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Abstract. For an abelian group (G, +, 0) we consider the functional equation

f : G → G, x + f(y + f(x)) = y + f(x + f(y)) (∀x, y ∈ G), (1)

together with the condition
f(0) = 0. (0)

The main question is that of existence of solutions of (1) ∧ (0), specifically in the case when

G is the direct sum Z
(J)
n of copies of a finite or infinite cyclic group (Theorems 3.2 and 4.20).
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1. Introduction, notation and preliminaries

This paper is a continuation of [17]. For the convenience of the reader, we
repeat here some of the information on notation given in [17], section 1. The
results were presented in [14–16].

Throughout the paper, (G,+, 0) or (G,+) or G denotes an abelian group.
The set S(G) of all solutions of (1) and

S0(G) := {f ∈ S(G); f(0) = 0} (2)

completely determine each other [17, p. 188/189, (B6′)], so we may confine
ourselves to considering S0(G).

iA denotes the identity mapping of the set A and a the constant mapping
with value a. For f : A → A and n ∈ N (n ∈ Z if f is bijective) we denote by
fn the nth iterate of f .

For every abelian group G and every n ∈ Z, the so-called canonical endo-
morphism ωn : G → G of G, defined by ωn(x) := nx (∀x ∈ G), is available. In
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order to keep the notation light, we refrain from using a second subscript like
in ωn,G. It will be most times clear from the context to what G the respective
ωn belongs; if necessary, we write ωn : G → G.

For every z ∈ G, let tz : G → G, tz(x) := x + z (∀x ∈ G) denote the
translation of G by z. For x ∈ G, we let ordx stand for the order of x in G. We
use ∼= as the symbol for groups (or rings) to be isomorphic. For every m ∈ N,
G[m] := {x ∈ G; mx = 0} (= Kerωm), G[m]∗ := {x ∈ G; ordx = m}. For a
ring K with 1, U(K) is the set of units of K.

For every n ∈ N, we let Zn stand for the cyclic group with n elements, most
times written as {0, . . . , n− 1}. Whenever we find it helpful, we shall use the
familiar ring structure on Zn or Z with 1 as its identity element; for Z1 we
have 1 = 0. We put in addition Z0 := Z (cf. Remark 4.1). Accordingly, 0 and
1 stand for the integers zero and one as well as for the zero and the identity
element of Zn (n ∈ N

0). It will always be clear from the context what is meant.
For a list of fundamental properties of solutions of (1), stemming from M.

Balcerowski [2], cf. [17, p. 188, (B1),. . . ,(B9)].

Lemma 1.1. (a) Every f ∈ S0(G) is bijective and satisfies

f2(x) + x = f(x) (∀x ∈ G). (3)

(b) If ω2 : G → G is injective, then every f ∈ S0(G) is additive, i.e., S0(G) ⊂
End(G).

(cf. [17, (B1′), (B3), (B8)]).

Lemma 1.2. For f ∈ S0(G), x ∈ G, ordx = n ∈ N ∪ {∞}, we have ord f(x) =
ordx. f shares this property with group isomorphisms, but here f need not be
additive ([17, p. 197–200, Example 3.14]).

Proof. Case 1: n = ∞. Then kx (k ∈ N) are pairwise distinct, so are f(kx)
(k ∈ N) by Lemma 1.1(a), and finally, by [17, p. 190, Theorem 2.5], so are kf(x)
(k ∈ N). Therefore ord f(x) = ∞ = n. Case 2: n ∈ N, so nx = 0. For j ∈ N, we
have jx = 0 ⇐[Lemma1.1(a)]⇒ f(jx) = 0 ⇐[17, Theorem 2.5]⇒ jf(x) = 0. Hence
ord f(x) = ordx. �
Lemma 1.3. If G1 is an abelian group such that G ∼= G1 ×G1, then S0(G) �= ∅,
no matter if S0(G1) �= ∅.
Proof. Let

f : G1 ×G1 →G1 ×G1, f(ξ1, ξ2) :=(−ξ2, ξ1+ξ2) (∀(ξ1, ξ2)∈G1×G1). (4)

For x = (ξ1, ξ2) ∈ G1 ×G1, y = (η1, η2) ∈ G1 ×G1 arbitrary, we have x+f(y+
f(x)) = (ξ1, ξ2)+f((η1, η2)+(−ξ2, ξ1+ξ2)) = (ξ1, ξ2)+f(η1−ξ2, η2+ξ1+ξ2) =
(ξ1, ξ2) + (−η2 − ξ1 − ξ2, η1 − ξ2 + η2 + ξ1 + ξ2) = (−η2 − ξ2, η1 + η2 + ξ1 +
ξ2) =(4)= f(y) + f(x). This expression is invariant under interchanging x and
y. Hence (1) holds, and so does (0). I.e., S0(G1 × G1) �= ∅. By [17, Remark
1.1] S0(G) �= ∅. �



Vol. 89 (2015) On the functional equation x + f(y + f(x))=y + f(x + f(y)), II 171

If J is a set and G an abelian group, then G(J) denotes the direct sum
of cardJ copies of G. For cardJ = 0, we have G(J) = {0} [3, p. 22]. For
card J = n ∈ N, G(J) := Gn := G⊕ · · · ⊕G (n direct summands).

Lemma 1.4. For any set J we have

card J ≥ ℵ0 or cardJ ∈ 2N
0 =⇒ S0(G(J)) �= ∅, S(G(J)) �= ∅. (5)

Proof. S0({0}) = {0} by [17, Lemma 2.1(a)], so the assertion holds for cardJ =
0. For cardJ ∈ 2N or cardJ ≥ ℵ0, G(J) appears as the direct sum of copies
of G2 = G⊕G (cf. [17, p. 195, Proof of Lemma 3.7]). By Lemma 1.3 and [17,
Lemma 2.3(a)], S0(G(J)) �= ∅, so S(G(J)) �= ∅. �

Lemma 1.5. For f ∈ S0(G) and x ∈ G, we obtain
(a) (i) f2(x) = x ⇔ (ii) f(x) = 2x �⇐⇒ (iii) 3x = 0.
(b) f3(x) = x ⇔ 2x = 0.

Proof. (a): (i) ⇔ (ii) immediately follows from (3) in Lemma 1.1.—(ii) ⇒
(iii): By [17, (B4)] f3(x) = −x, so ff2(x) = −x, hence by (i) f(x) = −x,
and by (ii) 2x = −x, so (iii) holds.—(iii) �⇒ (i): Consider the function
f in (4) for G = Z3 × Z3 and x = (1, 0). Then 3x = 0, but f2(1, 0) =
f(0, 1) = (−1, 1) �= (1, 0), and by Lemma 1.3 f ∈ S0(Z3 × Z3).

(b) f3(x) = x ⇐(B4)⇒ −x = x ⇔ 2x = 0. �

Lemma 1.6. If f ∈ S0(G) and H is a subgroup of G such that f(H) ⊂ H, then
the restriction g : H → H of f is in S0(H), and f(H) = H.

Proof. f(H) ⊂ H implies the existence of g and g(0) = f(0) = 0. Let x, y ∈ H
be arbitrary. Then x+f(y), y+f(x), f(x+f(y)), f(y+f(x)) ∈ H, and we have
x+g(y+g(x)) = x+f(y+f(x)) =(1)= y+f(x+f(y)) = y+g(x+g(y)). Since
x, y ∈ H were arbitrary, we have g ∈ S0(H). By Lemma 1.1(a) g(H) = H, so
f(H) = H. �

2. Further general properties of solutions of (1)

Having Lemma 1.1(a) in mind, we first extend [17, p. 193, Lemma 3.2] to
arbitrary abelian groups G.

Lemma 2.1. Let f ∈ S0(G). Then:
(a) f3 = −iG, f6 = iG.
(b) G is the disjoint union of C0 := {0} and, for G �= {0}, of the Cx (x ∈

G \ {0}) where Cx is the range of the cycle

x �→ f(x) �→ −x+ f(x) �→ −x �→ −f(x) �→ x− f(x) �→ x of f.

(c) cardCx ∈ {1, 2, 3, 6} (∀x ∈ G), i.e., f has only 1-,2-,3-, and/or 6-cycles.
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(d) x, y ∈ G, y ∈ Cx ⇒ ord y = ordx.
(e) f has exactly one 1-cycle, namely {0}.
(f) 1-cycles of f3 only stem from 1- or 3-cycles of f .

2-cycles of f3 only stem from 2- or 6-cycles of f .

Proof. (a) follows from (B4). (b) On the basis of Lemma 1.1(a) we define

x, y ∈ G =⇒ [
x ∼f y :⇔ ∃k ∈ Z such that y = fk(x)

]
.

Then ∼f is an equivalence relation on G, and the sets Cx (x ∈ G) are the
∼f -classes. By the aid of (3) and part (a), f2(x) = −x + f(x), f3(x) = −x,
f4(x) = f(−x) =(B4)= −f(x), f5(x) = f2(−x) =(B4)= −f2(x) = x − f(x),
f6(x) = x. (For x = 0, Cx becomes {0}). (c) By f6(x) = x, the iterative order
of every x ∈ G is a positive divisor of 6, i.e., the possible lenghts of cycles of f
are 1, 2, 3, 6. (d) follows at once from Lemma 1.2. (e) is a consequence of [17,
Lemma 2.4] and (0). (f) By (a), f3 is involutorial, so f3 has only 1- and/or
2-cycles. The rest follows, written in the usual cycle notation, from

(u)3 = (u), (u v w)3 = (u)(v)(w); (u v)3 = (u v), (u v w x y z)3

= (ux)(v y)(w z).
(6)

�

Lemma 2.2. If ω2 : G → G is injective and f ∈ S0(G), then f has no 3-cycles.

Proof. By Lemma 1.5(b), the 1-cycles (x) of f3 are characterized by 2x = 0,
i.e., by ω2(x) = 0, i.e., due to the hypothesis, by x = 0. If (u v w) were a
3-cycle of f , then by (6) (u v w)3 = (u)(v)(w) with (see above) u = v = w = 0,
a contradiction. So the assertion holds. �

Lemma 2.3. If ω2 : G → G and ω3 : G → G are injective and f ∈ S0(G), then
cardCx = 6 (∀x ∈ G \ {0}).

Proof. Let x ∈ G \ {0} be arbitrary. By [17, Lemma 2.4] and (0), f(x) �= x.
Injectivity of ω2 and ω3 implies 2x �= 0, 3x �= 0, so by Lemma 1.5(a), (b)
f2(x) �= x, f3(x) �= x. f4(x) = x would imply f2(x) = f2f4(x) = f6(x) = x,
which is already excluded. If f5(x) = x, then f(x) = ff5(x) = f6(x) = x,
which is not true either. So

fν(x) �= x (ν = 1, 2, 3, 4, 5). (7)

Assume that there are μ, ν ∈ {0, 1, 2, 3, 4, 5} with μ < ν, fμ(x) = fν(x).
Then, since fμ is bijective, x = fν−μ(x), where ν − μ ∈ {1, 2, 3, 4, 5}, which
is a contradiction to (7). Therefore x = f0(x), f(x), . . . , f5(x) are pairwise
distinct, i.e. cardCx = 6. �

Corollary 2.4. If f ∈ S0(G), each of the following conditions is sufficient for
cardCx = 6 (∀x ∈ G\{0}):
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(i) G is torsion-free.
(ii) ∃n ∈ N with 2� |n, 3� |n, and nG = {0}.
Proof. In Cases (i) and (ii), ω2 and ω3 turn out to be injective, and the asser-
tion follows from Lemma 2.3. �

Bijectivity of all f ∈ S(G) [17, (B1′)] is an invitation to the question as to
whether f−1 must be in S(G).

Theorem 2.5.

(a) f ∈ S0(G) ⇒ f−1 = iG − f ∈ S0(G).
(b) If S0(G) ⊂ End (G) and f ∈ S(G), then f−1 ∈ S(G).
(c) In (b), the condition S0(G) ⊂ End (G) is essential.

Proof. (a) By (B1′), f is bijective. Let x ∈ G be arbitrary, y := f−1(x).
By (3) f2(y) + y = f(y), so f2f−1(x) + f−1(x) = ff−1(x), i.e., f(x) +
f−1(x) = x. Since x ∈ G was arbitrary, we have f + f−1 = iG, i.e.,
f−1 = iG − f . For the second part of the assertion, let x, y ∈ G be
arbitrary. By (B1′) there are unique x′, y′ ∈ G with x = f(x′), y = f(y′),
and we have x+(iG −f)(y+(iG −f)(x)) = f(x′)+(iG −f)(f(y′)+(iG −
f)(f(x′))) = f(x′)+f(y′)+(iG −f)(f(x′))−f(f(y′)+(iG −f)(f(x′))) =
f(x′) + f(y′) + f(x′) − f2(x′) − f(f(y′) + f(x′) − f2(x′)) =(3)= f(x′) +
f(y′) + x′ − f(f(y′) + x′) =(1)= f(x′) + f(y′) + y′ − f(f(x′) + y′). The
expressions on both sides of “=(1)=” are transformed into each other
by interchanging x′ and y′. The above calculation shows that the latter
expression is y+ (iG − f)(x+ (iG − f)(y)). Since x, y ∈ G were arbitrary,
we get (iG − f) ∈ S(G). Since (iG − f)(0) = 0, we have (iG − f) ∈ S0(G)
as asserted.

(b) Let f ∈ S(G) be arbitrary. By [17, Remark 1.3] there exists z ∈ G and
g ∈ S0(G) with f = g ◦ tz, hence f−1 = t−z ◦g−1. By (a), g−1 ∈ S0(G), so
g−1 ∈ End (G) by hypothesis. For arbitrary x, y ∈ G we have x+ f−1(y+
f−1(x)) = x+g−1(y+g−1(x)−z)−z =End = x+g−1(y)+g−2(x)−g−1(z)−
z =(3)= g−1(x) + g−1(y) − g−1(z) − z. This last expression is invariant
under interchanging x and y, so f−1 satisfies (1), i.e., f−1 ∈ S(G).

For (c) cf. Remark 2.8 below. �
(B6) [17, p. 188] ensures that the membership of f in S(G) is preserved

under composition from the right with translations. How about composition
from the left?

Theorem 2.6.

(a) If S0(G) ⊂ End (G), f ∈ S(G), and w ∈ G, then tw ◦ f ∈ S(G).
(b) In (a), the condition S0(G) ⊂ End (G) is essential, even for f ∈ S0(G).
(c) If S0(G) ⊂ End (G) and f ∈ S(G), then there exists a unique x0 ∈ G with

f(x0) = 0, and for g := f ◦ tx0 we have g ∈ S0(G) and tw ◦ f = f ◦ tg−1(w)

for all w ∈ G.
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Proof. (a) Let f ∈ S(G), w ∈ G be arbitrary. By Theorem 2.5(b) f−1 ∈ S(G).
By (B6) f−1◦t−w ∈ S(G), and again by Theorem 2.5(b) (f−1◦t−w)−1 ∈ S(G),
i.e., tw ◦ f ∈ S(G). (b) See Remark 2.7 below. (c) Existence and uniqueness
of x0 follow from (B1′). By (B6) g ∈ S(G), and since g(0) = f(x0) = 0, we
even have g ∈ S0(G), so by hypothesis g ∈ End (G). Theorem 2.5(a) implies
g−1 = iG − g, so for all x,w ∈ G we get (f ◦ tg−1(w))(x) = f(x+ w − g(w)) =
f(x+w+ g(−w)) = f(x+w+ f(−w+ x0)) =(1)= w− x0 + x+w+ f(−w+
x0 +f(x+w)), (f ◦ tg−1(w))(x) = w−x0 +x+w+f(−w+x0 +f(x+w)) for all
x,w ∈ G. Now the last term is g(−w+f(x+w)) =End = g(−w)+g(f(x+w)) =
f(−w + x0) + f(x0 + f(x+ w)), so

(f ◦tg−1(w))(x) = w−x0+x+w+f(−w+x0)+f(x0+f(x+w)) (∀x,w ∈ G).
(8)

Next we put in (1) x + w, x0 in place of x, y, respectively, and get x + w +
f(x0+f(x+w)) = x0+f(x+w+f(x0)) = x0+f(x+w), so f(x0+f(x+w)) =
−x− w + x0 + f(x+ w), and (8) becomes

(f ◦ tg−1(w))(x) = w + f(−w + x0) + f(x+ w) (∀x,w ∈ G). (9)

Finally, f(−w+x0)+f(x+w) = f(−w+x0)+f(x+w−x0+x0) = g(−w)+g(x+
w−x0) =End = g(−w)+g(w)+g(x−x0) = f(x), so by (9) (f◦tg−1(w))(x) = w+
f(x). Since x ∈ G was arbitrary, we obtain f ◦ tg−1(w) = tw ◦f (∀w ∈ G). �

Remark 2.7. Let f0 ∈ S0(Z6
2)\End (Z6

2) be the specific function in [17, p. 197–
200, Example 3.14] and {e1, . . . , e6} the basis used there, and let g := f0 + e1.
From the definition of f0 [17, (32),(34),. . . ,(54)] we obtain g(e1) = f0(e1) +
e1 = e2 + e1, g(e3) = f0(e3) + e1 = e4 + e1. Then e1 + g(e3 + g(e1)) =
e1 + g(e3 + e2 + e1) = e1 + f0(e1 + e2 + e3) + e1 =[17,(40)]= e2 + e3 + e6,
e3+g(e1+g(e3)) = e3+g(e1+e4+e1) = e3+g(e4) = e3+f0(e4)+e1 =[17, (35)]=
e3+e3+e4+e1 = e1+e4 �= e2+e3+e6, so g violates the functional equation (1),
i.e., te1 ◦ f0 = g /∈ S(Z6

2), and Theorem 2.6(b) is proved.

Remark 2.8. Let f0 and {e1, . . . , e6} be as in Remark 2.7 and let h := f−1
0 ◦te1 .

By Theorem 2.5(a) f−1
0 ∈ S0(Z6

2), so by (B6) h ∈ S(Z6
2). Then h−1 = (f−1

0 ◦
te1)

−1 = t−1
e1

◦ f0 = te1 ◦ f0 /∈ S(Z6
2) by Remark 2.7. Therefore we have proved

Theorem 2.5(c).

Next we come to a variant of (B8) [17, p. 188].

Lemma 2.9. If ω2 : G → G is surjective, then S0(G) ⊂ End (G).

Proof. Let f ∈ S0(G). By (B7) 2f(x + y) = 2f(x) + 2f(y) (∀x, y ∈ G), so
by [17, p. 190, Theorem 2.5] f(2(x + y)) = f(2x) + f(2y) (∀x, y ∈ G). For
arbitrary u, v ∈ G, the surjectivity of ω2 ensures the existence of x, y ∈ G
such that u = 2x, v = 2y, so u + v = 2x + 2y = 2(x + y), and we have
f(u+ v) = f(u) + f(v). As u, v ∈ G were arbitrary, f ∈ End (G) holds. �
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Lemma 2.3 in [17, p. 189] is a tool for building solutions of (1) on
∏

i∈I Gi

or
⊕

i∈I Gi from those on Gi’s. Our Lemma 2.10 proceeds in the opposite
direction where appropriate care is necessary: S0(Z2

2) �= ∅, but S0(Z2) = ∅
([17, p. 194, Example 3.4(b), (c)]). Hypothesis (3) below takes care.

Lemma 2.10. Hypotheses:
(1) I �= ∅, (Gi)i∈I is a family of abelian groups.
(2) For every i ∈ I there is ni ∈ N such that niGi = {0}.
(3) gcd(ni, nj) = 1 for all i, j ∈ I with i �= j.
(4) G′

j := {(xi)i∈I ∈ ∏
i∈I Gi; xi = 0 (∀i ∈ I \ {j}} (j ∈ I).

(5) χj : Gj → G′
j is the canonical bijection (∀j ∈ I).

Then:
(a) f ∈ S0(

⊕
i∈I Gi) ⇒ f(G′

j) ⊂ G′
j, f |G′

j ∈ S0(G′
j), and fj := χ−1

j ◦ (f |G′
j) ◦

χj ∈ S0(Gj) for all j ∈ I.
(b) If f ∈ S0(

⊕
i∈I Gi) is additive, so are f |G′

j and fj (∀j ∈ I), and we have
f = (

⊕
j∈I fj) : (xj)j∈I �→ (fj(xj))j∈I (∀(xj)j∈I ∈ ⊕

j∈I Gj).

Proof. (a) Let j ∈ I, x = (zi)i∈I ∈ G′
j be arbitrary, say zi = 0 (∀i ∈ I \ {j}),

zj =: xj ∈ Gj . Since χj : Gj
∼= G′

j we get ordx = ordxj , so by Hypothesis (2)
ordx |nj , and by Lemma 1.2

ord f(x) | nj . (10)

Let (yi)i∈I := f(x) and assume that yi �= 0 for i ∈ I \{j}. yi ∈ Gi and Hypoth-
esis 2) imply 1 �= ord yi|ni. Because ord yi|ord f(x) and by (10) ord yi|nj , so
1 �= ord yi| gcd(ni, nj) where i �= j, in contradiction to Hypothesis (3). There-
fore yi = 0 (∀i ∈ I\{j}), i.e., f(x) = (yi)i∈I ∈ G′

j . Since j ∈ I and x ∈ G′
j were

arbitrary, we have the first part of assertion (a), namely f(G′
j) ⊂ G′

j (∀j ∈ I).
So for every j ∈ I, f |G′

j exists and is in S0(G′
j) by Lemma 1.6. Finally,

fj ∈ S0(Gj) (∀j ∈ I) by [17, Remark 1.1(a)].
(b) As a composite of additive mappings, fj is additive for every j ∈ I. For
the inclusion map ψj : G′

j ↪→
⊕

i∈I Gi (j ∈ I), we have

ψj ◦ (f |G′
j) = f ◦ ψj (∀j ∈ I). (11)

Let x = (xi)i∈I ∈ ⊕
i∈I Gi and j ∈ I be arbitrary. Then xj = pr jx ∈ Gj ,

χjpr jx ∈ G′
j , ψjχjpr jx ∈ ⊕

i∈I Gi, and since x has finite support, we get
∑

j∈I

ψjχjpr jx =
∑

j∈I

(0, . . . , xj , . . . , 0) = x (∀x ∈
⊕

i∈I

Gi). (12)

Therefore f(x) =(12)= f(
∑

j∈I ψjχjpr jx) =
∑

j∈I f(ψjχjpr jx) =(11)=∑
j∈I ψj(f |G′

j)χjpr jx=
∑

j∈I ψjχjχ
−1
j (f |G′

j)χjpr jx =(a)=
∑

j∈I ψjχjfjpr jx

=
∑

j∈I ψjχjfj(xj) =
∑

j∈I(0, . . . , fj(xj), . . . , 0)= (fj(xj))j∈I =(
⊕

j∈I fj)(x).
Since x ∈ ⊕

j∈I Gj was arbitrary, we have f =
⊕

j∈I fj . �
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3. Solutions of (1) for G = Zn

A few contributions to the subject of this section can be found in [17, pp. 191–
192]. For n ∈ N, the fact that ωn+k : Zn → Zn is identical with ωk : Zn → Zn

[17, Remark 2.10] makes it natural to write ωα : Zn → Zn for ωk when
k ∈ α ∈ Zn. We are going to extend first those results towards a criterion
for the existence of solutions of (1) (Theorem 3.2). Because of the agreement
Z0 := Z, the symbol Zn is available for all n ∈ N

0. We begin by a number-
theoretic remark:

Remark 3.1. (a) For an odd integer n > 1, the following are equivalent:

(i) n has a positive divisor d ≡6 5.
(ii) n has a prime divisor ≡6 5.

(b) Every n ∈ N has a divisor ≡6 5, namely −1, but 3 has no prime divisor
≡6 5. So “positive” is essential in (i).

Proof of (a). (ii) ⇒ (i) is trivial. (i) ⇒ (ii): Let d ∈ N, d|n, d ≡6 5. There exist
r ∈ N; p1, . . . , pr ∈ P (not necessarily pairwise distinct) with d = p1 · . . . · pr.
Oddness of n enforces pν ∈ {3} ∪ (6N + 1) ∪ (6N

0 + 5) (ν = 1, . . . , r). As
d ≡6 5, we have 3� | d. If p1, . . . , pr were in 6N + 1, then d ∈ 6N + 1, which is a
contradiction to the definition of d. So at least one pν is in 6N

0 + 5, and this
is a prime divisor of n, i.e., (ii) holds. �

Theorem 3.2. For n ∈ N
0 and

M := {m ∈ N; m odd, m has no positive divisor ≡6 5, and

m contains the prime factor 3 at most once}, (13)

the following statements are equivalent:

(i) S0(Zn) �= ∅,
(ii) n ∈ M,
(iii) There exists α ∈ Zn such that α2 − α+ 1 = 0.

Proof. For n = 0, (i) is false [17, Example 2.7], (ii) is false by (13), and (iii) is
false since α2 − α+ 1 is odd (∀α ∈ Z0 = Z). So the assertion holds for n = 0.
In the following, let n ∈ N.
(i)⇒(ii). Let S0(Zn) �= ∅. By [17, Corollary 2.6] S0(Zn) ⊂ End (Zn). By [17,
Remark 2.10] End (Zn) = {ω0, . . . , ωn−1}. If n were even, then by [17, Corol-
lary 2.11] S0(Zn) = ∅, contradicting (i). Therefore

n is odd. (14)

Assume that there exist d ∈ N with d|n, d ≡6 5. Then gcd(d, 2) = 1 and
gcd(d, 3) = 1, so ω2 : Zd → Zd and ω3 : Zd → Zd are injective.

Assume that f ∈ S0(Zd). By Lemma 2.3, every cycle Cx (x ∈ Zd \{0}) of f
has cardinality 6. By Lemma 2.1(b), Zd is the disjoint union of one 1-cycle and
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some 6-cycles, therefore d = card Zd ≡6 1, contradicting d ≡6 5. So f cannot
exist, i.e., S0(Zd) = ∅.

Now by (i) S0(Zn) �= ∅, say, by [17, (14)] ωk ∈ S0(Zn) for a suitable k ∈ Z,
where n|mk. Since d|n, we get d|mk, so again by [17, (14)] (ωk : Zd → Zd) ∈
S0(Zd), a contradiction to S0(Zd) = ∅. This means that d cannot exist, i.e.,

n has no positive divisor ≡6 5. (15)

By inspection we find that 9� |mk (k ∈ {0, . . . , 8}), so by [17, (14)] S0(Z9) = ∅.
Let us realize (i) again by the assumption ωk ∈ S0(Zn), so again as above
n|mk. If 9|n, then 9|mk, so by [17, (14)] (ωk : Z9 → Z9) ∈ S0(Z9), which is
impossible. Therefore 9� |n, so

3s|n only if s = 0 or s = 1. (16)

By (14), (15), (16) n ∈ M, i.e., (ii) holds.
(ii)⇒(i). Let n ∈ M. Then there exist s ∈ {0, 1}, n′ ∈ N such that n = 3sn′,
gcd(3, n′) = 1. n ∈ M implies n′ ∈ M.
Case 1: n′ = 1. So n ∈ {1, 3}, and since S0(Z1) = {ω0}, S0(Z3) = {ω2} [17,
Example 2.12], (i) holds. – Case 2: n′ > 1. (This means in fact that n′ ≥ 7).
Since 3� |n′, all prime divisors of n′ are in 6N + 1. Therefore −3 is a quadratic
residue modulo all prime divisors of n′ [4, p. 75, Theorem 96]; Gauss’s Lemma
is involved here. It follows from [10, p. 63, Theorem 5-1] that

− 3 is a quadratic residue modulo n′. (17)

Zn′ is a commutative ring with 1 �= 0. Oddness of n′ guarantees that gcd(n′, 4)
= 1, so 4 ∈ U(Zn′), and for any x ∈ Zn′ we have

x2 − x+ 1 = 0 ⇔ 4x2 − 4x+ 4 = 0 ⇔ (2x− 1)2 = −3. (18)

By (17), (2x− 1)2 = −3 is solvable in Zn′ , and so is x2 − x+ 1 = 0, i.e., there
exists α ∈ Zn′ such that α2 − α + 1 = 0. If π : Z → Zn′ is the canonical ring
epimorphism, then there exists k ∈ Z with π(k) = α. Then π(k2 − k + 1) =
α2 − α+ 1 = 0 whence n′|(k2 − k + 1), so by [17, (14)]

ωk ∈ S0(Zn′), i.e., S0(Zn′) �= ∅. (19)

Case 2a: s = 0. Then n = n′, so by (19) S0(Zn) �= ∅. Case 2b: s = 1. Then
Zn

∼= Z3 × Zn′ , and from S0(Z3) �= ∅, (19), and [17, Lemma 2.3(a)] we get
again S0(Zn) �= ∅. So (i) holds in both cases.
(i)⇔ (iii). For the canonical ring epimorphism π : Z → Zn (remember π(0) = 0,
π(1) = 1 by our notational agreement) we have (i)⇐[17, (14)]⇒ ∃k ∈ {0, . . . , n−
1} with n|(k2−k+1) ⇔ ∃k ∈ {0, . . . , n−1} with π(k2−k+1) = 0 ⇐π surjective⇒
∃α ∈ Zn with α2 − α+ 1 = 0 (iii). �

Remark 3.3. The last part of the proof above shows that for the canonical
epimorphism π : Z → Zn, we have

S0(Zn) = {ωk; k ∈ {0, . . . , n− 1}, (π(k))2 − π(k) + 1 = 0} (∀n ∈ N). (20)
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Theorem 3.2 characterizes those n ∈ N
0 for which S0(Zn) �= ∅ by n ∈ M.

So for all n ∈ N
0 \ M, cardS0(Zn) = 0. What is cardS0(Zn) for n ∈ M?

It becomes visible from (13) that the prime number 3 plays a singular role in
the present characterization problem. This will be observed many more times
in what follows.

Lemma 3.4. If n ∈ M, 3� |n, and if n has σ distinct prime divisors, then
cardS0(Zn) = 2σ.

Proof. For n = 1 we have S0(Zn) = {ω0} and σ = 0, so the assertion holds.
Let n > 1. Then by (13) we have that n is odd and n ≥ 7, so gcd(4, n) = 1, and
4 is a unit of the ring Zn. For any α ∈ Zn we get (cf. (18)) (i) α2 −α+1 = 0 ⇔
(ii) (2α− 1)2 = −3. Since n is odd and gcd(n,−3) = 1, (ii) has 2σ solutions in
Zn ([10, p. 65, Theorem 5-2]). As α �→ 2α − 1 is bijective from Zn into itself,
(i) has 2σ solutions, too, so by (20) cardS0(Zn) = 2σ. �

Theorem 3.5. If n ∈ M and 3� |n, then 3n ∈ M and there exists q ∈ N
0 with

n = 6q + 1, furthermore

S0(Z3n) = {ω(6q+1)·2+3·(4q+1)t; ωt ∈ S0(Zn)}, (21)

cardS0(Z3n) = cardS0(Zn). (22)

Proof. For n = 1 we have S0(Zn) = {ω0}, S0(Z3n) = {ω2}, q = 0, t = 0, so
(6q+1) ·2+3(4q+1)t = 2, i.e., (21) and (22) hold. Let in the following n > 1.
Then by (13) 3n ∈ M, n is odd and n ≥ 7, and all prime divisors of n are
≡6 1. So there exists q ∈ N with n = 6q + 1. Since gcd(3, n) = 1, we have a
ring isomorphism ϕ : Z3n

∼= Z3 × Zn,

ϕ : 3nZ +  �→ (3Z + , nZ + ) (∀ ∈ Z). (23)

If ωt ∈ S0(Zn), then by [17, Lemma 2.3(a)] ω2×ωt ∈ S0(Z3×Zn). The elements
3nZ + 1, 3Z + 1, nZ + 1 are generators of Z3n, Z3, Zn, respectively.

Z3n
ϕ−→ Z3 × Zn

ω2×ωt−→ Z3 × Zn
ϕ−1

−→ Z3n

3nZ + 1 �−→ (3Z + 1, nZ + 1) �−→ (3Z + 2, nZ + t) �−→ 3nZ + s

In this diagram, s is to be determined. ϕ−1(3Z + 2, nZ + t) = 3nZ + s implies
ϕ(3nZ + s) = (3Z + 2, nZ + t), so by (23) (3Z + s, nZ + s) = (3Z + 2, nZ + t),
i.e., 3Z + s = 3Z + 2, nZ + s = nZ + t, so s ≡3 2 and s ≡n t. From the
Chinese remainder theorem we obtain s = (6q + 1) · 2 + 3(4q + 1)t. Therefore,
ϕ−1 ◦ (ω2 × ωt) ◦ ϕ = ω(6q+1)·2+3(4q+1)t, so (21) holds. (22) follows from [17,
Lemma 2.3(a)] and cardS0(Z3) = 1 or from (21) and
t ≡n t

′ ⇔ (6q+1) ·2+3(4q+1)t ≡3n (6q+1) ·2+3(4q+1)t′ (∀t, t′ ∈ Z). �

Example 3.6. n = 21, so n ∈ M. S0(Z3) = {ω2}, S0(Z7) = {ω3, ω5} [17,
Example 2.12]. So by Theorem 3.5 with q = 1: S0(Z21) = {ω7·2+3·5t; t ∈
{3, 5}} = {ω14+15·3; ω14+15·5} = {ω59, ω89} =(on Z21)= {ω17, ω5}. By the way,
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ω17 and ω5 in S0(Z21) are inverses of each other and ω17 + ω5 = ω1 = iZ21 as
it must be by Theorem 2.5(a).

Remark 3.7. If n ∈ M and n > 3, then part (ii)⇒(i) Case 2, of the proof of
Theorem 3.2 shows that −3 is a quadratic residue mod n (cf. (17)). So there
exists γ1 ∈ Zn such that γ2

1 = −3 in Zn. For γ2 := −γ1, we also have γ2
2 = −3.

Assume that γ2 = γ1. Then −γ1 = γ1, so 2γ1 = 0, and the oddness of n implies
γ1 = 0, a contradiction to γ2

1 = −3. Therefore γ1 �= γ2. Let α1, α2 ∈ Zn such
that 2αν − 1 = γν (ν = 1, 2). Since 2 ∈ U(Zn), α1 �= α2, and 2α1 = 1 + γ1,
2α2 = 1+γ2 = 1−γ1. Therefore 2α1 +2α2 = 2, 2α1 ·2α2 = 1−γ2

1 = 1+3 = 4.
2, 4 ∈ U(Zn) imply

α1 + α2 = 1, α1 · α2 = 1, (24)
and by (18) α2

1,2 −α1,2 +1 = 0. So for n ∈ M, n > 3, pairs of mutually inverse
functions in S0(Zn) stem from pairs (γ1,−γ1) with γ2

1 = −3.

Remark 3.8. The proof of Theorem 3.2 shows that solving (1) over Zn is
dependent on solving X2 = −3 in Zn. The situation is satisfactory as long as
only solvability is concerned. On the other hand, it is unpleasant that there is
no general systematic calculation method for the solutions of X2 = −3 in Zn,
not even when n is a prime number. Enjoyable exceptional cases are n ∈ P,
n ≡6 1 and (n ≡4 3 or n ≡8 5) (cf. [5, p. 42], [9, p. 133], [18, p. 287]). For
proceeding from the solutions over Zp�−1 to those over Zp� (p ∈ P) cf, e.g., [1,
p. 182] or [19, p. 240/241].

4. Solutions of (1) for G = K�

We first put together some auxiliary facts for later purposes.

Remark 4.1. The rings Zn := Z/nZ = {0, . . . , n − 1} (n ∈ N) and Z0 :=
Z/0Z ∼= Z constitute the complete list of all prime rings of rings with identity
element 1; Z1 = Z/1Z = {0} is the only trivial ring among them: 1 = 0 in Z1.
The list of all prime fields consists of Q and all Zn with n ∈ P [7, pp. 108–109,
213].

Remark 4.2. For every set J and every n ∈ N
0 there is exactly one way to make

the abelian group Z
(J)
n (for this notation cf. the paragraph before Lemma 1.4)

into a free unitary Zn-module; for n = 1, Z
(J)
n degenerates to {0}. All these

modules are dimensional in the sense that any two of their bases are of the
same cardinality, and one defines

dimZn
Z

(J)
n := card J (n ∈ N

0 \ {1}), dimZ1 Z
(J)
1 := 0,

([3, p. 150–151]), also valid for J = ∅. For any fixed n ∈ N
0, dimZn

M char-
acterizes the free Zn-module M up to isomorphism. The analogue holds for
Q-vector spaces.
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Lemma 4.3. (a) For K ∈ {Q, Zn; n ∈ N
0}, the set End (K(J)) of additive

mappings f : K(J) → K(J) is precisely the set Hom K(K(J),K(J)) of K-
linear mappings from K(J) into itself.

(b) If K is a commutative ring with identity 1 �= 0 and  ∈ N, then, with
respect to every ordered basis Φ of K�, f ∈ Hom K(K�,K�) has a matrix
representation exactly as in the case of a scalar field: The basis Φ induces
a K-algebra isomorphism ΩΦ from Hom K(K�,K�) to the K-algebra K�×�

of all × -matrices over K.

Proof. (a) K is a prime ring (field), and the homogeneity ring Hf := {α ∈
K; f(αx) = αf(x) (∀x ∈ K(J))} of every f ∈ End (K(J)) is a subring of
K; if K is a field, so is Hf [13, Lemma 1]. As K has no proper subring
(subfield), we get Hf = K, so f is K-linear.

(b) [20, p. 293, Theorem 29.2]. �

Lemma 4.4. If K is a commutative ring with 1 �= 0, if  ∈ N, and if f ∈
Hom K(K�,K�), A := ΩΦ(f) ∈ K�×�, then

f ∈ S0(K�) ⇔ A2 −A+ I = 0 (M)

where I ∈ K�×� is the identity matrix and 0 ∈ K�×� the zero matrix.

Proof. Since Hom K(K�,K�) ⊂ End (K�), (B5) implies f ∈ S0(K�) ⇔ (3)
f2−f+iK� = 0, and by Lemma 4.3(b) this latter is equivalent to A2−A+I =
0. �

Remark 4.5. By (M) the quadratic matrix equation

A2 −A+ I = 0 (A ∈ K�×�,  ∈ N), (3’)

where K is a commutative ring with 1 �= 0, becomes of central importance.
The following consequences of (3’) for A ∈ K�×� are easily established:
(a) A3 = −I,
(b) A is invertible, A−1 = I −A,
(c) (A−1)2 −A−1 + I = 0,
(d) B ∈ K�×� is invertible ⇒ (B−1AB)2 −B−1AB + I = 0.
They reflect properties of solutions of (1)∧(0): (a), (B4); (b), Theorem 2.5(a);
(c), Theorem 2.5(a); (d), [17, Remark 1.1(a)].

We consider Eq. (3’) now for some other class of rings than prime rings.

Lemma 4.6. For a commutative ring K with 1 and the property 2 := 1 + 1 ∈
U(K), for  ∈ N and A ∈ K�×�, the following statements are equivalent:
(i) A2 −A+ I = 0,
(ii) (2A− I)2 = −3I.
[Here K can be, e.g., Zn (n ∈ N is odd, n > 1) or Q, but neither Z1 (={0})
nor Zn (n ∈ N

0 is even)].
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Proof. Since 2 ∈ U(K), also 4 ∈ U(K), and we have (i) A2 − A + I = 0 ⇔
4A2 − 4A+ 4I = 0 ⇔ 4A2 − 4A+ I = −3I ⇔ (ii) (2A− I)2 = −3I. �
Remark 4.7. The equivalence of (i) and (ii) in Lemma 4.6 is based upon the
possibility of successfully completing the square and proceeding as in the clas-
sical case of a scalar quadratic equation over a field. For contrasting situa-
tions, where the matrices involved in the equation do not commute, cf. [8,
Section 3.2].

Lemma 4.8. If K is a totally ordered commutative ring with 1 and the property
2 ∈ U(K), and if  ∈ N is odd, then there is no A ∈ K�×� such that A2−A+I=0.

Proof. Assume that there exists C ∈ K�×� with C2 = −3I. Then (cf. [11,
p. 166] and [21, p. 688,691]) 0 ≤ (detC)2 = det(C2) = det(−3I) = (−3)� =
−3� < 0, a contradiction. So C cannot exist, and by Lemma 4.6, neither can A.

�
Several subsequent statements concern the case  ∈ N is odd. For even

 ∈ N
0, we recall Lemma 1.4 where S0(G�) �= ∅ is ensured.

Corollary 4.9. S0(Q�) = ∅ for odd  ∈ N. (For  = 1 cf. [17, Example 2.13]).

Proof. Injectivity of ω2 : Q
� → Q

� and (B8) imply S0(Q�) ⊂ End (Q�) =Lemma

4.3(a) = Hom Q(Q�,Q�). Now (M) in Lemma 4.4 is available for K = Q, so
S0(Q�) = ∅ follows from Lemma 4.8. �

Next we extend [17, Corollary 2.2] from R
1 to higher dimensions. In this

context, R
� ( ∈ N

0) is supposed to be furnished with the unique R-linear
Hausdorff topology, i.e., the topology of, e.g., the euclidean norm on R

� [22,
p. 192, Theorem 1].

Theorem 4.10. If  ∈ N
0, then

(a) Every continuous f ∈ S0(R�) is R-linear.
(b) For odd  ∈ N, there are no continuous functions in S0(R�).
(c) S0(R�) �= ∅.
Proof. (a) Let f ∈ S0(R�) be continuous. Since ω2 : R

� → R
� is injective,

f ∈ End (R�) by (B8). By [13, Lemma 1], f is Q-linear. Let x ∈ R
�, λ ∈ R

be arbitrary. Then there are αn ∈ Q (n ∈ N) with αn → λ (n → ∞). So
αnx → λx (n → ∞). Continuity of f implies f(αnx) → f(λx) (n → ∞). But
f(αnx) = αnf(x) → λf(x). Uniqueness of limits in R

� ensures f(λx) = λf(x).
Since x ∈ R

�, λ ∈ R were arbitrary, f is R-homogeneous, so in the total R-
linear. (b) Assume that f were in S0(R�) and continuous. By (a) f would be
R-linear. (M) in Lemma 4.4 is available for K = R. By Lemma 4.8, f cannot
exist. (c) For every  ∈ N

0, R
� is a Q-vector space of dimension 0 (for  = 0) or

2ℵ0 , and the assertion follows from (5) in Lemma 1.4. By virtue of (b), S0(R�)
consists of discontinuous functions if  ∈ N is odd. For  = 1 cf. [2, p. 300,
Corollary 4]. �
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As a further essential contrast to Theorem 4.10(b) we have:

Lemma 4.11. For  ∈ N
0 there do exist continuous functions f in S0(R2�).

Proof. For  = 0 we have f := 0 ∈ S0({0}). For  = 1 we take f1 ∈ S0(R2)
given by (4) in Lemma 1.3, and for  ≥ 2 the -fold direct sum f1 ⊕ · · · ⊕ f1 of
f1 with itself, which is in S0(R2�) by [17, Lemma 2.3(a)]. All these functions
are R-linear and, since R

2� is finite-dimensional over R, continuous. �
Corollary 4.12. For every  ∈ N

0 there are continuous functions in S0(C�).
(For  = 1 cf. [2, p. 301, Corollary 5]).

Proof. The isomorphism of topological groups ϕ : R
2� ∼= C

�, ϕ : (ξ1, . . . , ξ�,
η1, . . . , η�) �→ (ξ1 + iη1, . . . , ξ� + iη�) transforms continuous functions f in
S0(R2�) into continuous functions g = ϕ◦f◦ϕ−1 in S0(C�) [17, Remark 1.1.(a)].
The assertion follows from Lemma 4.11. �

Finally, we deal with the problem of existence of solutions of (1) for G = Z
�
n

(n ∈ N
0,  ∈ N

0).

Lemma 4.13. S0(Z�) = ∅ ( ∀ ∈ N is odd). (Remember Z = Z0). (For  = 1
cf. [17, p. 192, Example 2.7]).

Proof. Let  ∈ N be odd and assume f ∈ S0(Z�). Injectivity of ω2 : Z
� → Z

�

and (B8) imply f ∈ End (Z�). By Lemma 4.3(a) f ∈ Hom Z(Z�,Z�), and by
Lemma 4.4 there exists A ∈ Z

�×� with A2 − A + I = 0. We put A = (αij),
B = (βij) := A2 − A + I. For every i ∈ {1, . . . , }, βii =

∑
j αijαji − αii +

1 = α2
ii +

∑
j �=i αijαji − αii + 1. Now

∑
i

∑
j �=i αijαji =

∑
i(

∑
j<i αijαji +∑

j>i αijαji) =
∑

i,j; j<i αijαji +
∑

i,j; j>i αijαji = 2
∑

i,j; j<i αijαji ∈ 2Z,
furthermore α2

ii − αii ∈ 2Z, so trB =
∑

i βii ∈ 2Z + , and the oddness of 
prevents trB from being 0, a contradiction to B = 0. So f cannot exist, and
the assertion holds. �
Lemma 4.14. S0(Z�

n) = ∅ ( ∀n ∈ N is even, ∀ ∈ N is odd). (For  = 1 cf. [17,
Corollary 2.11]; Lemma 4.13 is the case n = 0).

Proof. Z
�
n[2]∗ := {x ∈ Z

�
n; ordx = 2} consists of all -tuples of elements 0 and

n/2 of Zn except (0, . . . , 0) ( times). Therefore

card Z
�
n[2]∗ = 2� − 1. (25)

Assume that f ∈ S0(Z�
n). By Lemma 1.2, f(Z�

n[2]∗) ⊂ Z
�
n[2]∗, and the bijec-

tivity of f (Lemma 1.1) enforces f(Z�
n[2]∗) = Z

�
n[2]∗. By Lemma 1.5(b)

f3(x) = x (∀x ∈ Z
�
n[2]∗). (26)

There is no y ∈ Z
�
n[2]∗ with f2(y) = y: Otherwise f2(y) =(26)= f3(y), so by

the bijectivity of f : y = f(y), in contradiction to y �= 0, f(0) = 0 and [17,
Lemma 2.4]. So f has no 2-cycle in Z

�
n[2]∗ and by (26) no 6-cycle in Z

�
n[2]∗. By

Lemma 2.1(c), f has therefore only 3-cycles in Z
�
n[2]∗, so by (25) 3|(2� − 1).
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But since  is odd, say  = 2v+1 (∃v ∈ N
0), 2� −1 = 22v+1 −1 = 4v ·2−1 ≡3

2 − 1 = 1, which is a contradiction. So f cannot exist, and the assertion
holds. �
[For even , we do have 3|(2� − 1), so that the latter contradiction does not
arise, as it must be by (5) in Lemma 1.4.]

Lemma 4.15. If n ∈ N and  ∈ N are odd and if there exists d ∈ N with d|n
and d ≡6 5, then S0(Z�

n) = ∅.
Proof. By the hypothesis on d and Remark 3.1(a), n has a prime divisor p ≡6 5.
For H := (n

p ) · Zn we have H = Zn[p] := {ξ ∈ Zn; pξ = 0} and cardH = p

([6, p. 34, Exercise 4]). Since p ∈ P, we have moreover H = {0} ·∪ Zn[p]∗, and
H�[p]∗ consists of all -tuples of elements of H except (0, . . . , 0) ( times), so

cardH�[p]∗ = p� − 1. (27)

Assume that f ∈ S0(Z�
n). By Lemma 1.2 f(H�[p]∗) ⊂ H�[p]∗, and the bijec-

tivity of f (Lemma 1.1) guarantees that f(H�[p]∗) = H�[p]∗. Since pH� = {0}
and 2� | p, 3� | p, Corollary 2.4(ii) ensures that H�[p]∗ consists of 6-cycles only.
Therefore by (27) 6|(p� − 1). On the other hand, since p ≡6 5 and  is odd, say
 = 2u+ 1 (∃u ∈ N

0), we have p� − 1 = p2u+1 − 1 = p2up− 1 ≡6 p− 1 ≡6 4,
a contradiction. So f cannot exist, and the assertion holds. �
(For even , p� − 1 ≡6 0, so that no contradiction occurs, as it must be by
Lemma 1.4).

The singular role of the prime number 3 (cf. (13)) requires a special proce-
dure in the investigation of S0(Z�

3k) for k ∈ N, k ≥ 2. Lemma 4.16 was inspired
by [12].

Lemma 4.16. For odd  ∈ N, a ∈ Z, p ∈ P, p|a, p2� | a, k ∈ N, k ≥ 2 there
is no X ∈ Z

�×� with X2 ≡ aI (mod pk), where I ∈ Z
�×� is the identity

matrix. (U ≡ V (mod pk) for U, V ∈ Z
�×� means that [U ]ij ≡pk [V ]ij for all

i, j ∈ {1, . . . , }).
Proof. We first note that

if B ∈ Z
�×�, m ∈ Z, B ≡ pmI (mod p2), then there exists Q ∈ Z

�×�

such that B = pQ and Q ≡ mI (mod p). (28)

p|a implies the existence of m ∈ Z with a = pm, and p2� | a enforces a �= 0.
Therefore m �= 0, so gcd(m, p) ∈ {1, p}; but gcd(m, p) = p would mean p|m,
so p2|mp, i.e., p2|a, contradicting the hypothesis. So

gcd(m, p) = 1. (29)

Suppose that there exists X ∈ Z
�×� with X2 ≡ aI (mod p2), i.e., X2 ≡ pmI

(mod p2). By (28) there exists Q ∈ Z
�×� with X2 = pQ and Q ≡ mI (mod p).

Therefore
detQ ≡p det(mI) ≡p m

�. (30)
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(29) implies gcd(m�, p) = 1, so by (30)

gcd(detQ, p) = 1. (31)

Clearly p�|det(pQ). Assume p�+1|det(pQ), say p�+1v = det(pQ) = p� detQ,
i.e., pv = detQ, i.e., p|detQ, a contradiction to (31). Therefore, sinceX2 = pQ
and det(X2) = (detX)2,

p�|(detX)2 and p�+1� | (detX)2. (32)

By the second formula of (32), (detX)2 �= 0, and the oddness of  makes (32)
impossible. So

there is no X ∈ Z
�×� with X2 ≡ aI (mod p2), (33)

and since p2|pk, (33) implies the assertion of Lemma 4.16. �

Lemma 4.17. For odd  ∈ N, k ∈ N, k ≥ 2 there is no C ∈ Z
�×�
3k with C2 = −3I,

where I ∈ Z
�×�
3k is the identity matrix.

Proof. Every element α of Z3k (= Z/3k
Z) is of the form a′ + 3k

Z with a′ ∈ Z,
and in every set a′ + 3k

Z there is exactly one a ∈ {0, . . . , 3k − 1}; we define

ψ : Z3k −→ Z, ψ : a′ + 3k
Z �−→ a. (34)

If π : Z → Z3k is the canonical ring epimorphism, then π ◦ ψ = iZ3k
, so ψ is a

lifting for Z3k . The following properties of ψ are easily established:

ψ(0 + 3k
Z) = 0, ψ(1 + 3k

Z) = 1, (35)
ψ(α+ β) ≡3k ψ(α) + ψ(β) (∀α, β ∈ Z3k), (36)
ψ(α · β) ≡3k ψ(α) · ψ(β) (∀α, β ∈ Z3k), (37)

(ψ ◦ π)(a) ≡3k a (∀a ∈ Z). (38)

We assume on the contrary that there exists C = (γij) ∈ Z
�×�
3k with C2 =

−3I. A useful notation is L := {m ∈ N; 1 ≤ m ≤ }. From C : L×L → Z3k we
construct X : L×L → Z by X = (ξij) := ψ◦C, i.e. ξij = ψ(γij) (∀(i, j) ∈ L×
L). For arbitrary (i, j) ∈ L× L we get [X2]ij =

∑
ν [X]iν [X]νj =

∑
ν ξiνξνj =∑

ν ψ(γiν) · ψ(γνj) ≡(36),(37)≡3k ψ(
∑

ν γiνγνj) = ψ([C2]ij) = ψ([−3I]ij) =
ψ(−3δij +3k

Z) ≡(35),(38)≡3k −3δij . Since (i, j) ∈ L×L was arbitrary, we have
X2 ≡ −3I (mod 3k), and because  is odd, a = −3, p = 3, p|a, p2� | a, and
k ∈ N, k ≥ 2, Lemma 4.16 denies the existence of such an X in Z

�×�. So C
cannot exist either. �

Lemma 4.18. For odd  ∈ N, k ∈ N, k ≥ 2, we have S0(Z�
3k) = ∅.

Proof. Z3k is a commutative ring with 1, and 2 ∈ U(Z3k). By Lemma 4.17
there is no C ∈ Z

�×�
3k with C2 = −3I, so by Lemma 4.6

there is no A ∈ Z
�×�
3k with A2 −A+ I = 0. (39)
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Assume that f ∈ S0(Z�
3k). Injectivity of ω2 : Z

�
3k → Z

�
3k and (B8) imply

f ∈ End (Z�
3k). By Lemma 4.3(a) f ∈ Hom Z3k

(Z�
3k ,Z

�
3k), and by Lemma 4.4

there exists A ∈ Z
�×�
3k with A2 − A + I = 0, which is a contradiction to (39).

So f cannot exist, i.e., the assertion holds. �

Remark 4.19. Because 0 /∈ M, 2N ∩ M = ∅, {n ∈ N; ∃d ∈ N, d|n, d ≡6

5} ∩ M = ∅, 3k /∈ M (k ∈ N, k ≥ 2) (cf. (13)), Lemmas 4.13, 4.14, 4.15, and
4.18 confirm, for  = 1, Theorem 3.2.

Theorem 4.20. For n,  ∈ N
0 we have (i) S0(Z�

n) = ∅ ⇔ (ii)  is odd and
n /∈ M.

Proof. (i) ⇒ (ii). If  were even, then by Lemma 1.4 S0(Z�
n) �= ∅, contradicting

(i). So  is odd. Assume n ∈ M. Then by Theorem 3.2, S0(Zn) �= ∅, so by [17,
Lemma 2.3(a)] S0(Z�

n) �= ∅, which is impossible. Therefore n /∈ M.
(ii) ⇒ (i). Let  be odd and n /∈ M. Case 1: n ∈ 2N

0. Then (i) holds by
Lemma 4.13 or 4.14. Case 2: n is odd. By (13)
Case 2a: ∃d ∈ N with d|n, d ≡6 5 and/or
Case 2b: ∃k ∈ N with k ≥ 2, 3k|n.
In Case 2a, (i) holds by Lemma 4.15.
In Case 2b, S0(Z�

3k) = ∅ by Lemma 4.18. Without loss of generality, let k ≥ 2
such that 3k+1� |n. Then there exists q ∈ N with n = 3kq and gcd(3k, q) = 1.
It follows that Zn

∼= Z3k × Zq, hence Z
�
n

∼= (Z3k × Zq)� ∼= Z
�
3k × Z

�
q. Assume

S0(Z�
n) �= ∅. By Lemma 2.10(a) we obtain S0(Z�

3k) �= ∅, a contradiction to
Lemma 4.18. Therefore S0(Z�

n) = ∅, i.e., (i) holds. �
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mann, Paris (1962)
[4] Hardy, G.H., Wright, E.M.: An Introduction to the Theory of Numbers, 5th edn. Claren-

don Press, Oxford (1979)
[5] Hua, L.K.: Introduction to Number Theory. Springer, New York (1982)
[6] Jacobson, N.: Lectures in Abstract Algebra, vol. I. Van Nostrand, Princeton (1966)
[7] Jacobson, N.: Basic Algebra I. Freeman, New York (1985)
[8] Jivulescu, M.A., Napoli, A., Messina, A.: Elementary symmetric functions of two sol-

vents of a quadratic matrix equation. Rep. Math. Phys. 62, 369–387 (2008)
[9] Lehmer, D.H.: Computer technology applied to the theory of numbers. In: Studies in

Number Theory, pp. 117–151. The Mathematical Association of America (1969)
[10] LeVeque, W.J.: Topics in Number Theory, vol. I. Addison-Wesley, Reading (1965)
[11] MacLane, S., Birkhoff, G.: Algebra. Macmillan, New York (1968)
[12] Pall, G., Taussky, O.: Scalar matrix quadratic residues. Mathematika 12, 94–96 (1965)
[13] Rätz, J.: On the homogeneity of additive mappings. Aequ. Math. 14, 67–71 (1976)



186 J. Rätz AEM

[14] Rätz, J.: On the functional equation x + f(y + f(x)) = y + f(x + f(y)), II. Report of
meeting. Aequ. Math. 84, 301–302 (2012)

[15] Rätz, J.: On the functional equation x + f(y + f(x)) = y + f(x + f(y)), III. Report of
meeting. Aequ. Math. 86, 305 (2013)

[16] Rätz, J.: On the functional equation x + f(y + f(x)) = y + f(x + f(y)), IV. Report of
meeting. Aequ. Math. (to appear)

[17] Rätz, J.: On the functional equation x + f(y + f(x)) = y + f(x + f(y)). Aequ.
Math. 86, 187–200 (2013)

[18] Riesel, H.: Prime Numbers and Computer Methods for Factorization. Birkhäuser,
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[19] Sierpiński, W.: Elementary theory of numbers (A. Schinzel, ed.). Polish Scientific Pub-
lishers, Warszawa (1987)

[20] Warner, S.: Modern Algebra, vol. I. Prentice-Hall, Englewood Cliffs (1965)
[21] Warner, S.: Modern Algebra, vol. II. Prentice-Hall, Englewood Cliffs (1965)
[22] Wilansky, A.: Functional Analysis. Blaisdell, New York (1964)

Jürg Rätz
Mathematisches Institut der Universität Bern
Sidlerstrasse, 3012 Bern
Switzerland
e-mail: math@math.unibe.ch

Received: April 14, 2014


	On the functional equation x+f(y+f(x)) = y+f(x+f(y)), II
	Abstract
	1. Introduction, notation and preliminaries
	2. Further general properties of solutions of (1)
	3. Solutions of (1) for G=mathbbZn
	4. Solutions of (1) for G=Kell
	References


