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Abstract We compute the Euler characteristics of the generalized Kummer schemes asso-
ciated to A × Y , where A is an abelian variety and Y is a smooth quasi-projective variety.
When Y is a point, our results prove a formula conjectured by Gulbrandsen.

1 Introduction

We work over the complex numbers C. Let X be the smooth variety A × Y where Y is
an r -dimensional smooth quasi-projective variety and A is a g-dimensional abelian variety.
There is a natural morphism from the Hilbert scheme of points on X to the abelian variety

πn : Hilbn(X) → A (1.1)

which is the composition of the map Hilbn(X) → Symn(A) and the addition map
Symn(A) → A.1 It is clear that πn gives an isotrivial fibration which shows that the Euler
characteristic of Hilbn(X) is 0. The fiber over the origin OA ∈ A is defined to be

Kn(X) := π−1
n (OA).

We call the construction above the generalized Kummer construction of X = A×Y . When A
is an abelian surface and Y is a point, this construction gives a group of interesting examples
of holomorphic symplectic varieties, which are the generalized Kummer varieties introduced
by Beauville [1]. However, it should be mentioned that the scheme Kn(X) is always singular
when dim(X) > 2 and n > 3.

The Euler characteristics of Kn(X) are completely determined by the following formula.

1 Since we mainly concern Euler characteristics, we can always work with the reduced scheme structure in
this paper.
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Theorem 1.1 With the notation as above, we have

exp

⎛
⎝∑

n≥1

χ(Kn(X))

n2g
· tn

⎞
⎠ =

⎛
⎝∑

k≥0

Pr+g(k) · tk
⎞
⎠

χ(Y )

.

Here g ≥ 1 and Pm(k) is the number of m-dimensional partitions of k.

Note that partition counts have been previously related to the Euler characteristics of
Hilbert schemes in [3] and to Donaldson–Thomas invariants in [9].

When Y is a point, the theorem shows that

exp

⎛
⎝∑

n≥1

χ(Kn(A))

n2g
· tn

⎞
⎠ =

∑
k≥0

Pg(k) · tk .

This formula was conjectured by Gulbrandsen [8]. In particular, the case of g = 2 gives the
formula for the Euler characteristics of generalized Kummer varieties

χ(Kn(A)) = n3
∑
d|n

d,

which has been proven by Göttsche [5], Göttsche and Soergel [6], Debarre [4] and Gulbrand-
sen [7] in different ways.

When g = 1 and r = 1, the variety Kn(X) is also smooth. Göttsche computed the Euler
characteristic χ(Kn(X)) when Y = P

1 in [5, Chapter 2.4] by using the Weil conjecture. Our
method extends Göttsche’s results to any fibration X → E where E is an elliptic curve and
the fiber is a smooth curve Y (see Remark 3.2),

χ(Kn(X)) = χ(Y ) · n
∑
d|n

d.

When dim(X) = 3, by the MacMahon’s product formula for the generating series of
3-dimensional partitions [11], we can get the following interesting formula,2

χ(Kn(A × Y )) = χ(Y ) · n2g−1
∑
d|n

d2.

By [8], this formula computes the Donaldson–Thomas invariants in degree zero for abelian
3-folds,

DTn,0(A) = (−1)n−1

n6
χ(Kn(A)) = (−1)n−1

n

∑
d|n

d2.

The full Donaldson–Thomas theory of curves on abelian threefolds is discussed in [2].
Invariants in primitive classes are conjectured explicitly in terms of Jacobi forms.

The motivic theory of the generalized Kummer schemes has recently been established in
a joint work with Morrison [10], which gives a motivic refinement of the main theorem.
Our proof of the theorem follows 2 steps:
Step 1.Use cut-and-paste to show that the Euler characteristic of Kn(A×Y ) does not depend
on the choice of the g-dimensional abelian variety A.

2 After my talk on the results of this paper at the workshop “Motivic invariants related to K3 and abelian
geometries” in Berlin, I was informed by Andrea Ricolfi that he obtained the formula when Y is a point and
A is an abelian threefold independently.
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Step 2. Generalize the method in [7] to prove the theorem when A = E × B where E is an
elliptic curve and B is a (g − 1)-dimensional abelian variety.

2 The geometry of the generalized Kummer construction

Let ρ: Hilbn(X) → Symn(A) be the composition of the Hilbert–Chow morphism
Hilbn(X) → Symn(X) and the projection Symn(X) → Symn(A), and f : Symn(A) → A
be the addition map. Thus we have πn = f ◦ ρ. There is a standard stratification

Symn(A) =
∐
α

A(n)
α .

Here α runs through all (2-dimensional) partitions of n, and if we write α to be the partition
n = n1 + n2 + · · · + nl , the corresponding stratum is

A(n)
α =

{
l∑

i=1

ni [ai ] ∈ Symn(A)

∣∣∣ ai ∈ A, ai �= a j for i �= j

}
.

We study the morphism ρ over each A(n)
α . First we introduce the following definition.

Definition 2.1 For a smooth quasi-projective variety M , we denote by Hilbn(M × C
m){0}

the subscheme of Hilbn(M × C
m) consisting of subschemes supported on M × {0}, i.e.

Hilbn(M × C
m){0} =

{
ξ ∈ Hilbn(M × C

m)

∣∣∣Supp(ξ) ⊂ M × {0}
}
.

Remark 2.2 1. When M is a point, the above definition exactly gives the punctual Hilbert
scheme.

2. For an m-dimensional smooth projective variety M ′ and a point p ∈ M ′, we can also
define similarly the scheme

Hilbn(M × M ′){p} :=
{
ξ ∈ Hilbn(M × M ′)

∣∣∣Supp(ξ) ⊂ M × {p}
}
.

It is easy to see that it does not depend on the choice of M ′ and the point p. We have
Hilbn(M × M ′){p} ∼= Hilbn(M × C

m){0}.

Now we fix a partition α = (n1, n2, . . . , nl) of n. The morphism

ρ|
A(n)

α
: ρ−1

(
A(n)

α

)
→ A(n)

α

is a fibration with fiber

Fα
∼= Hilbn1(Y × C

g){0} × · · · × Hilbnl (Y × C
g){0}. (2.1)

Hence we obtain the following lemma.

Lemma 2.3 The Euler characteristic of Kn(X) can be expressed as follows

χ(Kn(X)) =
∑
α

χ
(
A(n)

α,0

)
· χ(Fα), (2.2)

where α runs through all partitions of n and A(n)
α,0 = f −1(OA)

⋂
A(n)

α .
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3 Step 1

Proposition 3.1 Let A and A′ be two g-dimensional abelian varieties and Y be an r-
dimensional smooth quasi-projective variety , we have

χ(Kn(A × Y )) = χ(Kn(A
′ × Y )).

Proof Since the underlying topological spaces of A and A′ are 2g-dimensional tori. We can
construct a homeomorphism

φ : A → A′

which preserves the group law, i.e.

φ(a +A b) = φ(a) +A′ φ(b).

The map φ induces a homeomorphism between Symn(A) and Symn(A′), and homeomor-
phisms between the corresponding strata A(n)

α and A′(n)
α as well. Moreover, since φ preserves

the group law, it also induces homeomorphisms between A(n)
α,0 and A′(n)

α,0 . Therefore we have

χ
(
A(n)

α,0

)
= χ

(
A′(n)

α,0

)
. (3.1)

The proposition is a consequence of Lemmas 2.3, (3.1) and the fact that Fα does not depend
on the choice of the abelian variety (see 2.1). 
�
Remark 3.2 If X → A is a fibration with smooth fiber Y , we can also define the generalized
Kummer construction associated to X → A by the same way:

Hilbn(X) → Symn(X) → Symn(A) → A.

As a consequence of Lemma 2.3, we have

χ(Kn(X)) = χ(Kn(A × Y ))

since both Euler characteristics are equal to the right hand side of (2.2).

4 Combinatoric relations

In this section, we generalize the combinatorics used in [7]. A partition α of n may be written
as α = (1α12α2 . . . nαn ) indicating the number of times each positive integer occurs in α.

Definition 4.1 We define a real number e(α) for each partition α of n by the following
recursion:

(1). e(n1) = n2.
(2). If α = (1α12α2 . . . nαn ) �= (n1), then

e(α) = −
∑
i

n

n − i
e(1α1 . . . iαi−1 . . . ).

Proposition 4.2 Let {an}n≥1 and {bn}n≥1 be two sequences of variables. For convenience
we also assume b0 = 1. The following two conditions are equivalent.
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(1). The variables {an} and {bn} satisfy the relations:
an =

∑
α

e(α) · bα1
1 bα2

2 . . . bαn
n ,

where α = (1α12α2 . . . nαn ) runs through all partitions of n.
(2). The variables {an} and {bn} satisfy the equation:

exp

⎛
⎝∑

n≥1

an
n2

· tn
⎞
⎠ =

∑
k≥0

bkt
k . (4.1)

Proof Since the variables an are uniquely determined by bn in both condition (1) and (2), it
suffices to prove the following statement.

(•) Assume {an} satisfy (4.1), then they also satisfy the relations in (1).
By applying the operator t d

dt on both sides of (4.1), we have
⎛
⎝∑

n≥1

an
n

· tn
⎞
⎠

⎛
⎝∑

m≥0

bmt
m

⎞
⎠ =

∑
k≥0

kbkt
k .

Hence we get

an = n
(

− an−1

n − 1
b1 − an−2

n − 2
b2 − · · · − a1bn−1 + nbn

)
(4.2)

by comparing the coefficient of tn . The statement (•) is obtained by induction (using 4.2)
and the recursion of e(α). 
�
Remark 4.3 Assume an = n

∑
d|n d and bn = P2(n). By the well-known formula

∑
n≥0

P2(k)t
k =

∏
k≥1

( 1

1 − tk

)
,

it is clear they satisfy the Eq. (4.1). Thus from Proposition 4.2 we know that

n
∑
d|n

d =
∑
α

∏
i

P2(i)
αi e(α).

This is the combinatoric formula shown in [7, Sect. 2.3].
Similarly, by MacMahon’s formula

∑
n≥0

P3(k)t
k =

∏
k≥1

( 1

1 − tk

)k
,

we know that an = n
∑

d|n d2 and bn = P3(n) satisfy (4.1). Hence we also have

n
∑
d|n

d2 =
∑
α

∏
i

P3(i)
αi e(α).

5 Step 2

By Proposition 3.1, we may assume the g-dimensional abelian variety A splits as E × B
where E is an elliptic curve and B is a (g − 1)-dimensional abelian variety. In this section
we follow the idea in [7].
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1188 J. Shen

Similar as in Sect. 2, we have the standard stratification of Symn(E),

Symn(E) =
∐
α

E (n)
α ,

and the addition map g : Symn(E) → E . We denote by P the preimage of OE , i.e. P =
g−1(OE ). Moreover, we define E (n)

α,0 = P
⋂

E (n)
α .

Lemma 5.1 ([7, Sect. 5])We have

χ(E (n)
α,0) = e(α).

This lemma is proven by showing that χ
(
E (n)

α,0

)
satisfies the same recursion formula as e(α).

Now we consider the projection h : Hilbn(E × C
m) → Symn(E) and define the sub-

scheme

Wn
m := h−1(P) ∩ Hilbn(E × C

m){0}.

Lemma 5.2 The Euler characteristics χ(Wn
m) satisfy the following equation

exp

⎛
⎝∑

n≥1

χ(Wn
m)

n2
· tn

⎞
⎠ =

∑
k≥0

Pm+1(k) · tk .

Proof By the same argument as in [7, Lemma 4.3], we get

χ(Wn
m) =

∑
α

∏
i

Pm+1(i)
αi χ(E (n)

α,0).

The lemma is then a consequence of Proposition 4.2 and Lemma 5.1. 
�
We relate χ(Wn

m) to χ(Kn(X)). Since X = E × B × Y , there is a projection

p : Kn(X) → Symn(B × Y ).

Lemma 5.3 (1). If a point Q ∈ Symn(B × Y ) is not of the form n · [b] for some point
b ∈ B × Y , then

χ(p−1(Q)) = 0.

(2). The Euler characteristic of Kn(X) is

χ(Kn(X)) = n2g−2χ(Y ) · χ(Wn
g+r−1).

Proof The proof of [7, Lemma 4.2] works for (1). Now we prove (2). We know from (1) that
only

p−1
{
n · [t × y] ∈ Symn(B × Y )

∣∣∣ t is an n-torsion point on B, y ∈ Y
}

contributes to the Euler characteristic χ(Kn(X)). Since the locus
{
n · [t × y] ∈ Symn(B × Y )

∣∣∣ t is an n-torsion point on B, y ∈ Y
}

⊂ Symn(B × Y )

is isomorphic to n2g−2 copies ofY , and the fiber of p over each point n·[t×y] ∈ Symn(B×Y )

is isomorphic to Wn
g+r−1, we get the formula

χ(Kn(X)) = n2g−2χ(Y ) · χ(Wn
g+r−1).


�
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The theorem is deduced by Lemma 5.2 and Lemma 5.3 (2).

Remark 5.4 One can also consider the natural A-action on the total Hilbert scheme Hilbn(X)

induced by the A-translate on X . It is easy to see that the quotient stack KQuot
n (X) is exactly

the global quotient of Kn(X) by the finite group A[n]( n-torsion points on A), i.e.

KQuot
n (X) ∼= [

Kn(X)/A[n]].
Hence the invariants χ(Kn(X))/n2g in the formula of the main theorem can be viewed as
Euler characteristics of the stacks KQuot

n (X).
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