ) ≤ 2r width (S).

In the next section, we give an algorithm to compute �.

3. Algorithms

Assume first that T is a polygonal convex billiard table. Propositions 2.3 and 2.4
give rise to finite algorithms for finding Pmin(T ): By Proposition 2.4 we know
that Pmin(T ) ⊂ P2(T ) ∪P3,reg(T ). The set P2(T ) is readily found, and P3,reg(T )

is found with the help of Proposition 2.3. The set Pmin(T ) is then obtained by
selecting the orbits of shortest length �(T ).

Algorithm 1 (finding P2(T ))

(i) If ∂T has parallel edges ei , e j , then the segments orthogonal to ◦ei ,
◦e j form

regular 2-bounce orbits on T , and all regular 2-bounce orbits on T are of this
form.

(ii) Given a vertex v and a disjoint edge e, form the altitude s from v to e. Then
s is half of a generalised 2-bounce orbit on T if and only if the end point of s
lies on e and the line through v orthogonal to s is disjoint from

◦
T .
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(iii) Given two different vertices vi , v j , the segment s = viv j is half of a generalised
2-bounce orbit on T if and only if the lines through vi , v j orthogonal to s are

disjoint from
◦
T .

If one is only interested in finding the shortest 2-bounce orbits, namely those of
length 2width (T ), it suffices to look at the orbits arising in points (i) and (ii), since
those in (iii) that are not covered by (ii) are longer. Similarly, if one is only interested
in finding �(T ), it suffices to look at the orbits arising in (ii). By Proposition 2.3
we have

Algorithm 2 (finding P3,reg(T ))
Take all triples e1, e2, e3 among the edges of T that cut out an acute triangle con-
taining T . Among these triangles, select those whose Fagnano triangle is contained
in T , i.e., ei ∩ e j projects to

◦ek for {i, j, k} = {1, 2, 3}.

As the two algorithms show, the lengths of the orbits in P2(T ) ∪P3,reg(T ) can
be computed in terms of the coordinates of the vertices of T . The whole algorithm
can thus be executed by a computer code.

We now use the above algorithms to investigate Pmin(T ) and �(T ) on arbitrary
planar convex billiard tables T . Let T be such a table. Fix ε > 0. Choose a polygonal
convex billiard table Tε such that

Tε ⊂ T ⊂ (1 + ε) Tε. (3)

By monotonicity and conformality of �,

�(Tε) ≤ �(T ) ≤ (1 + ε) �(Tε). (4)

Take a sequence εn → 0 and corresponding polygonal convex billiard tables Tεn

satisfying (3). For each n choose cn ∈ Pmin(Tεn ). Since each cn has 2 or 3 bounces,
Proposition 2.4 (i) and (3) imply that a subsequence of cn converges to an orbit
c ∈ Pmin(T ). On the other hand, it is clear that every c ∈ Pmin(T ) can be obtained
in this way.

Summarizing, we see that given ε > 0 we have a finite algorithm computing a
number �ε(T ) such that

�(T ) ≤ �ε(T ) ≤ (1 + ε) �(T ).

4. Examples

To illustrate our method, we compute the shortest generalised closed billiard orbits
in triangles, in two special classes of 4-gons and in regular n-gons. Throughout we
apply Algorithm 2.



374 N. Alkoumi, F. Schlenk

α1 α2

e1

e2

e3

Fig. 6. Two 4-gons with two parallel edges

Fig. 7. Two possibilities for the orbits attaining �(T )

4.1. Shortest billiard orbits in triangles

Proposition 4.1. Let T be a triangle.

(i) If T is acute, the shortest generalised closed billiard orbit on T is the Fagnano
triangle (which is regular).

(ii) If T is rectangular or obtuse, the shortest generalised closed billiard orbit
on T is the singular 2-bounce orbit starting at the vertex with angle ≥ π

2 . In
particular, �(T ) = 2width (T ).

Proof. (i) The shortest 2-bounce orbits lie on (one or two or three of) the altitudes
of T , and by Lemma 2.2, the Fagnano triangle is the only regular 3-bounce orbit.
It is shorter than twice the three altitudes of T .
(ii) Let h1 be the altitude starting at the vertex v1 with angle≥ π

2 . If T is rectangular,
h1 is shorter than the other two altitudes, which lie on the edges containing v1. If
T is obtuse, h1 is the only altitude contained in T . By Lemma 2.1, T contains no
regular 3-bounce orbit. ��

4.2. Shortest billiard orbits in two special classes of 4-gons

In this paragraph we look at convex 4-gons that either have two parallel edges or a
rectangular corner.

4.2.1. 4-gons with two parallel edges Up to isometry, such a polygon looks like
one of the polygons in Fig. 6, where α1 ≥ π

2 and α2 < π
2 .

In the first case, there is no triple e1, e2, e3 among the edges of T that cuts out an
acute triangle containing T . Hence Pmin(T ) ⊂ P2(T ) and �(T ) = 2width (T ). In
the second case, the only triple e1, e2, e3 that cuts out an acute triangle containing T
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is as marked in Fig. 6. The Fagnano triangle �F of the corresponding triangle may
lie in T or not. If it does, then �(T ) = min {�(�F ), 2h}, where h is the distance
between the two parallel edges of T . Both possibilities for the minimum occur as
Fig. 7 illustrates.

4.2.2. 4-gons with a rectangular corner In view of the previous example, we can
assume that no two edges of T are parallel. Since the angle sum is 2π , T then looks
up to isometry like one of the following three polygons:

a

aa

b bb

c
cc

d dd

ααα

β

β

βγ

γγ

(1): α, γ < π
2 , β > π

2 (2): α, γ > π
2 , β < π

2 (3): α < , γ >

v

π
2

π
2

In Case 3, β may be acute or not.
There is no closed 3-bounce billiard orbit with bounces on a and b since for

such an orbit two legs would be parallel (see the left picture in the figure above). A
closed 3-bounce billiard orbit must thus bounce on acd or bcd (up to orientation).
In Cases 1 and 2, the triples a, c, d and b, c, d do not cut out an acute triangle
containing T , and the same holds true in Case 3 for the triple a, c, d and if β ≥ π

2
also for the triple b, c, d . Hence Pmin(T ) ⊂ P2(T ) and �(T ) = 2width (T ). In
Case 3 with β acute, the Fagnano triangle �F of b, c, d may or may not lie in T . If
it does, then �(T ) = min {�(�F ), 2h}, where h is the distance from v to c. Again,
both possibilities for the minimum occur.

4.3. Shortest billiard orbits in regular n-gons

For n ≥ 3 consider a regular n-gon Rn . For n even, Rn is centrally symmetric, and
hence Pmin(Rn) ⊂ P2(Rn) by Corollary 1.3 in [13]. This holds true for all n ≥ 4.
More precisely, we have

Proposition 4.2. Consider the regular n-gon Rn inscribed in the circle of radius 1.

(i) If n = 3, then Pmin(Rn) consists of the Fagnano orbit of T3. Its length is
3
√
3

2 .
(ii) If n ≥ 5 is odd, then Pmin(Rn) consists of the n singular 2-bounce orbits

starting at the vertices of Rn. Their length is 2
(
1 + cos π

n

) = 2width (Rn).
(iii) If n is even, thenPmin(Rn) consists of the

n
2 bands of 2-bounce orbits of length

4 cos π
n = 2width (Rn).

(iv) If n = 3k, then there exist k regular 3-bounce orbits on Rn, namely the
equilateral triangles with vertices on the midpoints of the edges they hit. Their
length is 3

√
3 cos π

n which is larger than 2width (Rn) if k ≥ 2. If n �= 3k,
then P3,reg(Rn) is empty.



376 N. Alkoumi, F. Schlenk

Proof. The length of an edge of Rn is
∣∣1 − e

2π i
n

∣∣ = 2 sin π
n . Hence the distance

between the origin and the midpoint of an edge is cos π
n , and so

width (Rn) =
{
2 cos π

n if n is even,
1 + cos π

n if n is odd.

(i) is Proposition 4.1. The 2-bounce orbits on Rn are obvious. It remains to
determine all regular 3-bounce orbits on Rn for n ≥ 4.

Let c ∈ P3,reg(Rn), with bounce points on the edges ei1 , ei2 , ei3 . Assume first
that n = 3k and that {i1, i2, i3} is of the form {i, i + k, i +2k}. Then ei , ei+k, ei+2k
cut out an equilateral triangle � containing Rn . By Lemma 2.2, c runs along the
Fagnano triangle of �, which is equilateral.

0

1

L

ei1

ei2

ei3

v

Assume now that n �= 3k or that n = 3k and {i1, i2, i3} is not of the form
{i, i + k, i + 2k}. Since c ∈ P3,reg(Rn), the lines ei1 , ei2 , ei3 cut out a triangle �

containing Rn . We must show that the Fagnano triangle �F of � is not contained
in Rn . Assume first that n is odd. Denote by ρy the reflection along the y-axis. After
renaming i1, i2, i3, if necessary, we can assume that ei1 , ei2 , ei3 are as in the figure:
ei1 is the lower horizontal edge, and ρy(ei2) �= ei3 , with ei2 below ei3 . The hardest
case is when ei3 neighbors ρy(ei2), as in the figure. Then the line L through the
vertex v of � and through 0 passes through the left boundary point of ei1 . Hence a
point q on L projects to ei1 if and only if |q| ≤ 1. Since |v| > 1, we see that v does
not project to ei1 . Hence�F is not contained in Rn . If ei3 does not neighbor ρy(ei2),
then v will project to a point on ei1 even further apart from ei1 . The argument for
n even is similar and left to the interested reader. ��

5. Application to a question of Zelditch

Let again T be a planar convex billiard table, and recall from Proposition 2.4 that

Pmin(T ) ⊂ P2(T ) ∪ P3,reg(T ).
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It is interesting to ask when Pmin(T ) ⊂ P2(T ). This problem was brought up by
Zelditch [22] in relation with the inverse spectral problem on smooth domains.

For polygonal convex billiard tables, our algorithm solves this problem, cf.
the examples in the previous section. Classes of convex billiard tables with
Pmin(T ) ⊂ P2(T ) are centrally symmetric tables or, more generally, tables with
2 inradius(T ) = width (T ), see [13], and so-called fat disc-polygons [6].

Non-polygonal exampleswithPmin(T ) ⊂ P3,reg(T ) can be obtained as follows:
Let T be a convex billiard table and assume that there exists c ∈ P3(T ) with
�(c) < 2width (T ). Then for any convex billiard table T ′ with

r1 T ⊂ T ′ ⊂ r2 T and
r2
r1

<
2width (T )

�(c)

we still have Pmin(T ) ⊂ P3,reg(T ). Indeed, using monotonicity and conformality
of � and of the width we can estimate

�(T ′) ≤ r2 �(T ) ≤ r2 �(c) < 2r1 width (T ) ≤ 2 width (T ′).

Since the shortest generalised 2-bounce orbits on T ′ have length 2 width (T ′), the
claim follows.

Example 5.1. For the equilateral triangle � of edge length 1, the Fagnano triangle
is also equilateral, and has length 3

2 < 2width (�) = √
3. Hence for any convex

billiard table T ′ with

r1 � ⊂ T ′ ⊂ r2� and
r2
r1

<
2
√
3

3

every shortest generalised billiard orbit is a regular 3-bounce orbit. �

6. Generalisation to planar Minkowski billiards

Many newer works on (shortest) billiard orbits on convex domains T ⊂ R2 treat
the more general case of Minkowski billiards: There is given a strictly convex
body K ⊂ R2 with smooth boundary, which is used to define the length �K of
straight segments in R2 and a reflection law on T , see [1,2,4,15].

For symmetric K , the reflection law can be formulated as follows, [15, §3].
Given interior points a, b ∈ ◦

T and a smooth boundary point x ∈ ∂T , the segments
ax, xb are part of a K -billiard orbit on T if and only if x is a critical point of the
function y �→ �K (ay) + �K (yb) on ∂T . Equivalently, the exit direction xb can
be found from the entrance direction ax and from K by drawing first the tangent
line L1 and then the tangent line L2 to K as in Fig. 8.
If x is not smooth, then we agree that the reflection law holds at x if it holds
with respect to some line that passes through x and is disjoint from

◦
T . For K

the unit disc, this reflection law and the associated billiard dynamics becomes the
Euclidean one defined in the introduction. For the definition of the reflection law
for non-symmetric K we refer to [1,2,4]. Note that for symmetric K , the length of
a closed orbit does not depend on its orientation, but for non-symmetric K it may.
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a b

x
K L1

L2

∂T

Tx∂T

Fig. 8. The reflection law, geometrically

Our method extends to this more general setting. Indeed, as noticed in [1, §2.1],
the variational characterisation of Pmin(T, K ) in Proposition 2.4 still holds true in
this setting. In particular, the shortest generalised closed K -billiard orbits on T are
2-bounce or 3-bounce, and shortest 3-bounce orbits are regular. It remains to find
an efficient way to determine these orbits. This is less straightforward than in the
Euclidean case.

From now on we assume that K is symmetric. We first determine the set
P2(T ; K ) of generalised 2-bounce K -billiard orbits on T . We start with a few
observations.

(i) Given a regular 2-bounce orbit between edges ei , e j , these edges must be
parallel by the symmetry of K . Moreover, by the strict convexity of K , there
is a unique band of parallel 2-bounce orbits between ei , e j .

(ii) Given a point v disjoint from a line L , there is a unique point vL on L at which
the K -distance from v to L is attained, because K is strictly convex. We call
the segment vvL the K -altitude from v to L .

(iii) Given a segment s there are unique parallels L1, L2 through the end points
of s such that s is a K -altitude from L1 to L2, again because K is strictly
convex.

With these observations, we obtain as in Sect. 3 the following

Algorithm 1 (finding P2(T ; K ))

(i) If ∂T has parallel edges ei , e j , then the altitudes between ei , e j that are based
on ◦ei ,

◦e j form regular 2-bounce orbits on T , and all regular 2-bounce orbits
on T are of this form.

(ii) Given a vertex v and a disjoint edge e, form the K -altitude s from v to e.
Then s is half of a generalised 2-bounce orbit on T if and only if the end point
of s lies on e and the line through v parallel to e is disjoint from

◦
T .

(iii) Given two different vertices vi , v j , the segment s = viv j is half of a gener-
alised 2-bounce orbit on T if and only if the parallel lines Li , L j through

vi , v j for which s is a K -altitude are disjoint from
◦
T .

It remains to understand the regular 3-bounce orbits in Minkowski triangles �.
In [15] such triangles are called Fagnano triangles.
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Lemma 6.1. Let� be a triangle in the Minkowski plane (R2, K ). Then there exists
at most one Fagnano triangle in �.

Proof. The following proof was shown to us by Sergei Tabachnikov. Given an ori-
ented line L in R2 denote by �L the oriented angle from the positively oriented
x-axis to L . For i = 1, 2 let ui be an incoming billiard leg reflecting on a given line
to vi . Assume that �u1 > �u2, as in the left figure. Then the strict convexity of K
implies that �v1 < �v2, cf. Fig. 8.

u1
u2

v1v2
P1

P2

Q1Q2

R1

R2

Now suppose that P1Q1R1 and P2Q2R2 are two different Fagnano triangles
in �. Then not all pairs of the respective sides of these triangles are parallel, say
�P1Q1 > �P2Q2. Then �Q1R1 < �Q2R2, hence �R1P1 > �R2P2, hence
�P1Q1 < �P2Q2, a contradiction. ��

The same argument shows that embedded n-bounce orbits in convexMinkowski
n-gons are unique (if they exist). Following [15] we call a triangle acute if it admits
a Fagnano orbit. As in the Euclidean case we have

Algorithm 2 (finding P3,reg(T, K ))
Take all triples e1, e2, e3 among the edges of T that cut out an acute triangle con-
taining T . Among these triangles, select those whose Fagnano triangle is contained
in T .

Solving the followingproblemwould complete the algorithmfindingPmin(T ; K )

for symmetric K .

Open Problem. Give an algorithm finding the Fagnano triangle in a Minkowski
triangle.
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