Aequationes Mathematicae

On the functional equation x + f(y + f(x)) = y + f(x + f(y)),II

Jürg Rätz

Dedicated in friendship to Professor János Aczél on his 90th birthday

Abstract. For an abelian group (G, +, 0) we consider the functional equation

$$f: G \to G, \ x + f(y + f(x)) = y + f(x + f(y)) \quad (\forall x, y \in G),$$

$$(1)$$

together with the condition

$$f(0) = 0.$$
 (0)

The main question is that of existence of solutions of $(1) \wedge (0)$, specifically in the case when G is the direct sum $\mathbb{Z}_n^{(J)}$ of copies of a finite or infinite cyclic group (Theorems 3.2 and 4.20).

Mathematics Subject Classification. 39B12, 39B52.

Keywords. Abelian groups, composite functional equations.

1. Introduction, notation and preliminaries

This paper is a continuation of [17]. For the convenience of the reader, we repeat here some of the information on notation given in [17], section 1. The results were presented in [14-16].

Throughout the paper, (G, +, 0) or (G, +) or G denotes an abelian group. The set S(G) of all solutions of (1) and

$$S_0(G) := \{ f \in S(G); \ f(0) = 0 \}$$
(2)

completely determine each other [17, p. 188/189, (B6')], so we may confine ourselves to considering $S_0(G)$.

 i_A denotes the identity mapping of the set A and <u>a</u> the constant mapping with value a. For $f: A \to A$ and $n \in \mathbb{N}$ $(n \in \mathbb{Z} \text{ if } f \text{ is bijective})$ we denote by f^n the *n*th iterate of f.

For every abelian group G and every $n \in \mathbb{Z}$, the so-called canonical endomorphism $\omega_n : G \to G$ of G, defined by $\omega_n(x) := nx \; (\forall x \in G)$, is available. In

🕲 Birkhäuser

order to keep the notation light, we refrain from using a second subscript like in $\omega_{n,G}$. It will be most times clear from the context to what G the respective ω_n belongs; if necessary, we write $\omega_n : G \to G$.

For every $z \in G$, let $t_z : G \to G$, $t_z(x) := x + z$ ($\forall x \in G$) denote the translation of G by z. For $x \in G$, we let ord x stand for the order of x in G. We use \cong as the symbol for groups (or rings) to be isomorphic. For every $m \in \mathbb{N}$, $G[m] := \{x \in G; mx = 0\}$ (= Ker ω_m), $G[m]^* := \{x \in G; \text{ ord } x = m\}$. For a ring K with 1, U(K) is the set of units of K.

For every $n \in \mathbb{N}$, we let \mathbb{Z}_n stand for the cyclic group with n elements, most times written as $\{0, \ldots, n-1\}$. Whenever we find it helpful, we shall use the familiar ring structure on \mathbb{Z}_n or \mathbb{Z} with 1 as its identity element; for \mathbb{Z}_1 we have 1 = 0. We put in addition $\mathbb{Z}_0 := \mathbb{Z}$ (cf. Remark 4.1). Accordingly, 0 and 1 stand for the integers zero and one as well as for the zero and the identity element of \mathbb{Z}_n $(n \in \mathbb{N}^0)$. It will always be clear from the context what is meant.

For a list of fundamental properties of solutions of (1), stemming from M. Balcerowski [2], cf. [17, p. 188, (B1),...,(B9)].

Lemma 1.1. (a) Every $f \in S_0(G)$ is bijective and satisfies

$$f^{2}(x) + x = f(x) \quad (\forall x \in G).$$
(3)

- (b) If ω₂ : G → G is injective, then every f ∈ S₀(G) is additive, i.e., S₀(G) ⊂ End(G).
- (cf. [17, (B1'), (B3), (B8)]).

Lemma 1.2. For $f \in S_0(G)$, $x \in G$, $\operatorname{ord} x = n \in \mathbb{N} \cup \{\infty\}$, we have $\operatorname{ord} f(x) = \operatorname{ord} x$. f shares this property with group isomorphisms, but here f need not be additive ([17, p. 197–200, Example 3.14]).

Proof. Case 1: $n = \infty$. Then $kx \ (k \in \mathbb{N})$ are pairwise distinct, so are f(kx) $(k \in \mathbb{N})$ by Lemma 1.1(a), and finally, by [17, p. 190, Theorem 2.5], so are kf(x) $(k \in \mathbb{N})$. Therefore ord $f(x) = \infty = n$. Case 2: $n \in \mathbb{N}$, so nx = 0. For $j \in \mathbb{N}$, we have $jx = 0 \leftarrow [Lemma1.1(a)] \Rightarrow f(jx) = 0 \leftarrow [17, \text{ Theorem } 2.5] \Rightarrow jf(x) = 0$. Hence ord f(x) = ord x.

Lemma 1.3. If G_1 is an abelian group such that $G \cong G_1 \times G_1$, then $S_0(G) \neq \emptyset$, no matter if $S_0(G_1) \neq \emptyset$.

Proof. Let

$$f: G_1 \times G_1 \to G_1 \times G_1, \ f(\xi_1, \xi_2) := (-\xi_2, \xi_1 + \xi_2) \ (\forall (\xi_1, \xi_2) \in G_1 \times G_1).$$
(4)

For $x = (\xi_1, \xi_2) \in G_1 \times G_1$, $y = (\eta_1, \eta_2) \in G_1 \times G_1$ arbitrary, we have $x + f(y + f(x)) = (\xi_1, \xi_2) + f((\eta_1, \eta_2) + (-\xi_2, \xi_1 + \xi_2)) = (\xi_1, \xi_2) + f(\eta_1 - \xi_2, \eta_2 + \xi_1 + \xi_2) = (\xi_1, \xi_2) + (-\eta_2 - \xi_1 - \xi_2, \eta_1 - \xi_2 + \eta_2 + \xi_1 + \xi_2) = (-\eta_2 - \xi_2, \eta_1 + \eta_2 + \xi_1 + \xi_2) = (\xi_1 + \xi_2) = (\xi_1 + \xi_2) + f(x)$. This expression is invariant under interchanging x and y. Hence (1) holds, and so does (0). I.e., $S_0(G_1 \times G_1) \neq \emptyset$. By [17, Remark 1.1] $S_0(G) \neq \emptyset$.

If J is a set and G an abelian group, then $G^{(J)}$ denotes the direct sum of card J copies of G. For card J = 0, we have $G^{(J)} = \{0\}$ [3, p. 22]. For card $J = n \in \mathbb{N}$, $G^{(J)} := G^n := G \oplus \cdots \oplus G$ (n direct summands).

Lemma 1.4. For any set J we have

$$\operatorname{card} J \ge \aleph_0 \quad or \, \operatorname{card} J \in 2\mathbb{N}^0 \Longrightarrow S_0(G^{(J)}) \neq \emptyset, \quad S(G^{(J)}) \neq \emptyset.$$
(5)

Proof. $S_0(\{0\}) = \{0\}$ by [17, Lemma 2.1(a)], so the assertion holds for card J = 0. For card $J \in 2\mathbb{N}$ or card $J \geq \aleph_0$, $G^{(J)}$ appears as the direct sum of copies of $G^2 = G \oplus G$ (cf. [17, p. 195, Proof of Lemma 3.7]). By Lemma 1.3 and [17, Lemma 2.3(a)], $S_0(G^{(J)}) \neq \emptyset$, so $S(G^{(J)}) \neq \emptyset$. □

Lemma 1.5. For $f \in S_0(G)$ and $x \in G$, we obtain (a) (i) $f^2(x) = x \Leftrightarrow$ (ii) $f(x) = 2x \not\iff$ (iii) 3x = 0. (b) $f^3(x) = x \Leftrightarrow 2x = 0$.

Proof. (a): (i) \Leftrightarrow (ii) immediately follows from (3) in Lemma 1.1.—(ii) \Rightarrow (iii): By [17, (B4)] $f^3(x) = -x$, so $ff^2(x) = -x$, hence by (i) f(x) = -x, and by (ii) 2x = -x, so (iii) holds.—(iii) \Rightarrow (i): Consider the function f in (4) for $G = \mathbb{Z}_3 \times \mathbb{Z}_3$ and x = (1, 0). Then 3x = 0, but $f^2(1, 0) =$ $f(0, 1) = (-1, 1) \neq (1, 0)$, and by Lemma 1.3 $f \in S_0(\mathbb{Z}_3 \times \mathbb{Z}_3)$.

(b) $f^3(x) = x \Leftarrow_{(B4)} \Rightarrow -x = x \Leftrightarrow 2x = 0.$

Lemma 1.6. If $f \in S_0(G)$ and H is a subgroup of G such that $f(H) \subset H$, then the restriction $g: H \to H$ of f is in $S_0(H)$, and f(H) = H.

Proof. $f(H) \subset H$ implies the existence of g and g(0) = f(0) = 0. Let $x, y \in H$ be arbitrary. Then $x + f(y), y + f(x), f(x + f(y)), f(y + f(x)) \in H$, and we have $x + g(y + g(x)) = x + f(y + f(x)) = _{(1)} = y + f(x + f(y)) = y + g(x + g(y))$. Since $x, y \in H$ were arbitrary, we have $g \in S_0(H)$. By Lemma 1.1(a) g(H) = H, so f(H) = H.

2. Further general properties of solutions of (1)

Having Lemma 1.1(a) in mind, we first extend [17, p. 193, Lemma 3.2] to arbitrary abelian groups G.

Lemma 2.1. Let $f \in S_0(G)$. Then:

(a) $f^3 = -i_G, f^6 = i_G.$

(b) G is the disjoint union of $C_0 := \{0\}$ and, for $G \neq \{0\}$, of the C_x $(x \in G \setminus \{0\})$ where C_x is the range of the cycle

$$x\mapsto f(x)\mapsto -x+f(x)\mapsto -x\mapsto -f(x)\mapsto x-f(x)\mapsto x \quad of f.$$

(c) card $C_x \in \{1, 2, 3, 6\}$ ($\forall x \in G$), *i.e.*, *f* has only 1-,2-,3-, and/or 6-cycles.

- (d) $x, y \in G, y \in C_x \Rightarrow \text{ord } y = \text{ord } x.$
- (e) f has exactly one 1-cycle, namely $\{0\}$.
- (f) 1-cycles of f³ only stem from 1- or 3-cycles of f.
 2-cycles of f³ only stem from 2- or 6-cycles of f.

Proof. (a) follows from (B4). (b) On the basis of Lemma 1.1(a) we define

$$x, y \in G \Longrightarrow [x \sim_f y : \Leftrightarrow \exists k \in \mathbb{Z} \text{ such that } y = f^k(x)].$$

Then \sim_f is an equivalence relation on G, and the sets C_x $(x \in G)$ are the \sim_f -classes. By the aid of (3) and part (a), $f^2(x) = -x + f(x)$, $f^3(x) = -x$, $f^4(x) = f(-x) =_{(B4)} = -f(x)$, $f^5(x) = f^2(-x) =_{(B4)} = -f^2(x) = x - f(x)$, $f^6(x) = x$. (For x = 0, C_x becomes {0}). (c) By $f^6(x) = x$, the iterative order of every $x \in G$ is a positive divisor of 6, i.e., the possible lengths of cycles of f are 1, 2, 3, 6. (d) follows at once from Lemma 1.2. (e) is a consequence of [17, Lemma 2.4] and (0). (f) By (a), f^3 is involutorial, so f^3 has only 1- and/or 2-cycles. The rest follows, written in the usual cycle notation, from

$$(u)^{3} = (u), \ (u v w)^{3} = (u)(v)(w); \ (u v)^{3} = (u v), \ (u v w x y z)^{3}$$

= $(u x)(v y)(w z).$ (6)

Lemma 2.2. If $\omega_2 : G \to G$ is injective and $f \in S_0(G)$, then f has no 3-cycles.

Proof. By Lemma 1.5(b), the 1-cycles (x) of f^3 are characterized by 2x = 0, i.e., by $\omega_2(x) = 0$, i.e., due to the hypothesis, by x = 0. If (u v w) were a 3-cycle of f, then by (6) $(u v w)^3 = (u)(v)(w)$ with (see above) u = v = w = 0, a contradiction. So the assertion holds.

Lemma 2.3. If $\omega_2 : G \to G$ and $\omega_3 : G \to G$ are injective and $f \in S_0(G)$, then card $C_x = 6 \ (\forall x \in G \setminus \{0\})$.

Proof. Let $x \in G \setminus \{0\}$ be arbitrary. By [17, Lemma 2.4] and (0), $f(x) \neq x$. Injectivity of ω_2 and ω_3 implies $2x \neq 0$, $3x \neq 0$, so by Lemma 1.5(a), (b) $f^2(x) \neq x$, $f^3(x) \neq x$. $f^4(x) = x$ would imply $f^2(x) = f^2 f^4(x) = f^6(x) = x$, which is already excluded. If $f^5(x) = x$, then $f(x) = ff^5(x) = f^6(x) = x$, which is not true either. So

$$f^{\nu}(x) \neq x \quad (\nu = 1, 2, 3, 4, 5).$$
 (7)

Assume that there are $\mu, \nu \in \{0, 1, 2, 3, 4, 5\}$ with $\mu < \nu$, $f^{\mu}(x) = f^{\nu}(x)$. Then, since f^{μ} is bijective, $x = f^{\nu-\mu}(x)$, where $\nu - \mu \in \{1, 2, 3, 4, 5\}$, which is a contradiction to (7). Therefore $x = f^0(x), f(x), \ldots, f^5(x)$ are pairwise distinct, i.e. card $C_x = 6$.

Corollary 2.4. If $f \in S_0(G)$, each of the following conditions is sufficient for card $C_x = 6$ ($\forall x \in G \setminus \{0\}$):

Vol. 89 (2015) On the functional equation x + f(y + f(x)) = y + f(x + f(y)), II 173

- (i) G is torsion-free.
- (ii) $\exists n \in \mathbb{N} \text{ with } 2 \not\mid n, 3 \not\mid n, \text{ and } nG = \{0\}.$

Proof. In Cases (i) and (ii), ω_2 and ω_3 turn out to be injective, and the assertion follows from Lemma 2.3.

Bijectivity of all $f \in S(G)$ [17, (B1')] is an invitation to the question as to whether f^{-1} must be in S(G).

Theorem 2.5.

(a) $f \in S_0(G) \Rightarrow f^{-1} = i_G - f \in S_0(G).$

- (b) If $S_0(G) \subset \text{End}(G)$ and $f \in S(G)$, then $f^{-1} \in S(G)$.
- (c) In (b), the condition $S_0(G) \subset \text{End}(G)$ is essential.
- Proof. (a) By (B1'), f is bijective. Let $x \in G$ be arbitrary, $y := f^{-1}(x)$. By (3) $f^2(y) + y = f(y)$, so $f^2f^{-1}(x) + f^{-1}(x) = ff^{-1}(x)$, i.e., $f(x) + f^{-1}(x) = x$. Since $x \in G$ was arbitrary, we have $f + f^{-1} = i_G$, i.e., $f^{-1} = i_G - f$. For the second part of the assertion, let $x, y \in G$ be arbitrary. By (B1') there are unique $x', y' \in G$ with x = f(x'), y = f(y'), and we have $x + (i_G - f)(y + (i_G - f)(x)) = f(x') + (i_G - f)(f(y') + (i_G - f)(f(x'))) = f(x') + f(y') + f(x') - f^2(x') - f(f(y') + (i_G - f)(f(x'))) = f(x') + f(y') + f(x') - f^2(x') - f(f(y') + f(x') - f^2(x')) =_{(3)} = f(x') + f(y') + x' - f(f(y') + x') =_{(1)} = f(x') + f(y') + y' - f(f(x') + y')$. The expressions on both sides of "=₍₁₎=" are transformed into each other by interchanging x' and y'. The above calculation shows that the latter expression is $y + (i_G - f)(x + (i_G - f)(y))$. Since $x, y \in G$ were arbitrary, we get $(i_G - f) \in S(G)$. Since $(i_G - f)(0) = 0$, we have $(i_G - f) \in S_0(G)$ as asserted.
- (b) Let $f \in S(G)$ be arbitrary. By [17, Remark 1.3] there exists $z \in G$ and $g \in S_0(G)$ with $f = g \circ t_z$, hence $f^{-1} = t_{-z} \circ g^{-1}$. By (a), $g^{-1} \in S_0(G)$, so $g^{-1} \in \text{End}(G)$ by hypothesis. For arbitrary $x, y \in G$ we have $x + f^{-1}(y + f^{-1}(x)) = x + g^{-1}(y + g^{-1}(x) z) z =_{\text{End}} = x + g^{-1}(y) + g^{-2}(x) g^{-1}(z) z =_{(3)} = g^{-1}(x) + g^{-1}(y) g^{-1}(z) z$. This last expression is invariant under interchanging x and y, so f^{-1} satisfies (1), i.e., $f^{-1} \in S(G)$. For (c) cf. Remark 2.8 below.

(B6) [17, p. 188] ensures that the membership of f in S(G) is preserved under composition from the right with translations. How about composition from the left?

Theorem 2.6.

- (a) If $S_0(G) \subset \text{End}(G)$, $f \in S(G)$, and $w \in G$, then $t_w \circ f \in S(G)$.
- (b) In (a), the condition $S_0(G) \subset \text{End}(G)$ is essential, even for $f \in S_0(G)$.
- (c) If $S_0(G) \subset \text{End}(G)$ and $f \in S(G)$, then there exists a unique $x_0 \in G$ with $f(x_0) = 0$, and for $g := f \circ t_{x_0}$ we have $g \in S_0(G)$ and $t_w \circ f = f \circ t_{g^{-1}(w)}$ for all $w \in G$.

J. Rätz

Proof. (a) Let $f \in S(G)$, $w \in G$ be arbitrary. By Theorem 2.5(b) $f^{-1} \in S(G)$. By (B6) $f^{-1} \circ t_{-w} \in S(G)$, and again by Theorem 2.5(b) $(f^{-1} \circ t_{-w})^{-1} \in S(G)$, i.e., $t_w \circ f \in S(G)$. (b) See Remark 2.7 below. (c) Existence and uniqueness of x_0 follow from (B1'). By (B6) $g \in S(G)$, and since $g(0) = f(x_0) = 0$, we even have $g \in S_0(G)$, so by hypothesis $g \in \text{End}(G)$. Theorem 2.5(a) implies $g^{-1} = i_G - g$, so for all $x, w \in G$ we get $(f \circ t_{g^{-1}(w)})(x) = f(x + w - g(w)) = f(x + w + g(-w)) = f(x + w + f(-w + x_0)) =_{(1)} = w - x_0 + x + w + f(-w + x_0 + f(x + w))$, $(f \circ t_{g^{-1}(w)})(x) = w - x_0 + x + w + f(-w + x_0 + f(x + w))$ for all $x, w \in G$. Now the last term is $g(-w + f(x + w)) =_{\text{End}} = g(-w) + g(f(x + w)) = f(-w + x_0) + f(x_0 + f(x + w))$, so

$$(f \circ t_{g^{-1}(w)})(x) = w - x_0 + x + w + f(-w + x_0) + f(x_0 + f(x + w)) \quad (\forall x, w \in G).$$
(8)

Next we put in (1) x + w, x_0 in place of x, y, respectively, and get $x + w + f(x_0 + f(x+w)) = x_0 + f(x+w+f(x_0)) = x_0 + f(x+w)$, so $f(x_0 + f(x+w)) = -x - w + x_0 + f(x+w)$, and (8) becomes

$$(f \circ t_{g^{-1}(w)})(x) = w + f(-w + x_0) + f(x + w) \quad (\forall x, w \in G).$$
(9)

Finally, $f(-w+x_0)+f(x+w) = f(-w+x_0)+f(x+w-x_0+x_0) = g(-w)+g(x+w-x_0) = g(-w)+g(w)+g(x-x_0) = f(x)$, so by (9) $(f \circ t_{g^{-1}(w)})(x) = w+f(x)$. Since $x \in G$ was arbitrary, we obtain $f \circ t_{g^{-1}(w)} = t_w \circ f$ ($\forall w \in G$). \Box

Remark 2.7. Let $f_0 \in S_0(\mathbb{Z}_2^6) \setminus \text{End}(\mathbb{Z}_2^6)$ be the specific function in [17, p. 197–200, Example 3.14] and $\{e_1, \ldots, e_6\}$ the basis used there, and let $g := f_0 + \underline{e_1}$. From the definition of f_0 [17, (32),(34),...,(54)] we obtain $g(e_1) = f_0(e_1) + e_1 = e_2 + e_1$, $g(e_3) = f_0(e_3) + e_1 = e_4 + e_1$. Then $e_1 + g(e_3 + g(e_1)) = e_1 + g(e_3 + e_2 + e_1) = e_1 + f_0(e_1 + e_2 + e_3) + e_1 = [17,(40)] = e_2 + e_3 + e_6$, $e_3 + g(e_1 + g(e_3)) = e_3 + g(e_1 + e_4 + e_1) = e_3 + g(e_4) = e_3 + f_0(e_4) + e_1 = [17, (35)] = e_3 + e_3 + e_4 + e_1 = e_1 + e_4 \neq e_2 + e_3 + e_6$, so g violates the functional equation (1), i.e., $t_{e_1} \circ f_0 = g \notin S(\mathbb{Z}_2^6)$, and Theorem 2.6(b) is proved.

Remark 2.8. Let f_0 and $\{e_1, \ldots, e_6\}$ be as in Remark 2.7 and let $h := f_0^{-1} \circ t_{e_1}$. By Theorem 2.5(a) $f_0^{-1} \in S_0(\mathbb{Z}_2^6)$, so by (B6) $h \in S(\mathbb{Z}_2^6)$. Then $h^{-1} = (f_0^{-1} \circ t_{e_1})^{-1} = t_{e_1}^{-1} \circ f_0 = t_{e_1} \circ f_0 \notin S(\mathbb{Z}_2^6)$ by Remark 2.7. Therefore we have proved Theorem 2.5(c).

Next we come to a variant of (B8) [17, p. 188].

Lemma 2.9. If $\omega_2 : G \to G$ is surjective, then $S_0(G) \subset \text{End}(G)$.

Proof. Let $f \in S_0(G)$. By (B7) $2f(x+y) = 2f(x) + 2f(y) \ (\forall x, y \in G)$, so by [17, p. 190, Theorem 2.5] $f(2(x+y)) = f(2x) + f(2y) \ (\forall x, y \in G)$. For arbitrary $u, v \in G$, the surjectivity of ω_2 ensures the existence of $x, y \in G$ such that u = 2x, v = 2y, so u + v = 2x + 2y = 2(x+y), and we have f(u+v) = f(u) + f(v). As $u, v \in G$ were arbitrary, $f \in \text{End}(G)$ holds. \Box Lemma 2.3 in [17, p. 189] is a tool for building solutions of (1) on $\prod_{i \in I} G_i$ or $\bigoplus_{i \in I} G_i$ from those on G_i 's. Our Lemma 2.10 proceeds in the opposite direction where appropriate care is necessary: $S_0(\mathbb{Z}_2^2) \neq \emptyset$, but $S_0(\mathbb{Z}_2) = \emptyset$ ([17, p. 194, Example 3.4(b), (c)]). Hypothesis (3) below takes care.

Lemma 2.10. Hypotheses:

(1) $I \neq \emptyset$, $(G_i)_{i \in I}$ is a family of abelian groups. (2) For every $i \in I$ there is $n_i \in \mathbb{N}$ such that $n_i G_i = \{0\}$. (3) $gcd(n_i, n_j) = 1$ for all $i, j \in I$ with $i \neq j$. (4) $G'_j := \{(x_i)_{i \in I} \in \prod_{i \in I} G_i; x_i = 0 \quad (\forall i \in I \setminus \{j\}\} (j \in I).$ (5) $\chi_j : G_j \to G'_j$ is the canonical bijection $(\forall j \in I)$.

Then:

- (a) $f \in S_0(\bigoplus_{i \in I} G_i) \Rightarrow f(G'_j) \subset G'_j, f | G'_j \in S_0(G'_j), and f_j := \chi_j^{-1} \circ (f | G'_j) \circ \chi_j \in S_0(G_j) \text{ for all } j \in I.$
- (b) If $f \in S_0(\bigoplus_{i \in I} G_i)$ is additive, so are $f|G'_j$ and f_j $(\forall j \in I)$, and we have $f = (\bigoplus_{j \in I} f_j) : (x_j)_{j \in I} \mapsto (f_j(x_j))_{j \in I} \quad (\forall (x_j)_{j \in I} \in \bigoplus_{j \in I} G_j).$

Proof. (a) Let $j \in I$, $x = (z_i)_{i \in I} \in G'_j$ be arbitrary, say $z_i = 0$ ($\forall i \in I \setminus \{j\}$), $z_j =: x_j \in G_j$. Since $\chi_j : G_j \cong G'_j$ we get ord $x = \text{ord } x_j$, so by Hypothesis (2) ord $x \mid n_j$, and by Lemma 1.2

$$\operatorname{ord} f(x) \mid n_j. \tag{10}$$

Let $(y_i)_{i\in I} := f(x)$ and assume that $y_i \neq 0$ for $i \in I \setminus \{j\}$. $y_i \in G_i$ and Hypothesis 2) imply $1 \neq \operatorname{ord} y_i | n_i$. Because $\operatorname{ord} y_i | \operatorname{ord} f(x)$ and by (10) $\operatorname{ord} y_i | n_j$, so $1 \neq \operatorname{ord} y_i | \operatorname{gcd}(n_i, n_j)$ where $i \neq j$, in contradiction to Hypothesis (3). Therefore $y_i = 0$ ($\forall i \in I \setminus \{j\}$), i.e., $f(x) = (y_i)_{i\in I} \in G'_j$. Since $j \in I$ and $x \in G'_j$ were arbitrary, we have the first part of assertion (a), namely $f(G'_j) \subset G'_j$ ($\forall j \in I$). So for every $j \in I$, $f|G'_j$ exists and is in $S_0(G'_j)$ by Lemma 1.6. Finally, $f_j \in S_0(G_j)$ ($\forall j \in I$) by [17, Remark 1.1(a)].

(b) As a composite of additive mappings, f_j is additive for every $j \in I$. For the inclusion map $\psi_j : G'_j \hookrightarrow \bigoplus_{i \in I} G_i \quad (j \in I)$, we have

$$\psi_j \circ (f|G'_j) = f \circ \psi_j \quad (\forall j \in I).$$
(11)

Let $x = (x_i)_{i \in I} \in \bigoplus_{i \in I} G_i$ and $j \in I$ be arbitrary. Then $x_j = \operatorname{pr}_j x \in G_j$, $\chi_j \operatorname{pr}_j x \in G'_j$, $\psi_j \chi_j \operatorname{pr}_j x \in \bigoplus_{i \in I} G_i$, and since x has finite support, we get

$$\sum_{j \in I} \psi_j \chi_j \operatorname{pr}_j x = \sum_{j \in I} (0, \dots, x_j, \dots, 0) = x \quad (\forall x \in \bigoplus_{i \in I} G_i).$$
(12)

 $\begin{array}{ll} \text{Therefore} \ f(x) &=_{(12)} = \ f(\sum_{j \in I} \psi_j \chi_j \mathrm{pr}_j x) \\ &= \ \sum_{j \in I} \psi_j (f|G'_j) \chi_j \mathrm{pr}_j x = \sum_{j \in I} \psi_j \chi_j \chi_j^{-1} (f|G'_j) \chi_j \mathrm{pr}_j x \\ &= \ \sum_{j \in I} \psi_j \chi_j f_j (x_j) \\ &= \ \sum_{j \in I} \psi_j \chi_j (x_j) \\ &= \ \sum_{j \in I} \psi_j \chi_j (x_j) \\ &= \ \sum_{j \in I} \psi_j (x_j) \\ &$

3. Solutions of (1) for $G = \mathbb{Z}_n$

A few contributions to the subject of this section can be found in [17, pp. 191– 192]. For $n \in \mathbb{N}$, the fact that $\omega_{n+k} : \mathbb{Z}_n \to \mathbb{Z}_n$ is identical with $\omega_k : \mathbb{Z}_n \to \mathbb{Z}_n$ [17, Remark 2.10] makes it natural to write $\omega_{\alpha} : \mathbb{Z}_n \to \mathbb{Z}_n$ for ω_k when $k \in \alpha \in \mathbb{Z}_n$. We are going to extend first those results towards a criterion for the existence of solutions of (1) (Theorem 3.2). Because of the agreement $\mathbb{Z}_0 := \mathbb{Z}$, the symbol \mathbb{Z}_n is available for all $n \in \mathbb{N}^0$. We begin by a numbertheoretic remark:

Remark 3.1. (a) For an odd integer n > 1, the following are equivalent:

- (i) *n* has a positive divisor $d \equiv_6 5$.
- (ii) *n* has a prime divisor $\equiv_6 5$.
- (b) Every $n \in \mathbb{N}$ has a divisor $\equiv_6 5$, namely -1, but 3 has no prime divisor $\equiv_6 5$. So "positive" is essential in (i).

Proof of (a). (ii) \Rightarrow (i) is trivial. (i) \Rightarrow (ii): Let $d \in \mathbb{N}$, $d|n, d \equiv_6 5$. There exist $r \in \mathbb{N}$; $p_1, \ldots, p_r \in \mathbb{P}$ (not necessarily pairwise distinct) with $d = p_1 \cdot \ldots \cdot p_r$. Oddness of n enforces $p_{\nu} \in \{3\} \cup (6\mathbb{N} + 1) \cup (6\mathbb{N}^0 + 5)$ ($\nu = 1, \ldots, r$). As $d \equiv_6 5$, we have 3/d. If p_1, \ldots, p_r were in $6\mathbb{N} + 1$, then $d \in 6\mathbb{N} + 1$, which is a contradiction to the definition of d. So at least one p_{ν} is in $6\mathbb{N}^0 + 5$, and this is a prime divisor of n, i.e., (ii) holds.

Theorem 3.2. For $n \in \mathbb{N}^0$ and

$$\mathbb{M} := \{ m \in \mathbb{N}; \ m \ odd, \ m \ has \ no \ positive \ divisor \equiv_6 5, \ and m \ contains \ the \ prime \ factor 3 \ at \ most \ once \},$$
(13)

the following statements are equivalent:

(i) S₀(Z_n) ≠ Ø,
(ii) n ∈ M,
(iii) There exists α ∈ Z_n such that α² − α + 1 = 0.

Proof. For n = 0, (i) is false [17, Example 2.7], (ii) is false by (13), and (iii) is false since $\alpha^2 - \alpha + 1$ is odd ($\forall \alpha \in \mathbb{Z}_0 = \mathbb{Z}$). So the assertion holds for n = 0. In the following, let $n \in \mathbb{N}$.

(i) \Rightarrow (ii). Let $S_0(\mathbb{Z}_n) \neq \emptyset$. By [17, Corollary 2.6] $S_0(\mathbb{Z}_n) \subset \text{End}(\mathbb{Z}_n)$. By [17, Remark 2.10] End $(\mathbb{Z}_n) = \{\omega_0, \ldots, \omega_{n-1}\}$. If *n* were even, then by [17, Corollary 2.11] $S_0(\mathbb{Z}_n) = \emptyset$, contradicting (i). Therefore

$$n ext{ is odd.} ext{(14)}$$

Assume that there exist $d \in \mathbb{N}$ with $d|n, d \equiv_6 5$. Then gcd(d, 2) = 1 and gcd(d, 3) = 1, so $\omega_2 : \mathbb{Z}_d \to \mathbb{Z}_d$ and $\omega_3 : \mathbb{Z}_d \to \mathbb{Z}_d$ are injective.

Assume that $f \in S_0(\mathbb{Z}_d)$. By Lemma 2.3, every cycle C_x $(x \in \mathbb{Z}_d \setminus \{0\})$ of f has cardinality 6. By Lemma 2.1(b), \mathbb{Z}_d is the disjoint union of one 1-cycle and

some 6-cycles, therefore $d = \operatorname{card} \mathbb{Z}_d \equiv_6 1$, contradicting $d \equiv_6 5$. So f cannot exist, i.e., $S_0(\mathbb{Z}_d) = \emptyset$.

Now by (i) $S_0(\mathbb{Z}_n) \neq \emptyset$, say, by [17, (14)] $\omega_k \in S_0(\mathbb{Z}_n)$ for a suitable $k \in \mathbb{Z}$, where $n|m_k$. Since d|n, we get $d|m_k$, so again by [17, (14)] ($\omega_k : \mathbb{Z}_d \to \mathbb{Z}_d$) $\in S_0(\mathbb{Z}_d)$, a contradiction to $S_0(\mathbb{Z}_d) = \emptyset$. This means that d cannot exist, i.e.,

$$n$$
 has no positive divisor $\equiv_6 5.$ (15)

By inspection we find that $9/m_k$ $(k \in \{0, \ldots, 8\})$, so by [17, (14)] $S_0(\mathbb{Z}_9) = \emptyset$. Let us realize (i) again by the assumption $\omega_k \in S_0(\mathbb{Z}_n)$, so again as above $n|m_k$. If 9|n, then $9|m_k$, so by [17, (14)] $(\omega_k : \mathbb{Z}_9 \to \mathbb{Z}_9) \in S_0(\mathbb{Z}_9)$, which is impossible. Therefore 9/n, so

$$3^{s}|n \quad \text{only if} \quad s = 0 \quad \text{or} \quad s = 1.$$
(16)

By (14), (15), (16) $n \in \mathbb{M}$, i.e., (ii) holds.

(ii) \Rightarrow (i). Let $n \in \mathbb{M}$. Then there exist $s \in \{0, 1\}$, $n' \in \mathbb{N}$ such that $n = 3^s n'$, gcd(3, n') = 1. $n \in \mathbb{M}$ implies $n' \in \mathbb{M}$.

Case 1: n' = 1. So $n \in \{1, 3\}$, and since $S_0(\mathbb{Z}_1) = \{\omega_0\}$, $S_0(\mathbb{Z}_3) = \{\omega_2\}$ [17, Example 2.12], (i) holds. – Case 2: n' > 1. (This means in fact that $n' \ge 7$). Since $3 \not\mid n'$, all prime divisors of n' are in $6\mathbb{N} + 1$. Therefore -3 is a quadratic residue modulo all prime divisors of n' [4, p. 75, Theorem 96]; Gauss's Lemma is involved here. It follows from [10, p. 63, Theorem 5-1] that

-3 is a quadratic residue modulo n'. (17)

 $\mathbb{Z}_{n'}$ is a commutative ring with $1 \neq 0$. Oddness of n' guarantees that gcd(n', 4) = 1, so $4 \in U(\mathbb{Z}_{n'})$, and for any $x \in \mathbb{Z}_{n'}$ we have

$$x^{2} - x + 1 = 0 \Leftrightarrow 4x^{2} - 4x + 4 = 0 \Leftrightarrow (2x - 1)^{2} = -3.$$
(18)

By (17), $(2x-1)^2 = -3$ is solvable in $\mathbb{Z}_{n'}$, and so is $x^2 - x + 1 = 0$, i.e., there exists $\alpha \in \mathbb{Z}_{n'}$ such that $\alpha^2 - \alpha + 1 = 0$. If $\pi : \mathbb{Z} \to \mathbb{Z}_{n'}$ is the canonical ring epimorphism, then there exists $k \in \mathbb{Z}$ with $\pi(k) = \alpha$. Then $\pi(k^2 - k + 1) = \alpha^2 - \alpha + 1 = 0$ whence $n' | (k^2 - k + 1)$, so by [17, (14)]

$$\omega_k \in S_0(\mathbb{Z}_{n'}), \quad \text{i.e., } S_0(\mathbb{Z}_{n'}) \neq \emptyset.$$
 (19)

Case 2a: s = 0. Then n = n', so by (19) $S_0(\mathbb{Z}_n) \neq \emptyset$. Case 2b: s = 1. Then $\mathbb{Z}_n \cong \mathbb{Z}_3 \times \mathbb{Z}_{n'}$, and from $S_0(\mathbb{Z}_3) \neq \emptyset$, (19), and [17, Lemma 2.3(a)] we get again $S_0(\mathbb{Z}_n) \neq \emptyset$. So (i) holds in both cases.

(i) \Leftrightarrow (iii). For the canonical ring epimorphism $\pi : \mathbb{Z} \to \mathbb{Z}_n$ (remember $\pi(0) = 0$, $\pi(1) = 1$ by our notational agreement) we have (i) $\Leftarrow_{[17, (14)]} \Rightarrow \exists k \in \{0, \dots, n-1\}$ with $n|(k^2-k+1) \Leftrightarrow \exists k \in \{0, \dots, n-1\}$ with $\pi(k^2-k+1) = 0 \Leftrightarrow_{\pi \text{ surjective}} \Rightarrow \exists \alpha \in \mathbb{Z}_n$ with $\alpha^2 - \alpha + 1 = 0$ (iii).

Remark 3.3. The last part of the proof above shows that for the canonical epimorphism $\pi : \mathbb{Z} \to \mathbb{Z}_n$, we have

$$S_0(\mathbb{Z}_n) = \{\omega_k; \ k \in \{0, \dots, n-1\}, \ (\pi(k))^2 - \pi(k) + 1 = 0\} \quad (\forall n \in \mathbb{N}).$$
 (20)

Theorem 3.2 characterizes those $n \in \mathbb{N}^0$ for which $S_0(\mathbb{Z}_n) \neq \emptyset$ by $n \in \mathbb{M}$. So for all $n \in \mathbb{N}^0 \setminus \mathbb{M}$, card $S_0(\mathbb{Z}_n) = 0$. What is card $S_0(\mathbb{Z}_n)$ for $n \in \mathbb{M}$?

It becomes visible from (13) that the prime number 3 plays a singular role in the present characterization problem. This will be observed many more times in what follows.

Lemma 3.4. If $n \in \mathbb{M}$, 3/n, and if n has σ distinct prime divisors, then $\operatorname{card} S_0(\mathbb{Z}_n) = 2^{\sigma}$.

Proof. For n = 1 we have $S_0(\mathbb{Z}_n) = \{\omega_0\}$ and $\sigma = 0$, so the assertion holds. Let n > 1. Then by (13) we have that n is odd and $n \ge 7$, so gcd(4, n) = 1, and 4 is a unit of the ring \mathbb{Z}_n . For any $\alpha \in \mathbb{Z}_n$ we get (cf. (18)) (i) $\alpha^2 - \alpha + 1 = 0 \Leftrightarrow$ (ii) $(2\alpha - 1)^2 = -3$. Since n is odd and gcd(n, -3) = 1, (ii) has 2^{σ} solutions in \mathbb{Z}_n ([10, p. 65, Theorem 5-2]). As $\alpha \mapsto 2\alpha - 1$ is bijective from \mathbb{Z}_n into itself, (i) has 2^{σ} solutions, too, so by (20) card $S_0(\mathbb{Z}_n) = 2^{\sigma}$.

Theorem 3.5. If $n \in \mathbb{M}$ and $3 \not\mid n$, then $3n \in \mathbb{M}$ and there exists $q \in \mathbb{N}^0$ with n = 6q + 1, furthermore

$$S_0(\mathbb{Z}_{3n}) = \{ \omega_{(6q+1)\cdot 2+3\cdot (4q+1)t}; \ \omega_t \in S_0(\mathbb{Z}_n) \},$$
(21)

$$\operatorname{card} S_0(\mathbb{Z}_{3n}) = \operatorname{card} S_0(\mathbb{Z}_n).$$
(22)

Proof. For n = 1 we have $S_0(\mathbb{Z}_n) = \{\omega_0\}$, $S_0(\mathbb{Z}_{3n}) = \{\omega_2\}$, q = 0, t = 0, so $(6q+1) \cdot 2 + 3(4q+1)t = 2$, i.e., (21) and (22) hold. Let in the following n > 1. Then by (13) $3n \in \mathbb{M}$, n is odd and $n \ge 7$, and all prime divisors of n are $\equiv_6 1$. So there exists $q \in \mathbb{N}$ with n = 6q + 1. Since gcd(3, n) = 1, we have a ring isomorphism $\varphi : \mathbb{Z}_{3n} \cong \mathbb{Z}_3 \times \mathbb{Z}_n$,

$$\varphi: 3n\mathbb{Z} + \ell \mapsto (3\mathbb{Z} + \ell, n\mathbb{Z} + \ell) \quad (\forall \ell \in \mathbb{Z}).$$
(23)

If $\omega_t \in S_0(\mathbb{Z}_n)$, then by [17, Lemma 2.3(a)] $\omega_2 \times \omega_t \in S_0(\mathbb{Z}_3 \times \mathbb{Z}_n)$. The elements $3n\mathbb{Z} + 1$, $3\mathbb{Z} + 1$, $n\mathbb{Z} + 1$ are generators of \mathbb{Z}_{3n} , \mathbb{Z}_3 , \mathbb{Z}_n , respectively.

$$\begin{array}{cccc} \mathbb{Z}_{3n} & \xrightarrow{\varphi} & \mathbb{Z}_3 \times \mathbb{Z}_n & \xrightarrow{\omega_2 \times \omega_t} & \mathbb{Z}_3 \times \mathbb{Z}_n & \xrightarrow{\varphi^{-1}} & \mathbb{Z}_{3n} \\ 3n\mathbb{Z} + 1 & \longmapsto & (3\mathbb{Z} + 1, n\mathbb{Z} + 1) & \longmapsto & (3\mathbb{Z} + 2, n\mathbb{Z} + t) & \longmapsto & 3n\mathbb{Z} + s \end{array}$$

In this diagram, s is to be determined. $\varphi^{-1}(3\mathbb{Z}+2, n\mathbb{Z}+t) = 3n\mathbb{Z}+s$ implies $\varphi(3n\mathbb{Z}+s) = (3\mathbb{Z}+2, n\mathbb{Z}+t)$, so by (23) $(3\mathbb{Z}+s, n\mathbb{Z}+s) = (3\mathbb{Z}+2, n\mathbb{Z}+t)$, i.e., $3\mathbb{Z}+s = 3\mathbb{Z}+2, n\mathbb{Z}+s = n\mathbb{Z}+t$, so $s \equiv_3 2$ and $s \equiv_n t$. From the Chinese remainder theorem we obtain $s = (6q+1) \cdot 2 + 3(4q+1)t$. Therefore, $\varphi^{-1} \circ (\omega_2 \times \omega_t) \circ \varphi = \omega_{(6q+1)\cdot 2+3(4q+1)t}$, so (21) holds. (22) follows from [17, Lemma 2.3(a)] and card $S_0(\mathbb{Z}_3) = 1$ or from (21) and $t \equiv_n t' \Leftrightarrow (6q+1)\cdot 2+3(4q+1)t \equiv_{3n} (6q+1)\cdot 2+3(4q+1)t' \quad (\forall t, t' \in \mathbb{Z}).$

Example 3.6. n = 21, so $n \in \mathbb{M}$. $S_0(\mathbb{Z}_3) = \{\omega_2\}, S_0(\mathbb{Z}_7) = \{\omega_3, \omega_5\}$ [17, Example 2.12]. So by Theorem 3.5 with q = 1: $S_0(\mathbb{Z}_{21}) = \{\omega_{7\cdot 2+3\cdot 5t}; t \in \{3,5\}\} = \{\omega_{14+15\cdot 3}; \omega_{14+15\cdot 5}\} = \{\omega_{59}, \omega_{89}\} =_{(\text{on } \mathbb{Z}_{21})} = \{\omega_{17}, \omega_5\}$. By the way, ω_{17} and ω_5 in $S_0(\mathbb{Z}_{21})$ are inverses of each other and $\omega_{17} + \omega_5 = \omega_1 = i_{\mathbb{Z}_{21}}$ as it must be by Theorem 2.5(a).

Remark 3.7. If $n \in \mathbb{M}$ and n > 3, then part (ii) \Rightarrow (i) Case 2, of the proof of Theorem 3.2 shows that -3 is a quadratic residue mod n (cf. (17)). So there exists $\gamma_1 \in \mathbb{Z}_n$ such that $\gamma_1^2 = -3$ in \mathbb{Z}_n . For $\gamma_2 := -\gamma_1$, we also have $\gamma_2^2 = -3$. Assume that $\gamma_2 = \gamma_1$. Then $-\gamma_1 = \gamma_1$, so $2\gamma_1 = 0$, and the oddness of n implies $\gamma_1 = 0$, a contradiction to $\gamma_1^2 = -3$. Therefore $\gamma_1 \neq \gamma_2$. Let $\alpha_1, \alpha_2 \in \mathbb{Z}_n$ such that $2\alpha_{\nu} - 1 = \gamma_{\nu}$ ($\nu = 1, 2$). Since $2 \in U(\mathbb{Z}_n)$, $\alpha_1 \neq \alpha_2$, and $2\alpha_1 = 1 + \gamma_1$, $2\alpha_2 = 1 + \gamma_2 = 1 - \gamma_1$. Therefore $2\alpha_1 + 2\alpha_2 = 2$, $2\alpha_1 \cdot 2\alpha_2 = 1 - \gamma_1^2 = 1 + 3 = 4$. 2, $4 \in U(\mathbb{Z}_n)$ imply

$$\alpha_1 + \alpha_2 = 1, \quad \alpha_1 \cdot \alpha_2 = 1, \tag{24}$$

and by (18) $\alpha_{1,2}^2 - \alpha_{1,2} + 1 = 0$. So for $n \in \mathbb{M}$, n > 3, pairs of mutually inverse functions in $S_0(\mathbb{Z}_n)$ stem from pairs $(\gamma_1, -\gamma_1)$ with $\gamma_1^2 = -3$.

Remark 3.8. The proof of Theorem 3.2 shows that solving (1) over \mathbb{Z}_n is dependent on solving $X^2 = -3$ in \mathbb{Z}_n . The situation is satisfactory as long as only solvability is concerned. On the other hand, it is unpleasant that there is no general systematic calculation method for the solutions of $X^2 = -3$ in \mathbb{Z}_n , not even when n is a prime number. Enjoyable exceptional cases are $n \in \mathbb{P}$, $n \equiv_6 1$ and $(n \equiv_4 3 \text{ or } n \equiv_8 5)$ (cf. [5, p. 42], [9, p. 133], [18, p. 287]). For proceeding from the solutions over $\mathbb{Z}_{p^{\ell-1}}$ to those over $\mathbb{Z}_{p^{\ell}}$ $(p \in \mathbb{P})$ cf, e.g., [1, p. 182] or [19, p. 240/241].

4. Solutions of (1) for $G = K^{\ell}$

We first put together some auxiliary facts for later purposes.

Remark 4.1. The rings $\mathbb{Z}_n := \mathbb{Z}/n\mathbb{Z} = \{0, \ldots, n-1\}$ $(n \in \mathbb{N})$ and $\mathbb{Z}_0 := \mathbb{Z}/0\mathbb{Z} \cong \mathbb{Z}$ constitute the complete list of all prime rings of rings with identity element 1; $\mathbb{Z}_1 = \mathbb{Z}/1\mathbb{Z} = \{0\}$ is the only trivial ring among them: 1 = 0 in \mathbb{Z}_1 . The list of all prime fields consists of \mathbb{Q} and all \mathbb{Z}_n with $n \in \mathbb{P}$ [7, pp. 108–109, 213].

Remark 4.2. For every set J and every $n \in \mathbb{N}^0$ there is exactly one way to make the abelian group $\mathbb{Z}_n^{(J)}$ (for this notation cf. the paragraph before Lemma 1.4) into a free unitary \mathbb{Z}_n -module; for n = 1, $\mathbb{Z}_n^{(J)}$ degenerates to $\{0\}$. All these modules are dimensional in the sense that any two of their bases are of the same cardinality, and one defines

$$\dim_{\mathbb{Z}_n} \mathbb{Z}_n^{(J)} := \operatorname{card} J \ (n \in \mathbb{N}^0 \setminus \{1\}), \quad \dim_{\mathbb{Z}_1} \mathbb{Z}_1^{(J)} := 0,$$

([3, p. 150–151]), also valid for $J = \emptyset$. For any fixed $n \in \mathbb{N}^0$, $\dim_{\mathbb{Z}_n} M$ characterizes the free \mathbb{Z}_n -module M up to isomorphism. The analogue holds for \mathbb{Q} -vector spaces.

- **Lemma 4.3.** (a) For $K \in \{\mathbb{Q}, \mathbb{Z}_n; n \in \mathbb{N}^0\}$, the set $\operatorname{End}(K^{(J)})$ of additive mappings $f: K^{(J)} \to K^{(J)}$ is precisely the set $\operatorname{Hom}_K(K^{(J)}, K^{(J)})$ of K-linear mappings from $K^{(J)}$ into itself.
- (b) If K is a commutative ring with identity $1 \neq 0$ and $\ell \in \mathbb{N}$, then, with respect to every ordered basis Φ of K^{ℓ} , $f \in \operatorname{Hom}_{K}(K^{\ell}, K^{\ell})$ has a matrix representation exactly as in the case of a scalar field: The basis Φ induces a K-algebra isomorphism Ω_{Φ} from $\operatorname{Hom}_{K}(K^{\ell}, K^{\ell})$ to the K-algebra $K^{\ell \times \ell}$ of all $\ell \times \ell$ -matrices over K.
- Proof. (a) K is a prime ring (field), and the homogeneity ring $H_f := \{ \alpha \in K; f(\alpha x) = \alpha f(x) \ (\forall x \in K^{(J)}) \}$ of every $f \in \text{End}(K^{(J)})$ is a subring of K; if K is a field, so is H_f [13, Lemma 1]. As K has no proper subring (subfield), we get $H_f = K$, so f is K-linear.
- (b) [20, p. 293, Theorem 29.2].

Lemma 4.4. If K is a commutative ring with $1 \neq 0$, if $\ell \in \mathbb{N}$, and if $f \in \text{Hom}_{K}(K^{\ell}, K^{\ell})$, $A := \Omega_{\Phi}(f) \in K^{\ell \times \ell}$, then

$$f \in S_0(K^\ell) \Leftrightarrow A^2 - A + I = 0 \tag{M}$$

where $I \in K^{\ell \times \ell}$ is the identity matrix and $0 \in K^{\ell \times \ell}$ the zero matrix.

Proof. Since Hom $_{K}(K^{\ell}, K^{\ell}) \subset \text{End}(K^{\ell})$, (B5) implies $f \in S_{0}(K^{\ell}) \Leftrightarrow$ (3) $f^{2} - f + i_{K^{\ell}} = \underline{0}$, and by Lemma 4.3(b) this latter is equivalent to $A^{2} - A + I = 0$.

Remark 4.5. By (M) the quadratic matrix equation

$$A^2 - A + I = 0 \quad (A \in K^{\ell \times \ell}, \ \ell \in \mathbb{N}), \tag{3'}$$

where K is a commutative ring with $1 \neq 0$, becomes of central importance. The following consequences of (3') for $A \in K^{\ell \times \ell}$ are easily established:

(a)
$$A^3 = -I$$
,

- (b) A is invertible, $A^{-1} = I A$,
- (c) $(A^{-1})^2 A^{-1} + I = 0,$
- (d) $B \in K^{\ell \times \ell}$ is invertible $\Rightarrow (B^{-1}AB)^2 B^{-1}AB + I = 0.$

They reflect properties of solutions of $(1) \land (0)$: (a), (B4); (b), Theorem 2.5(a); (c), Theorem 2.5(a); (d), [17, Remark 1.1(a)].

We consider Eq. (3') now for some other class of rings than prime rings.

Lemma 4.6. For a commutative ring K with 1 and the property $2 := 1 + 1 \in U(K)$, for $\ell \in \mathbb{N}$ and $A \in K^{\ell \times \ell}$, the following statements are equivalent: (i) $A^2 - A + I = 0$, (ii) $(2A - I)^2 = -3I$.

[Here K can be, e.g., \mathbb{Z}_n $(n \in \mathbb{N} \text{ is odd, } n > 1)$ or \mathbb{Q} , but neither \mathbb{Z}_1 (={0}) nor \mathbb{Z}_n $(n \in \mathbb{N}^0 \text{ is even})$].

Vol. 89 (2015) On the functional equation x + f(y + f(x)) = y + f(x + f(y)), II 181

Proof. Since $2 \in U(K)$, also $4 \in U(K)$, and we have (i) $A^2 - A + I = 0 \Leftrightarrow 4A^2 - 4A + 4I = 0 \Leftrightarrow 4A^2 - 4A + I = -3I \Leftrightarrow$ (ii) $(2A - I)^2 = -3I$.

Remark 4.7. The equivalence of (i) and (ii) in Lemma 4.6 is based upon the possibility of successfully completing the square and proceeding as in the classical case of a scalar quadratic equation over a field. For contrasting situations, where the matrices involved in the equation do not commute, cf. [8, Section 3.2].

Lemma 4.8. If K is a totally ordered commutative ring with 1 and the property $2 \in U(K)$, and if $\ell \in \mathbb{N}$ is odd, then there is no $A \in K^{\ell \times \ell}$ such that $A^2 - A + I = 0$.

Proof. Assume that there exists $C \in K^{\ell \times \ell}$ with $C^2 = -3I$. Then (cf. [11, p. 166] and [21, p. 688,691]) $0 \leq (\det C)^2 = \det(C^2) = \det(-3I) = (-3)^{\ell} = -3^{\ell} < 0$, a contradiction. So C cannot exist, and by Lemma 4.6, neither can A.

Several subsequent statements concern the case $\ell \in \mathbb{N}$ is odd. For even $\ell \in \mathbb{N}^0$, we recall Lemma 1.4 where $S_0(G^\ell) \neq \emptyset$ is ensured.

Corollary 4.9. $S_0(\mathbb{Q}^\ell) = \emptyset$ for odd $\ell \in \mathbb{N}$. (For $\ell = 1$ cf. [17, Example 2.13]).

Proof. Injectivity of $\omega_2 : \mathbb{Q}^{\ell} \to \mathbb{Q}^{\ell}$ and (B8) imply $S_0(\mathbb{Q}^{\ell}) \subset \operatorname{End}(\mathbb{Q}^{\ell}) =_{\operatorname{Lemma}} 4.3_{(a)} = \operatorname{Hom}_{\mathbb{Q}}(\mathbb{Q}^{\ell}, \mathbb{Q}^{\ell})$. Now (M) in Lemma 4.4 is available for $K = \mathbb{Q}$, so $S_0(\mathbb{Q}^{\ell}) = \emptyset$ follows from Lemma 4.8.

Next we extend [17, Corollary 2.2] from \mathbb{R}^1 to higher dimensions. In this context, \mathbb{R}^{ℓ} ($\ell \in \mathbb{N}^0$) is supposed to be furnished with the unique \mathbb{R} -linear Hausdorff topology, i.e., the topology of, e.g., the euclidean norm on \mathbb{R}^{ℓ} [22, p. 192, Theorem 1].

Theorem 4.10. If $\ell \in \mathbb{N}^0$, then

(a) Every continuous $f \in S_0(\mathbb{R}^{\ell})$ is \mathbb{R} -linear.

(b) For odd $\ell \in \mathbb{N}$, there are no continuous functions in $S_0(\mathbb{R}^\ell)$.

(c)
$$S_0(\mathbb{R}^\ell) \neq \emptyset$$
.

Proof. (a) Let $f \in S_0(\mathbb{R}^{\ell})$ be continuous. Since $\omega_2 : \mathbb{R}^{\ell} \to \mathbb{R}^{\ell}$ is injective, $f \in \operatorname{End}(\mathbb{R}^{\ell})$ by (B8). By [13, Lemma 1], f is Q-linear. Let $x \in \mathbb{R}^{\ell}, \lambda \in \mathbb{R}$ be arbitrary. Then there are $\alpha_n \in \mathbb{Q}$ $(n \in \mathbb{N})$ with $\alpha_n \to \lambda$ $(n \to \infty)$. So $\alpha_n x \to \lambda x$ $(n \to \infty)$. Continuity of f implies $f(\alpha_n x) \to f(\lambda x)$ $(n \to \infty)$. But $f(\alpha_n x) = \alpha_n f(x) \to \lambda f(x)$. Uniqueness of limits in \mathbb{R}^{ℓ} ensures $f(\lambda x) = \lambda f(x)$. Since $x \in \mathbb{R}^{\ell}, \lambda \in \mathbb{R}$ were arbitrary, f is \mathbb{R} -homogeneous, so in the total \mathbb{R} linear. (b) Assume that f were in $S_0(\mathbb{R}^{\ell})$ and continuous. By (a) f would be \mathbb{R} -linear. (M) in Lemma 4.4 is available for $K = \mathbb{R}$. By Lemma 4.8, f cannot exist. (c) For every $\ell \in \mathbb{N}^0, \mathbb{R}^{\ell}$ is a Q-vector space of dimension 0 (for $\ell = 0$) or 2^{\aleph_0} , and the assertion follows from (5) in Lemma 1.4. By virtue of (b), $S_0(\mathbb{R}^{\ell})$ consists of discontinuous functions if $\ell \in \mathbb{N}$ is odd. For $\ell = 1$ cf. [2, p. 300, Corollary 4]. As a further essential contrast to Theorem 4.10(b) we have:

Lemma 4.11. For $\ell \in \mathbb{N}^0$ there do exist continuous functions f in $S_0(\mathbb{R}^{2\ell})$.

Proof. For $\ell = 0$ we have $f := \underline{0} \in S_0(\{0\})$. For $\ell = 1$ we take $f_1 \in S_0(\mathbb{R}^2)$ given by (4) in Lemma 1.3, and for $\ell \geq 2$ the ℓ -fold direct sum $f_1 \oplus \cdots \oplus f_1$ of f_1 with itself, which is in $S_0(\mathbb{R}^{2\ell})$ by [17, Lemma 2.3(a)]. All these functions are \mathbb{R} -linear and, since $\mathbb{R}^{2\ell}$ is finite-dimensional over \mathbb{R} , continuous. \Box

Corollary 4.12. For every $\ell \in \mathbb{N}^0$ there are continuous functions in $S_0(\mathbb{C}^\ell)$. (For $\ell = 1$ cf. [2, p. 301, Corollary 5]).

Proof. The isomorphism of topological groups $\varphi : \mathbb{R}^{2\ell} \cong \mathbb{C}^{\ell}$, $\varphi : (\xi_1, \ldots, \xi_{\ell}, \eta_1, \ldots, \eta_{\ell}) \mapsto (\xi_1 + i\eta_1, \ldots, \xi_{\ell} + i\eta_{\ell})$ transforms continuous functions f in $S_0(\mathbb{R}^{2\ell})$ into continuous functions $g = \varphi \circ f \circ \varphi^{-1}$ in $S_0(\mathbb{C}^{\ell})$ [17, Remark 1.1.(a)]. The assertion follows from Lemma 4.11.

Finally, we deal with the problem of existence of solutions of (1) for $G = \mathbb{Z}_n^{\ell}$ $(n \in \mathbb{N}^0, \ell \in \mathbb{N}^0).$

Lemma 4.13. $S_0(\mathbb{Z}^{\ell}) = \emptyset$ ($\forall \ell \in \mathbb{N}$ is odd). (Remember $\mathbb{Z} = \mathbb{Z}_0$). (For $\ell = 1$ cf. [17, p. 192, Example 2.7]).

Proof. Let $\ell \in \mathbb{N}$ be odd and assume $f \in S_0(\mathbb{Z}^{\ell})$. Injectivity of $\omega_2 : \mathbb{Z}^{\ell} \to \mathbb{Z}^{\ell}$ and (B8) imply $f \in \text{End}(\mathbb{Z}^{\ell})$. By Lemma 4.3(a) $f \in \text{Hom}_{\mathbb{Z}}(\mathbb{Z}^{\ell}, \mathbb{Z}^{\ell})$, and by Lemma 4.4 there exists $A \in \mathbb{Z}^{\ell \times \ell}$ with $A^2 - A + I = 0$. We put $A = (\alpha_{ij})$, $B = (\beta_{ij}) := A^2 - A + I$. For every $i \in \{1, \ldots, \ell\}$, $\beta_{ii} = \sum_j \alpha_{ij} \alpha_{ji} - \alpha_{ii} + 1 = \alpha_{ii}^2 + \sum_{j \neq i} \alpha_{ij} \alpha_{ji} - \alpha_{ii} + 1$. Now $\sum_i \sum_{j \neq i} \alpha_{ij} \alpha_{ji} = \sum_i (\sum_{j < i} \alpha_{ij} \alpha_{ji} + \sum_{j > i} \alpha_{ij} \alpha_{ji}) = \sum_{i,j; \ j < i} \alpha_{ij} \alpha_{ji} + \sum_{i,j; \ j > i} \alpha_{ij} \alpha_{ji} = 2 \sum_{i,j; \ j < i} \alpha_{ij} \alpha_{ji} \in 2\mathbb{Z}$, furthermore $\alpha_{ii}^2 - \alpha_{ii} \in 2\mathbb{Z}$, so tr $B = \sum_i \beta_{ii} \in 2\mathbb{Z} + \ell$, and the oddness of ℓ prevents tr B from being 0, a contradiction to B = 0. So f cannot exist, and the assertion holds.

Lemma 4.14. $S_0(\mathbb{Z}_n^{\ell}) = \emptyset$ ($\forall n \in \mathbb{N}$ is even, $\forall \ell \in \mathbb{N}$ is odd). (For $\ell = 1$ cf. [17, Corollary 2.11]; Lemma 4.13 is the case n = 0).

Proof. $\mathbb{Z}_n^{\ell}[2]^* := \{x \in \mathbb{Z}_n^{\ell}; \text{ ord } x = 2\}$ consists of all ℓ -tuples of elements 0 and n/2 of \mathbb{Z}_n except $(0, \ldots, 0)$ (ℓ times). Therefore

$$\operatorname{card} \mathbb{Z}_n^{\ell}[2]^* = 2^{\ell} - 1.$$
 (25)

Assume that $f \in S_0(\mathbb{Z}_n^{\ell})$. By Lemma 1.2, $f(\mathbb{Z}_n^{\ell}[2]^*) \subset \mathbb{Z}_n^{\ell}[2]^*$, and the bijectivity of f (Lemma 1.1) enforces $f(\mathbb{Z}_n^{\ell}[2]^*) = \mathbb{Z}_n^{\ell}[2]^*$. By Lemma 1.5(b)

$$f^{3}(x) = x \quad (\forall x \in \mathbb{Z}_{n}^{\ell}[2]^{*}).$$

$$(26)$$

There is no $y \in \mathbb{Z}_n^{\ell}[2]^*$ with $f^2(y) = y$: Otherwise $f^2(y) =_{(26)} = f^3(y)$, so by the bijectivity of f: y = f(y), in contradiction to $y \neq 0$, f(0) = 0 and [17, Lemma 2.4]. So f has no 2-cycle in $\mathbb{Z}_n^{\ell}[2]^*$ and by (26) no 6-cycle in $\mathbb{Z}_n^{\ell}[2]^*$. By Lemma 2.1(c), f has therefore only 3-cycles in $\mathbb{Z}_n^{\ell}[2]^*$, so by (25) $3|(2^{\ell}-1)$. Vol. 89 (2015) On the functional equation x + f(y + f(x)) = y + f(x + f(y)), II 183

But since ℓ is odd, say $\ell = 2v + 1$ $(\exists v \in \mathbb{N}^0)$, $2^{\ell} - 1 = 2^{2v+1} - 1 = 4^v \cdot 2 - 1 \equiv_3 2 - 1 = 1$, which is a contradiction. So f cannot exist, and the assertion holds.

[For even ℓ , we do have $3|(2^{\ell} - 1)$, so that the latter contradiction does not arise, as it must be by (5) in Lemma 1.4.]

Lemma 4.15. If $n \in \mathbb{N}$ and $\ell \in \mathbb{N}$ are odd and if there exists $d \in \mathbb{N}$ with d|n and $d \equiv_6 5$, then $S_0(\mathbb{Z}_n^{\ell}) = \emptyset$.

Proof. By the hypothesis on d and Remark 3.1(a), n has a prime divisor $p \equiv_6 5$. For $H := \left(\frac{n}{p}\right) \cdot \mathbb{Z}_n$ we have $H = \mathbb{Z}_n[p] := \{\xi \in \mathbb{Z}_n; p\xi = 0\}$ and card H = p

([6, p. 34, Exercise 4]). Since $p \in \mathbb{P}$, we have moreover $H = \{0\} \cup \mathbb{Z}_n[p]^*$, and $H^{\ell}[p]^*$ consists of all ℓ -tuples of elements of H except $(0, \ldots, 0)$ (ℓ times), so

card
$$H^{\ell}[p]^* = p^{\ell} - 1.$$
 (27)

Assume that $f \in S_0(\mathbb{Z}_n^{\ell})$. By Lemma 1.2 $f(H^{\ell}[p]^*) \subset H^{\ell}[p]^*$, and the bijectivity of f (Lemma 1.1) guarantees that $f(H^{\ell}[p]^*) = H^{\ell}[p]^*$. Since $pH^{\ell} = \{0\}$ and 2/p, 3/p, Corollary 2.4(ii) ensures that $H^{\ell}[p]^*$ consists of 6-cycles only. Therefore by (27) $6|(p^{\ell}-1)$. On the other hand, since $p \equiv_6 5$ and ℓ is odd, say $\ell = 2u + 1$ ($\exists u \in \mathbb{N}^0$), we have $p^{\ell} - 1 = p^{2u+1} - 1 = p^{2u}p - 1 \equiv_6 p - 1 \equiv_6 4$, a contradiction. So f cannot exist, and the assertion holds.

(For even ℓ , $p^{\ell} - 1 \equiv_6 0$, so that no contradiction occurs, as it must be by Lemma 1.4).

The singular role of the prime number 3 (cf. (13)) requires a special procedure in the investigation of $S_0(\mathbb{Z}_{3^k}^\ell)$ for $k \in \mathbb{N}, k \geq 2$. Lemma 4.16 was inspired by [12].

Lemma 4.16. For odd $\ell \in \mathbb{N}$, $a \in \mathbb{Z}$, $p \in \mathbb{P}$, p|a, p^2/a , $k \in \mathbb{N}$, $k \ge 2$ there is no $X \in \mathbb{Z}^{\ell \times \ell}$ with $X^2 \equiv aI \pmod{p^k}$, where $I \in \mathbb{Z}^{\ell \times \ell}$ is the identity matrix. $(U \equiv V \pmod{p^k})$ for $U, V \in \mathbb{Z}^{\ell \times \ell}$ means that $[U]_{ij} \equiv_{p^k} [V]_{ij}$ for all $i, j \in \{1, \ldots, \ell\}$.

Proof. We first note that

if $B \in \mathbb{Z}^{\ell \times \ell}$, $m \in \mathbb{Z}$, $B \equiv pmI \pmod{p^2}$, then there exists $Q \in \mathbb{Z}^{\ell \times \ell}$ such that B = pQ and $Q \equiv mI \pmod{p}$. (28)

p|a implies the existence of $m \in \mathbb{Z}$ with a = pm, and p^2/a enforces $a \neq 0$. Therefore $m \neq 0$, so $gcd(m,p) \in \{1,p\}$; but gcd(m,p) = p would mean p|m, so $p^2|mp$, i.e., $p^2|a$, contradicting the hypothesis. So

$$gcd(m,p) = 1. (29)$$

Suppose that there exists $X \in \mathbb{Z}^{\ell \times \ell}$ with $X^2 \equiv aI \pmod{p^2}$, i.e., $X^2 \equiv pmI \pmod{p^2}$. By (28) there exists $Q \in \mathbb{Z}^{\ell \times \ell}$ with $X^2 = pQ$ and $Q \equiv mI \pmod{p}$. Therefore

$$\det Q \equiv_p \det(mI) \equiv_p m^{\ell}.$$
 (30)

J. Rätz

(29) implies $gcd(m^{\ell}, p) = 1$, so by (30)

$$\gcd(\det Q, p) = 1. \tag{31}$$

Clearly $p^{\ell} |\det(pQ)$. Assume $p^{\ell+1} |\det(pQ)$, say $p^{\ell+1}v = \det(pQ) = p^{\ell} \det Q$, i.e., $pv = \det Q$, i.e., $p | \det Q$, a contradiction to (31). Therefore, since $X^2 = pQ$ and $\det(X^2) = (\det X)^2$,

$$p^{\ell} |(\det X)^2 \quad \text{and} \quad p^{\ell+1} \not/ (\det X)^2.$$
 (32)

By the second formula of (32), $(\det X)^2 \neq 0$, and the oddness of ℓ makes (32) impossible. So

there is no
$$X \in \mathbb{Z}^{\ell \times \ell}$$
 with $X^2 \equiv aI \pmod{p^2}$, (33)

and since $p^2|p^k$, (33) implies the assertion of Lemma 4.16.

Lemma 4.17. For odd $\ell \in \mathbb{N}$, $k \in \mathbb{N}$, $k \geq 2$ there is no $C \in \mathbb{Z}_{3^k}^{\ell \times \ell}$ with $C^2 = -3I$, where $I \in \mathbb{Z}_{3^k}^{\ell \times \ell}$ is the identity matrix.

Proof. Every element α of \mathbb{Z}_{3^k} (= $\mathbb{Z}/3^k\mathbb{Z}$) is of the form $a' + 3^k\mathbb{Z}$ with $a' \in \mathbb{Z}$, and in every set $a' + 3^k\mathbb{Z}$ there is exactly one $a \in \{0, \ldots, 3^k - 1\}$; we define

$$\psi : \mathbb{Z}_{3^k} \longrightarrow \mathbb{Z}, \quad \psi : a' + 3^k \mathbb{Z} \longmapsto a.$$
 (34)

If $\pi : \mathbb{Z} \to \mathbb{Z}_{3^k}$ is the canonical ring epimorphism, then $\pi \circ \psi = i_{\mathbb{Z}_{3^k}}$, so ψ is a lifting for \mathbb{Z}_{3^k} . The following properties of ψ are easily established:

$$\psi(0+3^k\mathbb{Z}) = 0, \quad \psi(1+3^k\mathbb{Z}) = 1,$$
(35)

$$\psi(\alpha + \beta) \equiv_{3^k} \psi(\alpha) + \psi(\beta) \quad (\forall \alpha, \beta \in \mathbb{Z}_{3^k}), \tag{36}$$

$$\psi(\alpha \cdot \beta) \equiv_{3^k} \psi(\alpha) \cdot \psi(\beta) \quad (\forall \alpha, \beta \in \mathbb{Z}_{3^k}), \tag{37}$$

$$(\psi \circ \pi)(a) \equiv_{3^k} a \quad (\forall a \in \mathbb{Z}).$$
(38)

We assume on the contrary that there exists $C = (\gamma_{ij}) \in \mathbb{Z}_{3^k}^{\ell \times \ell}$ with $C^2 = -3I$. A useful notation is $L := \{m \in \mathbb{N}; 1 \leq m \leq \ell\}$. From $C : L \times L \to \mathbb{Z}_{3^k}$ we construct $X : L \times L \to \mathbb{Z}$ by $X = (\xi_{ij}) := \psi \circ C$, i.e. $\xi_{ij} = \psi(\gamma_{ij}) \quad (\forall (i, j) \in L \times L)$. For arbitrary $(i, j) \in L \times L$ we get $[X^2]_{ij} = \sum_{\nu} [X]_{i\nu} [X]_{\nu j} = \sum_{\nu} \xi_{i\nu} \xi_{\nu j} = \sum_{\nu} \psi(\gamma_{i\nu}) \cdot \psi(\gamma_{\nu j}) \equiv_{(36), (37)} \equiv_{3^k} \psi(\sum_{\nu} \gamma_{i\nu} \gamma_{\nu j}) = \psi([C^2]_{ij}) = \psi([-3I]_{ij}) = \psi(-3\delta_{ij} + 3^k \mathbb{Z}) \equiv_{(35), (38)} \equiv_{3^k} -3\delta_{ij}$. Since $(i, j) \in L \times L$ was arbitrary, we have $X^2 \equiv -3I \pmod{3^k}$, and because ℓ is odd, a = -3, p = 3, $p|a, p^2/a$, and $k \in \mathbb{N}, k \geq 2$, Lemma 4.16 denies the existence of such an X in $\mathbb{Z}^{\ell \times \ell}$. So C cannot exist either.

Lemma 4.18. For odd $\ell \in \mathbb{N}$, $k \in \mathbb{N}$, $k \ge 2$, we have $S_0(\mathbb{Z}_{3^k}^\ell) = \emptyset$.

Proof. \mathbb{Z}_{3^k} is a commutative ring with 1, and $2 \in U(\mathbb{Z}_{3^k})$. By Lemma 4.17 there is no $C \in \mathbb{Z}_{3^k}^{\ell \times \ell}$ with $C^2 = -3I$, so by Lemma 4.6

there is no
$$A \in \mathbb{Z}_{3^k}^{\ell \times \ell}$$
 with $A^2 - A + I = 0.$ (39)

Assume that $f \in S_0(\mathbb{Z}_{3^k}^\ell)$. Injectivity of $\omega_2 : \mathbb{Z}_{3^k}^\ell \to \mathbb{Z}_{3^k}^\ell$ and (B8) imply $f \in \operatorname{End}(\mathbb{Z}_{3^k}^\ell)$. By Lemma 4.3(a) $f \in \operatorname{Hom}_{\mathbb{Z}_{3^k}}(\mathbb{Z}_{3^k}^\ell, \mathbb{Z}_{3^k}^\ell)$, and by Lemma 4.4 there exists $A \in \mathbb{Z}_{3^k}^{\ell \times \ell}$ with $A^2 - A + I = 0$, which is a contradiction to (39). So f cannot exist, i.e., the assertion holds.

Remark 4.19. Because $0 \notin \mathbb{M}$, $2\mathbb{N} \cap \mathbb{M} = \emptyset$, $\{n \in \mathbb{N}; \exists d \in \mathbb{N}, d | n, d \equiv_6 5\} \cap \mathbb{M} = \emptyset$, $3^k \notin \mathbb{M}$ $(k \in \mathbb{N}, k \geq 2)$ (cf. (13)), Lemmas 4.13, 4.14, 4.15, and 4.18 confirm, for $\ell = 1$, Theorem 3.2.

Theorem 4.20. For $n, \ell \in \mathbb{N}^0$ we have (i) $S_0(\mathbb{Z}_n^\ell) = \emptyset \Leftrightarrow$ (ii) ℓ is odd and $n \notin \mathbb{M}$.

Proof. (i) \Rightarrow (ii). If ℓ were even, then by Lemma 1.4 $S_0(\mathbb{Z}_n^{\ell}) \neq \emptyset$, contradicting (i). So ℓ is odd. Assume $n \in \mathbb{M}$. Then by Theorem 3.2, $S_0(\mathbb{Z}_n) \neq \emptyset$, so by [17, Lemma 2.3(a)] $S_0(\mathbb{Z}_n^{\ell}) \neq \emptyset$, which is impossible. Therefore $n \notin \mathbb{M}$.

(ii) \Rightarrow (i). Let ℓ be odd and $n \notin \mathbb{M}$. Case 1: $n \in 2\mathbb{N}^0$. Then (i) holds by Lemma 4.13 or 4.14. Case 2: n is odd. By (13)

Case 2a: $\exists d \in \mathbb{N}$ with $d|n, d \equiv_6 5$ and/or

Case 2b: $\exists k \in \mathbb{N}$ with $k \ge 2, 3^k | n$.

In Case 2a, (i) holds by Lemma 4.15.

In Case 2b, $S_0(\mathbb{Z}_{3^k}^\ell) = \emptyset$ by Lemma 4.18. Without loss of generality, let $k \geq 2$ such that $3^{k+1} \not\mid n$. Then there exists $q \in \mathbb{N}$ with $n = 3^k q$ and $\gcd(3^k, q) = 1$. It follows that $\mathbb{Z}_n \cong \mathbb{Z}_{3^k} \times \mathbb{Z}_q$, hence $\mathbb{Z}_n^\ell \cong (\mathbb{Z}_{3^k} \times \mathbb{Z}_q)^\ell \cong \mathbb{Z}_{3^k}^\ell \times \mathbb{Z}_q^\ell$. Assume $S_0(\mathbb{Z}_n^\ell) \neq \emptyset$. By Lemma 2.10(a) we obtain $S_0(\mathbb{Z}_{3^k}^\ell) \neq \emptyset$, a contradiction to Lemma 4.18. Therefore $S_0(\mathbb{Z}_n^\ell) = \emptyset$, i.e., (i) holds. \Box

References

- [1] Bachmann, P.: Niedere Zahlentheorie. Teubner, Leipzig (1902)
- [2] Balcerowski, M.: On the functional equation x + f(y + f(x)) = y + f(x + f(y)). Aequ. Math. 75, 297–303 (2008)
- [3] Bourbaki, N.: Eléments de Mathématique, Livre II: Algèbre. chapitre 2. Hermann, Paris (1962)
- [4] Hardy, G.H., Wright, E.M.: An Introduction to the Theory of Numbers, 5th edn. Clarendon Press, Oxford (1979)
- [5] Hua, L.K.: Introduction to Number Theory. Springer, New York (1982)
- [6] Jacobson, N.: Lectures in Abstract Algebra, vol. I. Van Nostrand, Princeton (1966)
- [7] Jacobson, N.: Basic Algebra I. Freeman, New York (1985)
- [8] Jivulescu, M.A., Napoli, A., Messina, A.: Elementary symmetric functions of two solvents of a quadratic matrix equation. Rep. Math. Phys. 62, 369–387 (2008)
- [9] Lehmer, D.H.: Computer technology applied to the theory of numbers. In: Studies in Number Theory, pp. 117–151. The Mathematical Association of America (1969)
- [10] LeVeque, W.J.: Topics in Number Theory, vol. I. Addison-Wesley, Reading (1965)
- [11] MacLane, S., Birkhoff, G.: Algebra. Macmillan, New York (1968)
- [12] Pall, G., Taussky, O.: Scalar matrix quadratic residues. Mathematika 12, 94–96 (1965)
- [13] Rätz, J.: On the homogeneity of additive mappings. Aequ. Math. 14, 67–71 (1976)

- [14] Rätz, J.: On the functional equation x + f(y + f(x)) = y + f(x + f(y)), II. Report of meeting. Aequ. Math. 84, 301–302 (2012)
- [15] Rätz, J.: On the functional equation x + f(y + f(x)) = y + f(x + f(y)), III. Report of meeting. Aequ. Math. 86, 305 (2013)
- [16] Rätz, J.: On the functional equation x + f(y + f(x)) = y + f(x + f(y)), IV. Report of meeting. Aequ. Math. (to appear)
- [17] Rätz, J.: On the functional equation x+f(y+f(x))=y+f(x+f(y)). Aequ. Math. 86, 187–200 (2013)
- [18] Riesel, H.: Prime Numbers and Computer Methods for Factorization. Birkhäuser, Boston (1985)
- [19] Sierpiński, W.: Elementary theory of numbers (A. Schinzel, ed.). Polish Scientific Publishers, Warszawa (1987)
- [20] Warner, S.: Modern Algebra, vol. I. Prentice-Hall, Englewood Cliffs (1965)
- [21] Warner, S.: Modern Algebra, vol. II. Prentice-Hall, Englewood Cliffs (1965)
- [22] Wilansky, A.: Functional Analysis. Blaisdell, New York (1964)

Jürg Rätz Mathematisches Institut der Universität Bern Sidlerstrasse, 3012 Bern Switzerland e-mail: math@math.unibe.ch

Received: April 14, 2014