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Abstract: We develop a proposal by Freed to see anomalous field theories as relative
field theories, namely field theories taking value in a field theory in one dimension higher,
the anomaly field theory. We show that when the anomaly field theory is extended
down to codimension 2, familiar facts about Hamiltonian anomalies can be naturally
recovered, such as the fact that the anomalous symmetry group admits only a projective
representation on the Hilbert space, or that the latter is really an abelian bundle gerbe
over the moduli space. We include in the discussion the case of non-invertible anomaly
field theories, which is relevant to six-dimensional (2, 0) superconformal theories. In
this case, we show that the Hamiltonian anomaly is characterized by a degree 2 non-
abelian group cohomology class, associated to the non-abelian gerbe playing the role
of the state space of the anomalous theory. We construct Dai-Freed theories, governing
the anomalies of chiral fermionic theories, and Wess-Zumino theories, governing the
anomalies of Wess-Zumino terms and self-dual field theories, as extended field theories
down to codimension 2.
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1. Introduction and Summary

The Atiyah-Segal axioms [1,2] picture quantum field theories as functors between a
bordism category and the category of Hilbert spaces. A d-dimensional quantum field
theory indeed assigns aHilbert space, its space of states, to a d−1-dimensionalmanifold,
while path integration on d-dimensional bordisms, when such a description is available,
provides a homomorphism between the Hilbert spaces associated to the boundaries. The
locality of the quantum field theory ensures that this assignment is compatible with the
gluing of bordisms. There is in particular a trivial field theory 1 that assigns 1 ∈ C to
any closed d-dimensional manifold, C to any closed d − 1-dimensional manifolds and
trivial homomorphisms to bordisms.

The extension of these ideas to higher codimension manifold is known to involve
higher category theory [3–5]; going down in dimension requires climbing the higher
category hierarchy. For instance, as an extended field theory, the trivial theory 1 assigns
the category of (finite dimensional) Hilbert spaces to closed d − 2-dimensional mani-
folds. Another extension of these ideas is the notion of relative field theory [6]. Given two
d-dimensional field theories associated to the samebordismcategory, ad−1-dimensional
relative field theory is a natural transformation between the two functors defining the
field theories, after the underlying bordism category has been truncated to manifolds of
dimension d − 1 or lower. One can show that a relative theory between two copies of
the trivial theory is equivalent to an ordinary field theory. The idea of a relative field
theory has a long history, as a “d−1-dimensional field theory valued in a d-dimensional
field theory”. It has its roots in Witten’s work on the Jones polynomial [7] and has been
implicit in much of the literature on Chern-Simons theory and AdS singletons.

In a recent paper [8], Freed suggested that anomalous field theories should be seen
as relative theories between a trivial field theory and a field theory that characterizes the
anomaly, the anomaly field theory. A similar proposal appeared in unpublished work
by Moore [9,10]. Further work exploring this idea include [11,12]. The first aim of the
present paper is to show how many well-known properties of anomalous theories find
a natural explanation when one pictures anomalous field theories as relative theories.
For many known anomalous field theories, the anomaly field theory is invertible, which
means in particular that its partition function is non-vanishing and that its state space
is one-dimensional. For this reason [8] focused on the invertible case. The second aim
of the present paper is to understand the properties of anomalies associated to non-
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invertible anomaly field theories. We are mostly interested in the non-invertible case
because it is relevant to the six-dimensional (2, 0) superconformal field theories. But it
is equally relevant to the case of 2-dimensional chiral conformal field theories, as we
explain briefly in Sect. 3.5.

Some properties of anomalous theories are easy to extract from their definition as
relative theories. The anomalous theory f is a natural transformation

f : A|d−1 → 1|d−1, (1.1)

where 1 and A are the functors associated respectively to the trivial theory and to
the anomaly theory. |d−1 denotes the truncation of the bordism category to mani-
folds and bordism of dimension d − 1 and lower. (1.1) implies that on a d − 1-
dimensional manifold Md−1, f (Md−1) is a unitary complex vector space homomor-
phism A(Md−1) → 1(Md−1) = C, and hence can be seen as an element of the Hilbert
space A(Md−1)† = A(Md−1). If A is invertible, A(Md−1) is a Hermitian line and the
partition function f (Md−1) of the anomalous field theory is defined up to a phase. Over
the moduli space of d − 1-dimensional manifolds endowed with appropriate topologi-
cal/geometric structure, the partition function becomes a section of a possibly non-trivial
Hermitian line bundle [13,14]. IfA is non-invertible, the partition function f is a vector
in the Hilbert spaceA(Md−1). Upon picking a non-canonical identification ofA(Md−1)

with C
n , we get n C-valued partition functions from the components of this vector. This

case is familiar from 2-dimensional rational chiral conformal field theories, which do not
have a well-defined partition function, but multiple “conformal blocks”, which play the
role of partition functions.Over themoduli space, the conformal blocks can be seen as the
components of a section of an n-dimensional vector bundle. In a completely analogous
way, one can deduce that on a d − 2-dimensional manifold Md−2, f (Md−2) is not quite
a Hilbert space. In the invertible case, f (Md−2) is an object in a category A(Md−2)†

that is equivalent to the category H1 of Hilbert spaces, but non-canonically so. In the
non-invertible case, f (Md−2) is an object in a category non-canonically equivalent to
Hn

1, the nth Cartesian product ofH1 with itself. Hence f(Md−2) can be represented non-
canonically as an n-component vector of Hilbert spaces. As strange as it may sound, this
fact is actually well-known in the case of 2-dimensional rational chiral conformal field
theories. The state space of the latter is in general composed of a collection of modules
for the chiral vertex algebra underlying the theory. The simple vertex algebra modules
can be seen as the generators of a free module category on H1 that is non-canonically
equivalent toHn

1, where n is the number of simple modules. Over the moduli space, this
translates into the fact that the state space of the theory is a possibly non-trivial bundle
gerbe [15,16].

However, in the physics literature, anomalies are most often described as the break-
ing of a classical symmetry under quantization, or more generally as a mild breaking
of the invariance under the action of a global symmetry group. This description may
seem at first sight far removed from Freed’s proposal. The key to relate these two points
of view lies in the definition of the bordism category. The Atiyah-Segal picture is most
often used for topological quantum field theories. In the corresponding bordism cate-
gory, the unit morphisms are given by cylinders of the form Md−1 × [0, 1], for Md−1

a d − 1-dimensional manifold. We are interested here in more general quantum field
theories that depend on a set of geometric/topological structures F that can include a
Riemannian metric. Such theories are functors whose domain is a geometric bordism
category, composed of manifolds and bordisms carrying an F-structure. In the geometri-
cal realm, there are no bordisms that can play the role of the unit morphisms. Informally,
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say, if the bordisms carry Riemannian metrics, the lengths of the cylinders cannot be
ignored and the unit morphisms should be seen as infinitesimal cylinders

lim
ε→0

Md−1 × [−ε, ε] (1.2)

of vanishing length. These infinitesimal bordisms must be added by hand in order to
obtain a category structure on the set of bordisms [17]. Moreover, we can let the group
of automorphisms of the F-structure on Md−1, which we write AutF([Md−1]), act on
one end of the cylinders (1.2). We also include in the geometric bordism category such
infinitesimal bordisms. As a result, the group AutF([Md−1]) is included in the bordism
category, and should be thought of as the (potential) global symmetry group of the field
theories A and f on Md−1. Writing φ for the infinitesimal bordism corresponding to
the element φ ∈ AutF([Md−1]), A(φ) provides a representation of AutF([Md−1]) on
the Hilbert spaceA(Md−1), while 1(φ) corresponds to the trivial representation. As the
anomalous field theory is a natural transformation f : A|d−1 → 1|d−1, f (Md−1) is a
homomorphism fromA(Md−1) toC.Moreover, the definitionof a natural transformation
implies that f(Md−1) = f(φMd−1)◦A(φ), so f(Md−1) transforms in the representation
of AutF([Md−1]) dual to the one defined by A(φ). If the latter is non-trivial, the theory
f is not invariant and the symmetry AutF([Md−1]) is anomalous.

In the bulk of the paper, we will make precise the sketch of derivation above, in
the case where the anomaly field theory A is extended down to codimension 2 and not
necessarily invertible. On Md−1, we find that the n-dimensional vector spaceA(Md−1)

provides a representation of the anomalous symmetry group AutF([Md−1]), that can be
characterized by a group 1-cocycle of AutF([Md−1]) valued in U (n). The action of the
global symmetry group generally permutes the n components of the partition function.
This is well-known in the case of 2-dimensional rational chiral conformal field theories:
in this case AutF([Md−1]) contains the “modular transformations”, i.e., the large dif-
feomorphisms of the underlying surface that preserve its conformal structure. Modular
transformations generally mix the conformal blocks. In the invertible case, we recover
the familiar fact that the partition function (which is unique up to a phase) transforms by
multiplication by a character of the anomalous symmetry group AutF([Md−1]). Going
down to Md−2, we find in the invertible case that the state space carries only a projective
representation of the anomalous symmetry group, characterized by a degree 2 group
cohomology class of AutF([Md−2]) valued in the circle group T. This situation was
described by Faddeev [18] and Faddeev-Shatashvili [19] in the 1980s. For infinitesimal
symmetries, the corresponding degree 2 Lie algebra cocycle was described earlier by
Mickelsson in [20]. Interestingly, the non-invertible case does not seem to have been de-
scribed in the physics literature before. We find that the vector of Hilbert spaces playing
the role of the state space carries something akin to a projective representation of the
anomalous symmetry group, but whose projective factors are valued in Sn � T

n , where
Sn is the symmetric group, acting on T

n by permutation. We show that such a represen-
tation naturally yields a degree 2 non-abelian group cocycle [21] of AutF([Md−2]) with
value in Sn � T

n . We prove in Propositions 3.4 and 3.5 that the symmetry is anomalous
if and only if the corresponding non-abelian cohomology class is non-trivial. This pro-
vides a natural extension of the results of Mickelsson-Faddeev-Shatashvili to theories
with non-invertible anomalies.

The rest of the paper is dedicated to the construction of invertible anomaly field
theories describing well-known anomalies. We construct Wess-Zumino field theories
that describe the anomalies of Wess-Zumino terms and of self-dual abelian (higher)
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gauge fields. The other large class of anomalous field theories are chiral fermions, whose
anomalies are described by the Dai-Freed theory [22].We extend the construction of Dai
and Freed to codimension 2 and perform some consistency checks, although we do not
provide a full proof that the resulting extended field theory is really a 2-functor. The Dai-
Freed theory assigns a category constructed from the index gerbe of the corresponding
Dirac operator to d − 2-dimensional manifolds, recovering known results [15,16,23]
about the Hamiltonian anomaly of chiral fermionic field theories.

The present paper is part of a program whose aim is to construct the anomaly field
theories of six-dimensional (2, 0) superconformal field theories, and in particular to
characterize their Hamiltonian anomalies. The partition functions of these anomaly field
theories were determined in [24].

The paper is organized as follows. In Sect. 2, we recall the Atiyah-Segal picture of
field theories and the notion of extended field theory, focusing on the codimension 2
case of interest to us. Section 3 contains the definition of relative field theories and a
derivation of some simple consequences. We discuss in detail the consequences of this
definition on the symmetries of the theory in dimension d − 1 and d − 2. We show
that in the non-invertible case, the Hamiltonian anomaly is characterized by a degree 2
non-abelian group cohomology class. Section 4 treats Wess-Zumino field theories and
Sect. 5 Dai-Freed theories. An appendix contains reviews of several concepts used in
the main text. The nLab (http://www.ncatlab.org) is a very useful reference for many of
the higher categorical concepts appearing in the present paper.

1.1. Notation. Here is a brief overview of our notation.

• Md,p is an oriented compact smooth manifold of dimension d with corners down to
codimension p, Md is a closed oriented compact smooth manifold of dimension d.
We will often use this notation to avoid mentioning explicitly the dimension of the
corresponding manifold.

• The disjoint union of manifolds is written as a square cup �.
• F denotes a set of geometric/topological structures required to define the quantum

field theory of interest. We denote the structure on a manifold M by F(M) and call
M an F-manifold. We do not assume that isomorphic F-manifolds are identified, and
the isomorphism class of M is written [M]. See Appendix A.4 for further discussion
about such structures.

• Categories, functors and natural transformations, as well as their higher analogues
are denoted with calligraphic letters.

• Objects in categories are denoted by ordinary capitals.
• Given a 2-category C, its category of morphisms between the objects X and Y is

written HomC(X,Y ), see Appendix A.1.
• Bd,p

F is the bordism p-category ofF-manifolds of dimension d with p-codimensional
corners, see Appendix A.4. Its truncation to manifolds and bordism of dimension
d − 1 or lower is written Bd,p

F |d−1. We use the same notation for the truncation of
functors admitting the bordism category as domain, i.e. for field theory functors.

• For a bordism Md,1, we write ∂±Md,1 for the outgoing and incoming components
of its boundary, so Md,1 : ∂−Md,1 → ∂+Md,1.

• Hn is the category of n-Hilbert spaces. We will be interested only in the case n =
0, 1, 2. H0 can be pictured as the category whose objects are elements of C and
without any morphism. H1 is the category of finite dimensional Hilbert spaces. H2
is the 2-category of 2-Hilbert spaces defined in Appendix A.2.

http://www.ncatlab.org
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• Tn are the higher circle groups, with T0 = T being the circle group U (1). See
Appendix A.3.

• Chain, cochains, cycles and cocycles are represented with hats, the corresponding
cohomology classes carry no hats. Differential cocycles carry a caron. See Appendix
A.5.

2. Field Theories

In this section, we introduce some notation and sketch the picture of field theories as
functors from a (higher) cobordism category to a (higher) category of (higher) Hilbert
spaces. We stay concise, and we refer the reader to Sect. 1 of [5] for a more detailed
exposition of extended field theories, in the case of topological field theories.

2.1. The functorial picture of field theories. A d-dimensional quantum field theory can
be thought of as an assignment of a complex number, the partition function, to each
d-dimensional manifold, and of a Hilbert space, the space of quantum states, to each
d − 1-dimensional manifold. A “manifold” should be understood here as a smooth
orientable manifold endowed with all the extra structures required to define the quantum
field theory of interest, e.g., an orientation, spin structure, Riemannian or Lorentzian
metric, and so on. We will denote this topological and/or geometrical structure by F, and
sometimes call a manifold endowed with an F-structure an F-manifold. In addition, path
integration over manifolds with incoming and outgoing boundaries provides linear maps
between the Hilbert spaces associated to the boundaries. Thesemapsmust be compatible
with the gluing of manifolds along their boundaries.

The discussion above can be formalized using categorical concepts. There is a bor-
dism category Bd,1

F of F-manifolds defined as follows (see Appendix A.4 for more
details). The objects are d − 1-dimensional F-manifolds Md−1 endowed with the germ
of an F-structure on Md−1 × {0} ⊂ Md−1 × (−ε, ε), where ε > 0. The morphisms
between objects Md−1− and Md−1

+ inBd,1
F are d-dimensional F-manifolds with boundary

−Md−1− � Md−1
+ extending the germ of F-structure existing on the boundary. −Md−1−

denotes here Md−1− with its opposite orientation. Bd,d−1
F admits a symmetric monoidal

structure (i.e. a “commutative product”) given by the disjoint union of manifolds. It also
admits a †-category structure, where the † operation is given by inverting the orientation
of the bordisms.

There is a category H1 whose objects are finite dimensional Hilbert spaces and
whose morphisms are homomorphisms. The tensor product provides as well a symmet-
ric monoidal structure. H1 carries a †-structure, given by the Hermitian conjugation of
homomorphisms. In order to describe most field theories, one would rather like to con-
sider a larger category consisting of infinite-dimensional Hilbert spaces and continuous
homomorphisms, endowed with a completed tensor product (see for instance Lecture 3
of [25]). We will see that considering finite-dimensional vector spaces will be sufficient
for our purpose, despite the fact that the state space of the anomalous theories of physical
interest is infinite-dimensional.

A (unitary) quantum field theory is then seen as a functorF : Bd,1
F → V1 compatible

with the monoidal structures (i.e it is symmetric monoidal) and with the †-structures.
The requirement that F is a functor ensures that the assignment of homomorphisms of
Hilbert spaces to manifolds with boundaries by the quantum field theory is compatible
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with gluing. The compatibility with the monoidal structure ensures that the partition
function on disjoint unions of d-dimensional manifolds is the product of the partition
functions associated to each connected component. Similarly, it ensures that the Hilbert
space/homomorphism associated to disjoint unions of d − 1-dimensional manifolds/d-
dimensional bordisms is the tensor product of the Hilbert spaces/homomorphisms asso-
ciated to the connected components. The compatibility with the †-structure essentially
implements the CPT theorem, known to hold for all unitary quantum field theories.

As any manifold can be seen as the disjoint union of itself and the empty manifold,
the compatibility with the monoidal structure requires that F(∅d) = 1, F(∅d−1) = C,
where we respectively considered the empty set as a d-dimensional manifold and as a
d − 1-dimensional manifold. This fact also explains why we can see the field theory as
associating a complex number to a closed d-dimensionalmanifoldMd .Md should really
be seen as a bordism between ∅d−1 and itself, which corresponds to a homomorphism
F(Md) : C → C. But the space of such homomorphisms can be canonically identified
with C.

2.2. Extended field theories. The locality of quantum field theory suggests that one
should be able to reconstruct the theory on any manifold M from the knowledge of
the theory on elementary building blocks, for instance simplexes. To do this, we must
extend the cobordism category to include manifolds of dimension d ′ � d with corners
of arbitrary codimension, and understand the kind of object to which the functor F
associates them. Such quantum field theories are called fully extended. It is also well-
known that quantum field theories of physical interest often contain, in addition to
point-like operators, defect operators of all codimensions. A proper description of such
operators would probably also require formulating the theory as a fully extended field
theory. We refer the reader to [5] for an account of fully extended topological field
theories.

Less ambitiously, one may fix some q < d and consider extended theories involving
manifolds of dimension d ′, q � d ′ � d, with q-dimensional corners. As we will see,
anomalous field theories in d − 1 dimensions are related to anomaly field theories in d
dimensions, so in order to understand the effect of anomalies on the state spaces of the
anomalous theory on d−2-dimensional manifolds, we must consider extended anomaly
field theories with q = d − 2.

The definition of the extended bordism category Bd,2
F can be found in Appendix

A.4. In summary, Bd,2
F is a strict 2-category with the following properties. An ob-

ject in Bd,2
F is a closed F-manifold Md−2 endowed with a d-dimensional germ of F-

structure. A 1-morphism between Md−2− and Md−2
+ is an F-manifold Md−1 with bound-

ary −Md−2− � Md−2
+ and endowed with a d-dimensional germ of F-structure, which

should be compatible with the germs existing on the boundary. Such 1-morphisms are
called regular. In addition, for each d − 2-dimensional F-manifold Md−2, there is a
group AutF([Md−2]), which is the automorphism group of the isomorphism class of
F-manifolds [Md−2] to which Md−2 belongs. φ ∈ AutF([Md−2]) maps Md−2 to an
isomorphic object φMd−2. For each pair (Md−2, φ), we add a limit 1-morphism from
Md−2 to φMd−2. Limit morphisms can be pictured as the limit when ε tends to zero of
the regular morphism given by cylinders Md−2 × (−ε, ε), with one side of the cylinder
identifying Md−2 to φMd−2 through φ. There is a similar story for 2-morphisms, which
we explain in Appendix A.4. The necessity of including limit morphism comes from
the fact that in a geometry bordism category, there is in general no regular bordism that
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can play the role of a unit morphism: for instance if the bordisms are endowed with
Riemannian metrics, the unit morphisms should be infinitesimally thin cylinders, hence
limit morphisms. A symmetric monoidal structure on Bd,2

F is provided by the disjoint
union, and a dagger structure is provided by the orientation reversal.

The target of a field theory extended down to codimension 2 is the 2-categoryH2 of
2-Hilbert spaces [3,26,27], a notion that we review in Appendix A.2. In short, a complex
vector space is a C-module. Going up in the category hierarchy, the role of C is taken by
the category V1 of vector spaces, which can be seen as a semiring under the operations
of direct sum and tensor product. (In order to get a true ring with an invertible addition,
we would need to consider virtual vector spaces, which we will not do.) A 2-vector
space is therefore a C-linear category that is also a finitely generated free module for
the category of vector spaces, up to equivalence. The simplest 2-vector space, playing
a role equivalent to C for complex vector spaces, is the category V1 of vector spaces
itself. Morphisms of 2-vector spaces are provided by V1-linear functors, i.e. functors
preserving the V1-module structure, and 2-morphisms are natural transformations. The
2-vector spaces form in this way a 2-category V2.V2 can be endowed with a higher direct
sum and higher tensor product operations, forming a semiring structure, with V1 being
the unit for the higher tensor product operation.

Passing to Hilbert spaces, we need a sesquilinear form valued inH1 on our 2-vector
space. This sesquilinear form is played by the hom functor, so we need to restrict to
2-vector spaces that are enriched inH1, i.e. whose spaces of morphism between any two
objects are Hilbert spaces. The requirement of sesquilinearity requires furthermore that
the 2-Hilbert spaces be H∗-categories [27], which are essentially †-categories whose
dagger operation is compatible with the inner product on the spaces of morphisms, see
Appendix A.2. We obtain in this way a 2-category H2 of 2-Hilbert spaces. There is a
monoidal structure given by the higher tensor product and a dagger structure. The role
of C as the trivial Hilbert space in H1 is taken over by the trivial 2-Hilbert space H1 in
H2. We refer the reader to Appendix A.2 for more detailed information.

A field theory with data F extended to codimension 2 is a 2-functor F : Bd,2
F → H2

compatible with the monoidal and dagger structures. The functorial property ensures
consistency with the gluing of manifolds. The compatibility with the dagger structure
implements the CPT theorem and the compatibility with the monoidal structure im-
plements the multiplicative property of the field theory data on disjoint manifolds. As
before, the latter puts constraints on the value of F on the empty set: F(∅d) = 1,
F(∅d−1) = C,F(∅d−2) = H1. This also allows us to simplify our picture of the objects
the field theory associates to closed manifolds. For instance a closed manifold Md−1

should be seen as a bordism from ∅d−2 to itself, so F should associate to it a functor
F(Md−2) : H1 → H1 preserving the semiring structure on H1. But any such functor
is of the form • ⊗ H for some H ∈ H1 [28], so we can naturally see F(Md−1) as a
Hilbert space, the space of quantum states of the theory. Similarly, one can show that
F(Md) can be canonically identified with a complex number, the partition function of
the theory on Md .

We say that a field theory F is invertible when F(M) is invertible for all M . The
precise meaning of second occurence of “invertible” in the previous sentence is as fol-
lows. F(Md) should be a non-zero complex number, which is obviously invertible with
respect to the monoidal structure on C, namely the complex multiplication. F(Md−1)

should be a Hermitian line. Hermitian lines are indeed the invertible objects ofH1 with
respect to the monoidal structure given by the tensor product. For the same reason,
F(Md−2) should be a 2-Hermitian line (see Appendix A.1.F(Md,1) should be a vector
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space isomorphism. F(Md−1,1) : F(∂−Md−1,1) → F(∂+Md−1,1) should be an invert-
ible functor, in the sense that there is a functor G : F(∂+Md−1,1) → F(∂−Md−1,1)

such that the two compositions of F(Md−1,1) with G are the identity functors on
F(∂−Md−1,1) and F(∂+Md−1,1). Finally, for Md−2 such that ∂Md−2 = −N− ∪ N+
with ∂N± = N+∩N− = −Q−�Q+,F(Md−2) should be a natural equivalence between
the functors F(N−) and F(N+), which map F(Q−) to F(Q+).

A trivial example of an extended invertible field theory is the following. Consider the
field theory 1 that associates

• 1 to any d-dimensional manifold.
• C to any d − 1-dimensional manifold.
• H1 to any d − 2-dimensional manifold.

One should interpret the statements above properly in order to reconstruct the corre-

sponding functor. For instance, 1(Md,1) is a homomorphism C
•·1→ C, i.e. the identity

homomorphism. 1(Md−1,1) is the functor I : H1
•⊗C→ H1, which is just the identity

functor. 1(Md,2) can be identified with the natural transformation I •·1→ I between the
identity functors, i.e. the identity natural transformation.Wewill see the use of the trivial
field theory next.

3. Anomalous Field Theories

In this section, we explain how anomalies of quantum field theories can be pictured
elegantly using the formalism of extended field theories [8–10]. We develop this formal-
ism to include Hamiltonian anomalies. We also generalize it in order to accommodate
non-invertible anomaly field theories, which is the case relevant to the six-dimensional
(2, 0) theories. We show that in this case, the Hamiltonian anomaly on a spacial slice
Md−2 is characterized by a non-abelian cohomology class of the automorphism group
AutF([Md−2]). More information about relative field theories and their relations to
anomalies can be found in [6,8–12].

3.1. Definition. An interesting fact is that a non-extended d−1-dimensional field theory
can be seen as a 2-natural transformation f : 1|d−1 → 1|d−1. Here, 1 is seen as a d-
dimensional extendedfield theory, and1|d−1 is the restriction of1 to the bordismcategory
truncated to manifolds and bordisms of dimension d−1 or lower, writtenBd,2

F |d−1. This
truncation is discussed at the end of Appendix A.4. A sketch of a definition of 2-natural
transformations can be found in Appendix A.1, see [29] for a full definition. To see
what this means, remark that such a 2-natural transformation associates an element of
HomH2(1(M

d−2), 1(Md−2)) = HomH2(H1,H1), i.e. anH1-linear functorH1 → H1,
to each object Md−2 of Bd,2

F . But we saw that such functors can be represented as the
tensor product with a Hilbert space H ∈ H1, namely the image of C ∈ H1. f therefore
associates a Hilbert space to each closed d−2-dimensional manifoldMd−2. This Hilbert
space can be identified with the state spaceF(Md−2) of a d−1-dimensional field theory
F . Moreover, f takes a bordism Md−1,1 with ∂Md−1,1 = −∂−Md−1,1 � ∂+Md−1,1 to
a morphism f (Md−1,1) of the category HomH2(H1,H1) between f (∂−Md−1,1) and
f (∂+Md−1,1), i.e. a natural transformation between the associated functors. This natural
transformation can be pictured as a homomorphism between the corresponding Hilbert
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spaces F(∂−Md−1,1) and F(∂+Md−1,1) [28]. The compatibility of f with the gluing
in Bd,2

F implies that F : Bd−1,1
F → H1 is a functor. If f is required to be compatible

with the monoidal and dagger structures, then F is a (non-extended) field theory in
d − 1 dimensions. The truncation is required, because the compatibility of the 2-natural
transformation f with the d-dimensional bordisms would require the partition function
f(Md−1) to be a cobordism invariant, which is in general not the case for quantum field
theories of interest.

This suggests that given an extended d-dimensional field theoryA, we might obtain
an interesting generalization of a field theory by looking at 2-natural transformations of
the form 1|d−1 → A|d−1 orA|d−1 → 1|d−1. In fact, the two possibilities are not really
different, because, at least in the finite dimensional setting that we are considering here,
one can always find a dual field theory A† such that there is an equivalence between
the 2-natural transformations A|d−1 → 1|d−1 and 1|d−1 → A†|d−1. A† is obtained
fromA by postcomposing it with the dagger operation onH2. Let us therefore define an
anomalous field theory to be a 2-natural transformation f : A|d−1 → 1|d−1 compatible
with the monoidal and dagger structures, A being the anomaly field theory of f. We
will see momentarily how to recover the physical notion of an anomalous field theory
from this definition. Up to the operation of taking the dual, this definition corresponds
to what was defined as a relative field theory in [6]. In [8] anomalous field theories
were defined as relative field theories with the extra requirement that the anomaly field
theoryA should be invertible. We find it suitable to broaden the definition of [8] in order
to accommodate the chiral rational conformal field theories in two dimensions, or the
six-dimensional (2, 0) superconformal field theories.

Properties of anomalous theories. Let us try to understand the consequences of this
definition for the field theory f. f takesMd−2 to an object ofHomH2(A(Md−2),H1), i.e.
aH1-linear functor f(Md−2) : A(Md−2) → H1.Recall also thatA(Md−2) is a 2-Hilbert
space, and is therefore non-canonically equivalent toHn

1 [28], the nth Cartesian product
of the category of Hilbert spaces. As the functor preserves the H1-module structure, it
is determined by its value on the n copies of C generating Hn

1 as a category module
over H1. Let us write these generators Ci , i = 1, . . . , n. Writing Hi = f (Ci ), we get a
collection of Hilbert spaces. The anomalous theory is therefore associated to a collection
{Hi } of Hilbert spaces that depends on a choice of equivalence A(Md−2) ∼ Hn

1. Let us
stress that this equivalence can in general not be chosen canonically. We will see shortly
the consequences of this fact. Let us also mention that the vectors in the Hilbert spaces
Hi cannot be pictured directly as states of the anomalous theory, because the equivalence
used to pictureA(Md−2) asHn

1 discards some information. In particular, the fact that the
Hi are all finite dimensional does notmean that we are restricting ourselves to anomalous
field theories with finite dimensional state spaces. We discuss this point in more detail
below.

Let us move up in dimension and consider a bordism Md−1,1. f (Md−1,1) is a mor-
phism of the category HomH2(A(∂−Md−1,1),H1) between the objects f (∂−Md−1,1)

and f (∂+Md−1,1) ◦ A(Md−1,1). We will see in Sects. 3.3 and 3.4 that this fact implies
that the state space of the anomalous theory is a gerbe.

In the case of a closed d−1-dimensional manifold Md−1, we haveA(∅) = H1, f (∅)

is the identity functor and the discussion above simplifies. We see that f (Md−1) is now
a natural transformation between the identity functor and A(Md−1). But the functor
A(Md−1) can be pictured as a Hilbert space and the natural transformation is simply
a homomorphism f (Md−1) : A(Md−1) → C. We see therefore that the field theory
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f does not yield a complex number on closed d − 1-dimensional manifolds. It does so
only after one specifies an element of the Hilbert space A(Md−1). More precisely, the
partition function is a vector inA(Md−1)† = A(Md−1). The simplest case occurs when
A is an invertible field theory. A(Md−1) is a Hermitian line and the ambiguity in the
identification of A(Md−1) with C translates into a phase ambiguity in the definition
of the partition function as a complex number. This is the simplest incarnation of an
anomaly, occurring for instance in chiral fermionic theories or for a single self-dual
field. When we consider families of manifolds, we obtain a Hermitian line bundle over
the parameter space, of which the partition function is a section. In general, A(Md−1)

can be an arbitrary n-dimensional Hilbert space and the partition function can be (non-
canonically) pictured as an n-component vector. This is the situation that arises for
2-dimensional chiral conformal field theories, or for the six-dimensional (2, 0) theo-
ries. In these cases, the components of the partition function are traditionally called
“conformal blocks”.

Anomalous field theories with infinite dimensional state space. Our aim is ultimately
to describe physically relevant quantum field theories, whose state spaces are infinite
dimensional. Yet all the Hilbert spaces involved in the formalism above are finite di-
mensional. How can we then treat anomalous theories with infinite dimensional state
space?

As we hinted above, it is naive to think of the finite-dimensional Hilbert spaces Hi
as being directly related to the states of the anomalous field theory. Indeed, to extract
them, we had to pick an equivalence of categoriesA(Md−2) ∼ Hn

1. But an equivalence
is not an equality: the simple objects Vi of A(Md−2) are mapped through the equiva-
lence to the one-dimensional Hilbert spaces Ci , but they may very well be themselves
infinite dimensional. The Hilbert spaces Hi should be more appropriately thought of as
multiplicity spaces, so that the full state space of the theory reads

⊕
i Vi ⊗ Hi .

In the example to be discussed later in Sect. 3.5, where F is a 2-dimensional rational
chiral conformal field theory,A(Md−2) is the representation category of a rational vertex
algebra. While such a category is equivalent to Hn

1 for some n, the simple objects are
infinite dimensional Hilbert spaces.

This shows that the formalism above has no trouble accommodating anomalous
theories with infinite-dimensional state spaces.

3.2. The anomaly of the partition function. We recognized in the previous section some
facts familiar from the physical picture of anomalies, such as the fact that the partition
function of f, for A invertible, has a phase ambiguity. However, in physical contexts,
anomalies are most often pictured as the breaking of some global symmetry of the
classical field theory in the quantum field theory. We will show here that anomalous
field theories can indeed fail to be invariant under the group of automorphisms of the
F-structure of the underlying manifold, which we see as the group of potential global
symmetries of the theory.
The global symmetry group. In order to understand how this comes about, recall fromAp-
pendix A.4 that given an isomorphism class of d − 2-dimensional F-manifolds [Md−2],
wewriteAutF([Md−2]) for the automorphismgroup of theF-structure.WewriteφMd−2

for the isomorphicF-manifold obtained fromMd−2 by the action of φ ∈ AutF([Md−2]).
We do not identify isomorphic F-manifolds, so φMd−2 is distinct from Md−2 as an
object of Bd,2

F . The bordism category contains limit 1-morphisms that can be pictured as
infinitesimal cylinders limε→0 Md−2×(−ε, ε). The ingoing boundary−Md−2×{−ε} is
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identified with−Md−2 through the identity map and the outgoing boundary Md−2×{ε}
is identifiedwithφMd−2 throughφ. Limit 1-morphismprovide a realization of the action
of AutF([Md−2]) on the collection of F-manifolds isomorphic to Md−2. In a completely
similar way, given an isomorphic class of 1-morphisms [Md−1,1], we have an automor-
phism group AutF([Md−1,1]) of F-structures on [Md−1,1]. We have limit 2-morphisms
realizing the action ofAutF([Md−1,1])on the collection of objects isomorphic toMd−1,1.
We will abuse the notation and write φ as well for the limit morphism associated to an
automorphism φ.

AutF([M]) should be pictured as a (potential) global symmetry of the field theories
defined from the data F on the manifold M . We will see that even when the anomaly
field theory A is invariant under this global symmetry, the anomalous field theory f is
not necessarily invariant. We will also show that the lack of invariance of the anomalous
theory can be characterized by group cohomology classes of AutF([M]), recovering
results from the physics literature.

The partition function anomaly. The anomalous field theory is a 2-natural transformation
f : A|d−1 → 1|d−1, where A, 1 : Bd,2

F → H2 are the 2-functors corresponding to the
anomaly field theory and the trivial theory, respectively. As before, |d−1 denotes the
truncation of these functors to manifolds and bordisms of dimension d − 1 or less.
Let us start by considering a closed d − 1-dimensional manifold Md−1. We assume
that the anomaly field theory admits AutF([Md−1]) as a global symmetry. This means
that A(Md−1) = A(φMd−1), and the compatibility with the gluing of limit morphism
ensures that A(φ) form a unitary representation of AutF([Md−1]) on the state space
A(Md−1). A similar reasoning applies to the trivial field theory 1. 1(φ) is the identity
homomorphism C → C, so 1 provides the trivial representation of AutF([Md−1]) on C.

Recall that the anomalousfield theoryprovides a homomorphism f(Md−1) :A(Md−1)

→ C. The fact that f is a natural transformation requires it to intertwine the representa-
tions defined by A and 1. Concretely, we deduce that

f (Md−1) = f (φMd−1) ◦ A(φ). (3.1)

Let us write AutF(Md−1) for the group of automorphisms of the F-manifold Md−1. We
have:

Proposition 3.1. The vector of partition functions f (Md−1) vanishes outside the space
of invariants of the action of AutF(Md−1) on A(Md−1).

Proof. If φ ∈ AutF(Md−1), then φMd−1 = Md−1 (3.1) then shows that f (Md−1) is an
intertwiner between the representation of AutF(Md−1) determined by A and the trivial
representation (determined by 1). Such an intertwiner can be non-vanishing only on the
space of invariants. ��
We see here why it is important that we do not identify isomorphic F-manifolds. If we
work in a setting where all the isomorphic F-manifolds are identified, AutF(Md−1) =
AutF([Md−1]) and the anomalous theory is always invariant under the global symmetry
group AutF([Md−1]) (at the expense of the vanishing of part or all of its partition
functions).

The kind of anomaly leading to a vanishing of the partition function through Propo-
sition 3.1 appeared in the physics literature. For instance in [30], it was shown that the
partition function of a self-dual field vanishes unless certain torsion background fluxes
are turned on. The torsion fluxes required to have a non-vanishing partition function are
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precisely those that make trivial the representation of gauge transformations associated
to certain torsion classes on the Hermitian line in which the partition function of the
self-dual field takes value. A detailed discussion can be found in Section 3.6 of [31].

From now on, we assume that we have sufficiently many isomorphic F-manifolds
so that AutF(Md−1) is the trivial group. Of course, in general AutF([Md−1]) is still
non-trivial. In this case, (3.1) always admits non-vanishing solutions. We say that f is
anomalous if its partition function fails to be invariant under the global symmetry group
AutF([Md−1]). The following statement holds almost tautologically:

Proposition 3.2. The theory f is anomalous unless f (Md−1) takes value in the invari-
ants of the action of AutF([Md−1]) for all [Md−1]. If the representation determined
by A is irreducible and non-trivial, f (Md−1) is invariant under the global symmetry
AutF([Md−1]) if and only if it vanishes.

In particular, when A is invertible, A(Md−1) is 1-dimensional and the failure of
invariance of the partition function of f is by a phase. This phase is a character of
AutF([Md−1]), or equivalently a group 1-cocycle on AutF([Md−1]) valued in T. The
anomaly is absent if the associated group cohomology class is trivial, which in degree 1
actually requires that the cocycle itself is trivial. When AutF([Md−1]) happens to be a
Lie group, the corresponding Lie algebra cocycle condition is well-known in the physics
literature and goes under the name of the Wess-Zumino consistency condition, see for
instance Section 22.6 of [32]. The group cocycle itself was first described in [33]. We
have therefore recovered the familiar physical picture of the anomaly.

When the anomaly theoryA is not invertible, the vector of partition functions trans-
forms in the unitary representation ofAutF([Md−1]) onA(Md−1). Such a representation
can be pictured as a non-abelian group 1-cocycle on AutF([Md−1]) valued inU (n). This
is for instance familiar in the case of 2-dimensional chiral conformal field theories.Md−1

is then a 2-dimensional surface endowed with a conformal structure. AutF([Md−1]) in-
cludes the modular group, which is the group of diffeomorphisms preserving a given
conformal structure. The conformal blocks of the theory are not invariant, but transform
in a unitary representation of the modular group. On the torus, the modular group is
isomorphic to SL(2, Z) and the representation is determined by the S and T matrices
corresponding to the generators of SL(2, Z), see for instance Chapter 10 of [34].

3.3. The Hamiltonian anomaly in the invertible case. We now investigate what happens
on a d − 2-dimensional manifold Md−2. WhenA is invertible, we expect to recover the
Hamiltonian anomaly, i.e. the fact that the symmetry group is represented on the state
space of the theory by a projective representation, characterized by a group cohomology
class of degree 2 valued inT [18,19,35]. This result was obtained recently for topological
field theories using similar ideas in [12]. To understand how Hamiltonian anomalies
arise, let us first assume that A(Md−2) = A(φMd−2) for φ ∈ AutF([Md−2]), i.e.
the anomaly field theory factors through isomorphism classes of F-manifolds, and is
therefore invariant under the global symmetry. In complete analogy to what happened
in the previous section, A defines a “2-representation” of AutF([Md−2]) on A(Md−2).
By this, we mean that for each automorphism φ ∈ AutF([Md−2]), we have a functor
A(φ) : A(Md−2) → A(Md−2), and the composition of these functors reproduces
the group law of AutF([Md−2]): A(φ1) ◦ A(φ1) = A(φ1φ2). 1 defines a trivial 2-
representation of AutF([Md−2]) on H1. The fact that f is a 2-natural transformation
implies that we have a natural transformation
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f (φ) : f (Md−2) → f (φMd−2) ◦ A(φ), (3.2)

where now ◦ is the composition of functors. We have an analogue of Proposition 3.1:

Proposition 3.3. The state space f (Md−2) belongs to the subcategory of A(Md−2)

invariant under the action of AutF(Md−2).

In what follows, we assume that our category of F-manifolds is such that AutF(Md−2)

is trivial, so that Proposition 3.3 provides no constraint. This occurs if there are enough
isomorphic objects so that the action of AutF([Md−2]) is free.

The above is valid both for invertible and non-invertible anomaly field theories. Let
us now focus on the case when A is an invertible field theory. Then A(Md−2) is a
2-Hermitian line, a category non-canonically equivalent to H1. Pick an equivalence χ .
A(φ) can now be pictured as an invertibleH1-linear functorH1 → H1. Such a functor
is the tensor product with a Hermitian line Lχ,φ . As we have a 2-representation, we have
a canonical isomorphism

Lχ,φ1 ⊗ Lχ,φ2 ⊗ L
χ,φ−1

2 φ−1
1

� C. (3.3)

Pick in addition for each Lχ,φ a non-canonical isomorphism Lχ,φ � C, and for nota-
tional convenience, include this extra data in the symbol χ . The isomorphism (3.3) is
then a unitary transformation C → C, i.e. an element αχ,φ1,φ2 of T. Standard arguments
show that α is a 2-cocycle for the group AutF([Md−2]). This is the 2-cocycle described
by Faddeev [18], and whose infinitesimal version was described by Mickelsson [20].
The cocycle itself is dependent on the choices of equivalence and isomorphisms χ , but
its group cohomology class is not. These two claims are consequences of the general
result proven in the next section for the case of a not necessarily invertible anomaly field
theory.

We use the chosen equivalence ofA(Md−2)withH1 to see f (Md−2) as anH1-linear
functor fromH1 to itself, hence as a Hilbert space Hχ (Md−2). (3.2) can be rewritten as
an isomorphism

f (φ)|χ : Hχ (Md−2) → Hχ (φMd−2) ⊗ Lχ,φ. (3.4)

We now see that given two group elements φ1, φ2 ∈ AutF([Md−2]),
f (φ−1

2 φ−1
1 )|χ ◦ f (φ2)|χ ◦ f (φ1)|χ : Hχ (Md−2) → Hχ (Md−2) (3.5)

is given by the multiplication by the cocycle αχ,φ1,φ2 . We recovered the fact that for
invertible anomalies, the representation of AutF([Md−2]) on the state space of the anom-
alous theory is only a projective one, characterized by the 2-cocycle α.

3.4. The Hamiltonian anomaly in the general case. It is interesting to consider what
happens when the anomaly theory is not invertible. As far as we are aware, this situation
has not been described in the physics literature yet and this is the case relevant for
six-dimensional (2, 0) theories.

Unpacking the definitions.WhenA is not invertible, we still have natural transformations
(3.2). But now A(Md−2) is non-canonically equivalent to Hn

1, on which the functors
A(φ) provide a 2-representation of AutF([Md−2]). Let us pick again an equivalence χ .
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A genericH1-linear functor fromHn
1 to itself can be represented as a matrix of Hilbert

spaces [28]. The invertibility of the functors A(φ) implies two facts. First, their matrix
elements Li j

χ,φ , 1 � i, j � n can only be either Hermitian lines or the zero-dimensional
Hilbert space. In the latter case, we say that thematrix element is “vanishing”.Moreover,
asHn

1 is a semiring and not a ring, invertibility also requires thematrix to be a permutation
matrix, i.e., that there is a single non-vanishing entry on each line and column.Let uswrite
Lχ,φ for the matrix with matrix elements Li j

χ,φ and �χ,φ for the associated permutation
matrix, i.e. the matrix obtained from Lχ,φ by replacing Hermitian lines by 1 and the
zero vector space by 0. Let � be the combination of the tensor product and the matrix
multiplication, i.e.:

(L1 � L2)
ik =

n⊕

j=1

Li j
1 ⊗ L jk

2 . (3.6)

The fact that we have a 2-representation means that there are canonical isomorphisms

Lχ,φ1 � Lχ,φ2 � L
χ,φ−1

2 φ−1
1

� 1, (3.7)

where 1 is the matrix of Hilbert space that has copies ofC on the diagonal and vanishing
matrix elements off the diagonal.

Again, let us pick for each Li j
χ,φ that is different from the zero Hilbert space a non-

canonical isomorphism Li j
χ,φ � C, which we include in the data χ . (3.7) then provides

a C-valued unitary matrix αik
χ,φ1,φ2

, which is the product of a permutation matrix with a
diagonal matrix with entries in T, i.e. we obtain an element αχ,φ1,φ2 ∈ Sn � T

n . (The
semi-direct product is with respect to the permutation action of the symmetric group on
T
n .)

The non-abelian 2-cocycle. Writing λχ,φ = Ad(�χ,φ) for the adjoint action of �χ,φ on
Sn � T

n , it is not difficult to check that we have the relation (dropping the mention of
the data χ to lighten the notation)

λφ1λφ2λφ−1
2 φ−1

1
= Ad(αφ1,φ2). (3.8)

Moreover, there are two different ways to use the isomorphism (3.7) to identify Lχ,φ1φ2φ3

with Lχ,φ1 � Lχ,φ2 � Lχ,φ3 , which leads to the relation

λφ1(αφ2,φ3)αφ1,φ2φ3 = αφ1,φ2αφ1φ2,φ3 . (3.9)

Comparing for instance with (5.1.10) of [21], we see that the pair (λχ , αχ ) satisfies the
same relations as the cocycle associated to a non-abelian gerbe.

(The discussion in [21] pertains to bundle gerbes over a topological space. In com-
paring with [21], we must keep in mind that in our case, the gerbe effectively lives on the
classifying space of the symmetry group G = AutF([Md−2]). Recall that a classifying
space BG is the quotient of a contractible space EG by a free action of G. Practically,
this means that we can cover EG with a unique chart that is acted on by G. We therefore
identify pairs of cover indices in [21] with elements of G. For instance, if we identify
(i j) with φ1, ( jk) with φ2 and (kl) with φ3, an object Xi jl living on a triple intersection
corresponds in our framework to an object Xφ1,φ2φ3 .)

To show that the cohomology class of this cocycle is independent of the extra choices
that we have collectively written χ , we must study the dependence of (λχ , αχ ) on the
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latter. We made essentially two types of choices. The first was the choice of equivalence
between A(Md−2) and Hn

1. The second was the choice of isomorphisms Li j
χ,φ � C. If

we choose two equivalences betweenA(Md−2) andHn
1 , theywill differ by a permutation

r ∈ Sn of the generators of Hn
1. We call χ and χ ′ the data encoding the two choices of

equivalence. Writing ρ = Ad(r), we see that the cocycles are related by
(
λχ ′, αχ ′

) =
(
ρλχρ−1, ρ(αχ )

)
. (3.10)

Comparing with (5.2.9) of [21] we see that (λχ ′, αχ ′) is cohomologous to (λχ , αχ ).

Suppose now that we change the isomorphisms Li j
χ,φ � C. We can encode the changes

of isomorphisms by elements θφ ∈ T
n . We call again χ ′ the new data. The new cocycle

reads
({λχ ′,φ}, {αχ ′,φ1,φ2}

) =
(
{λχ,φ}, {θφ1λχ,φ1(θφ2)αχ,φ1,φ2θ

−1
φ1φ2

}
)

, (3.11)

where we picture the θ ’s as diagonal matrices and use the matrix product, i.e (θα)i j :=
θ iαi j and (αθ)i j = θ jαi j . Comparing with (5.2.9) of [21] we see again that (λχ ′, αχ ′)
is cohomologous to (λχ , αχ ).

The relevant non-abelian cohomology theory is the Čech hypercohomology

H := Ȟ
(
BAutF([Md−2]); Sn � T

n → Sn
)

(3.12)

whose definition can be found in [21]. We have therefore proved:

Proposition 3.4. A d − 1-dimensional anomalous field theory admitting a symmetry
groupAutF([Md−2]) on a d −2 dimensional manifold Md−2 determines a cohomology
class in H.

Remark that with an invertible anomaly field theory, when n = 1, λ does not contain
any information and α is an ordinary T-valued cocycle. In this case, the cohomology
reduces to the ordinary group cohomology of AutF([Md−2]) valued in T. The fact
that Hamiltonian anomalies can be characterized in this way has been known for some
time [18].

The twisted representation of the symmetry group on the vector of Hilbert spaces. Let us
study the consequence of the above discussion for the action of the symmetry group on
the state space of the theory. With our choice of non-canonical equivalence ofA(Md−2)

withHn
1, we can see f (Md−2) as an additive functor fromHn

1 toH1, hence as a vector
of Hilbert spaces Hi

χ (Md−2). (3.2) can be rewritten as an isomorphism

f (φ)|χ : Hχ (Md−2) → Hχ (φMd−2) � Lχ,φ, (3.13)

where we wrote Hχ (Md−2) for the vector of Hilbert spaces. Remark that there is again
only one term contributing non-trivially in the direct sum implicitly present on the right-
hand side. We now see that given two group elements φ1, φ2 ∈ AutF([Md−2]),

f (φ−1
2 φ−1

1 )|χ ◦ f (φ2)|χ ◦ f (φ1)|χ : Hχ (Md−2) → Hχ (Md−2) (3.14)

is given by the multiplication by the cocycle αχ,φ1,φ2 , where the multiplication also
involves a matrix multiplication on the indices of the Hilbert spaces. We therefore dis-
cover that when the anomaly field theory is non-invertible, in general we do not get a
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representation of the symmetries on a single Hilbert space. We only get a projective
representation on the vector Hχ (Md−2) of Hilbert space, in the sense described above.
Note that this is in total analogy to what happens for the partition functions (or conformal
blocks): the symmetry group does not have an action on a single partition function, but
may permute them. The only difference is that while arbitrary unitary transformations
of the space of partition functions can occur, the semiring structure ofH1 reduces such
transformations to elements of the group Sn � T

n .
Let us also mention that when the cohomology class of Proposition 3.4 is trivial,

the proof of the proposition shows that the choices χ can be made in such a way that
λχ,φ = 1 ∈ Sn and αχ,φ1,φ2 = 1 ∈ Sn � T

n . In this case we see that we get a linear
representation of the symmetry group AutF([Md−2]) on each of the Hilbert spaces
Hi

χ (Md−2), and the symmetry is not anomalous. We therefore obtain

Proposition 3.5. If the representation ofAutF([Md−2]) onA(Md−2) is irreducible, the
symmetry AutF([Md−2]) is anomalous if and only if the cohomology class of Proposi-
tion 3.4 is non-trivial.

The irreducibility requirement is there to eliminate the possibility thatA(Md−2) be a re-
ducible 2-representation. In this case, even ifA(Md−2) is non-trivial and associated to a
non-zero cohomology class, f(Md−2) could take value in the possibly non-vanishing in-
variant subcategory ofA(Md−2) and be invariant under AutF([Md−2]). Proposition 3.5
generalizes a corresponding well-known statement in the case where the anomaly field
theory is invertible.

Let us finallymention that the picture above should generalize to families ofmanifolds
and bordisms. To discuss these rigorously, we would need a better definition of the
cobordism category, presumably along the lines of [17], in which one obtains a natural
topology on the moduli spaces of F-manifolds and bordisms. We expect that the non-
abelian gerbe characterized by the cohomology class of Proposition 3.4, which in our
setup is defined over the classifying space of AutF([Md−2]), should be promoted to a
non-abelian bundle gerbe over the moduli space of d − 2-dimensional F-manifolds.

3.5. Example. Aswasmentioned above, the prime examples of anomalous field theories
with non-invertible anomaly field theories are 2-dimensional rational chiral conformal
field theories and the six-dimensional (2, 0) superconformal field theories. The anomaly
field theories of the latter involve a certain refinement of the Dijkgraaf-Witten theory
[36], which is unfortunately not completely straightforward to construct and which will
be studied elsewhere.

The case of a 2-dimensional rational chiral conformal field theory can be treated
in complete generality as follows. We do not make explicit many of the concepts and
constructions in what follows, see for instance the books [34,37]. Let C be a modular
tensor category. To fix ideas, one can keep in mind the case of chiral Wess-Zumino-
Witten theories, in which C is the category of positive energy representations of the level
k ∈ N central extension of the loop group of a semi-simple Lie groupG. Then on the one
hand, C contains theMoore-Seiberg data [38] required to define a 2-dimensional rational
chiral conformal field theory RC [39–41]. On the other hand, the Reshetikhin-Turaev
construction [42,43] provides a 3-dimensional topological field theory AC .

RC is an anomalous field theory in the sense above, whose (generally non-invertible)
anomaly field theory is AC . Indeed, the chiral conformal field theory RC does not
have a well-defined partition function, but a vector of “conformal blocks”, which takes
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value in (the dual of) the state space of the Reshetikhin-Turaev theory AC . As we
alreadymentioned, the automorphismgroupof a surface up to conformal transformations
includes the modular group, which is the group of diffeomorphisms preserving a given
conformal structure. It is known that in general, the latter acts non-trivially on the space
of conformal blocks.

In codimension 2,AC(S1) = C, the modular tensor category itself. If C has n simple
objects, we have an equivalence C ∼ Hn

1. As was discussed above, we can extract from
the chiral conformal field theoryRC a vector of Hilbert spaces Hi , i = 1, . . . , n, which
should be thought of as the multiplicities with which the simple objects of C occur in the
spectrum of the chiral theory. The group AutF([S1]) contains in particular the group of
(orientation preserving) diffeomorphisms of the circle Diff+(S1). There is a gravitational
anomaly characterized by the central charge of the chiral theory and whose effect is that
Diff+(S1) is represented only projectively on the state space. As Diff+(S1) is connected,
the degree 2 group cocycle associated with the gravitational anomaly does not involve
non-trivial permutation matrices in Sn � T

n . The non-abelian nature of the anomaly is
therefore not manifest in this example.

It should also be mentioned that in this particular example, AC is more than simply
the anomaly field theory ofRC ; the two theories are equivalent, in the sense that there is
a prescription allowing the computation of any correlator ofRC inAC (see for instance
[40,41]). This is of course not the case for generic pairs of anomalous and anomaly field
theories.

It could be interesting to work out this example in more detail, but our main aim
being the (2, 0) theories, we will refrain from doing so. The rest of the paper is devoted
to the construction of invertible anomaly field theories that are of physical interest.

4. Wess-Zumino Field Theories

We present in this section a class of extended field theories describing the anomalies
produced by the “Wess-Zumino terms” of the physics literature. A type ofWess-Zumino
field theory also describes the anomalies of self-dual p-form fields.

Our construction generalizes the construction of the classicalDijkgraaf-Witten theory
by Freed in [3] and is strongly inspired by this work. Note that such theories have been
constructed using elaborate technology under the name of ∞-Chern-Simons theories,
see for instance Sect. 2.4 of [44] or [45]. We provide here a concrete construction down
to codimension 2.

4.1. Definition. Assume that F is a structure such that on a manifold M , F(M) includes
the data of a differential cohomology class c of degree d+1 (seeAppendixA.5). Typically
this occurs when F(M) includes the data of a map of M into some classifying space
endowed with a differential cocycle of degree d + 1, the differential cohomology class
on M being provided by the pull-back of the cocycle. We obtain an extended field theory
essentially by integrating c. More precisely, the Wess-Zumino field theories are defined
as follows.

Closed d-dimensional manifolds. Given a closed d-dimensional F-manifold Md , let us
pick a differential cocycle č = (â, ĥ, 0) representing the differential cohomology class
c on Md . The curvature of č vanishes for dimensional reasons.

We can integrate ĥ over Md to obtain an element of R. Picking a cycle representative
m̂ of the fundamental class of Md , we define
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Int(č, Md) := exp 2π i〈ĥ, m̂〉 ∈ T ⊂ C, (4.1)

where the angular bracket denotes the pairing between chains and cochains. This ex-
pression depends only on the differential cohomology class c of č. Indeed, under the
transformation č → č + dč′ for č′ = (â′, ĥ′, 0) a degree d differential cochain with
vanishing field strength, we have ĥ → ĥ + â′ −dĥ′. As Md is closed and â′ is an integral
cochain, (4.1) is invariant.We therefore define the partition function of theWess-Zumino
field theory associated to c by

WZc(M
d) := Int(č, Md). (4.2)

Closed d − 1-dimensional manifolds. Consider now a closed d − 1-dimensional F-
manifold Md−1 and pick again a cocycle representative č = (â, ĥ, 0) of c. We cannot
integrate ĥ over Md−1 in the usual sense of the term, but we can do the following [3].

Consider the category C1 whose objects are cycle representatives of the fundamental
homology class of Md−1, and whose morphisms between cycles m̂1 and m̂2 are chains
n̂ on Md−1 with boundary ∂ n̂ = m̂2− m̂1. We can construct a functorF1 to the category
H1 of Hilbert spaces as follows. F1 takes any object of C1 to C, and takes any chain
n̂ to exp 2π i〈n̂, ĥ〉 ∈ T, where 〈•, •〉 is the pairing between chains and cochains. The
inverse limit construction, reviewed in Appendix A.6, provides us with a Hermitian line
Int(č, Md−1), defined as the space of invariant sections of the functor F1.

This Hermitian line depends a priori on the cocycle representative č.We can eliminate
this dependence as follows, with another inverse limit construction. Recall that Ž p(M)

is the category of differential cocycles of degree p on M , defined in Appendix A.5.
Consider the functor G1 that sends objects č ∈ Žd+1(Md−1) to Int(č, Md−1) ∈ H1,
and morphisms č′ to Int(č′, Md−1) ∈ C. By taking the inverse limit of G1, we obtain a
Hermitian lineWZc(Md−1) that depends only on the cohomology class c.

d-dimensional manifolds with boundary. On a d-dimensional manifold with bound-
ary Md,1, we can define Int(č, Md,1) by pairing as above ĥ with any (relative) chain
representative p̂ of the fundamental homology class [Md,1, ∂Md,1]. However, as ĥ is
in general not a relative cocycle, the value of the pairing depends on ∂ p̂. Under a
change of cycle from p̂ to p̂′ with ∂ p̂ = m̂1 and ∂ p̂′ = m̂2, the value of the pair-
ing gets multiplied by exp 2π i〈n̂, ĥ〉, where n̂ is any chain satisfying ∂ n̂ = m̂2 − m̂1.
We see therefore that Int(č, Md,1) is not a well-defined complex number. It is rather
an invariant section of the functor F1 defined in the previous paragraph. Therefore
Int(č, Md,1) ∈ Int(č|∂Md,1 , ∂Md,1).

One can now check that the assignment č �→ Int(č, Md,1) is an invariant section of
G1, which we define to be WZc(Md,1). It follows that

WZc(M
d,1) ∈ WZc(∂M

d,1). (4.3)

Closed d−2-dimensional manifolds. We pick again a differential cocycle representative
č = (â, ĥ, 0) of the differential cohomology class c. The integral of the real cocycle ĥ on
a closed manifold of dimension d − 2 is a 2-Hermitian line, constructed as follows. We
consider the 2-category C2 whose objects are cycle representatives of the fundamental
class of Md−2. A 1-morphism between the objects m̂1 and m̂2 is a degree d − 1 chain
n̂ with ∂ n̂ = m̂2 − m̂1. A 2-morphism between two such chains n̂1 and n̂2 is a chain
p̂ with ∂ p̂ = n̂1 − n̂2. (Note that the right-hand side is closed, as n̂1 and n̂2 have the
same boundary.) A 1- or 2-morphism from a cycle/chain to itself is a cycle of one degree
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higher, and the units are the zero cycles. Composition is simply the addition of cycles
and chains, and is strict. We define a 2-functor F2 from C2 into the 2-category H2 of
2-Hilbert spaces. F2 sends each object to H1, seen as an object of H2. It sends each
1-morphism to C, seen as the trivial functor fromH1 to itself. It sends a 2-morphism p̂
to exp 2π i〈 p̂, ĥ〉 ∈ T, seen as a natural transformation between two copies of the trivial
functor.

We now use the inverse limit construction of Appendix A.6. Given two objects m̂1
and m̂2, we construct a Hermitian line Lm̂1,m̂2 as the inverse limit of the restriction ofF2
to the category of morphisms from m̂1 to m̂2. Lm̂1,m̂2 is composed of invariant sections
s such that given two 1-morphisms n̂1 and n̂2 as above, s(n̂2) = s(n̂1) exp 2π i〈 p̂, ĥ〉.

Consider invariant sections of the functor F2 defined as follows. To each object m̂
of C2, we associate a Hermitian line Lm̂ such that for any two objects m̂1 and m̂2,
Lm̂2 = Lm̂1,m̂2 ⊗ Lm̂1 . We define the integral I of ĥ over Md−2 to be the inverse
limit of F2. To understand what kind of object this is, remark that the set of invariant
sections provides us with something that looks like a Hermitian line, but that cannot be
canonically identified with any Hermitian line. By tensoring I with elements ofH1, we
obtain a category Int(č, Md−2) that is non-canonically equivalent to H1. This is what
we defined as a 2-Hermitian line in Appendix A.1.

An inverse limit procedure for the functorG2 = Int(•, Md−2) : Zd+1(Md−2) → H2
yields a 2-Hermitian lineWZc(Md,1) in away completely analogous to the case of closed
manifolds of dimension d−1.WZc(Md,1) depends only on the differential cohomology
class c.

d − 1-dimensional manifolds with boundary. We can repeat the discussion for a closed
d−1-dimensionalmanifold, using a chain representative r̂ for the fundamental homology
class [Md−1,1, ∂Md−1,1]. We obtain in this way a Hermitian line Lr̂ . However, Lr̂
depends on ∂ r̂ . In fact, if r̂1 and r̂2 are two such chains, with ∂ r̂1 = m̂1 and ∂ r̂2 = m̂2,
then Lr̂2 = Lm̂1,m̂2 ⊗ Lr̂1 . This shows the integral Int(č, Md−1,1) is an object of the
2-Hermitian line Int(č|∂Md−1,1 , ∂Md−1,1).

Again one checks that the map č �→ Int(č, Md−1,1) is an invariant section of the
functor G2 above, which we define to beWZc(Md−1,1). We then haveWZc(Md−1,1) ∈
WZc(∂Md−1,1).

d-dimensional manifolds with corners. This case can be treated analogously to the case
of d-dimensional manifolds with boundary, as we are integrating on singular cycles
anyway.

Assume that Md,2 is a manifold with corners associated to a 2-morphism in BF . This
means that we have two (possibly empty) codimension 2 corners M1 and M2 which
are smooth closed d − 2-dimensional manifolds, two manifolds N1 and N2 that both
have M2 � −M1 as boundary, and a bordism P between them. Let m̂1, m̂2, n̂1, n̂2 and
p̂ be compatible chain or cycle representatives of the relative fundamental classes of
these manifolds. exp 2π i〈 p̂, ĥ〉 is a complex number that depends on the chains m̂i and
n̂i . From the way it transforms under a change of m̂i and n̂i , we see that it defines an
invariant section of the functor F2 above, hence an element Int(č, Md,2) of the object
Int(č,−N1 � N2) of the category Int(č,−M1 � M2). This is indeed a 2-morphism in
H2 from the 1-morphism Int(č, N1) to the 1-morphism Int(č, N2).

The second inverse limit works exactly as above and produces a 2-morphism WZc
(Md,2) from the 1-morphism WZc(N1) to the 1-morphism WZc(N2), which depends
only on the differential cohomology class c.
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Compatibility with the dagger operation, monoidal structure and gluing. Recall that
we have dagger operations on Bd,2

F , corresponding to orientation reversal, and on H2,
corresponding to complex conjugation. The fact thatWZc intertwines between the dagger
operations is a direct consequence of the definition of the integral.

The fact that the pairing of chains and cochains is bilinear implies that WZc is
multiplicative under disjoint unions of bordism, showing the compatibility with the
monoidal structures of Bd,2

F and H2.
Finally, the compatibility with the gluing follows directly from the locality of the

integration functor.

4.2. Wess-Zumino terms. We would like to explain here how Wess-Zumino field the-
ories, when seen as anomaly field theories, can be used to describe certain anomalous
building blocks of physical quantum field theories, namely the Wess-Zumino terms. We
also mention how a certain class of such theories describe the anomalies of self-dual
fields. See also [45] for a long list of examples.

General mechanism. Wess-Zumino terms in the physics literature appear as follows.
Suppose that the structure F allows one to construct a differential cohomology class c
refining a characteristic class of degree d + 1. For instance, if the characteristic class
is a combination of Pontryagin classes of the tangent bundle, a Riemannian metric on
the underlying manifold M , together with the associated Levi-Civita connection, allows
one to construct a differential cocycle refining the characteristic class. More generally,
if the characteristic class is a Chern-Weil class associated to a vector bundle V over
M , a connection on V determines a differential cohomology class c refining the Chern-
Weil class. Typically, the structure F is such that the automorphism group AutF(M)

of an F-manifold is non-trivial, but leaves the characteristic class invariant. In the two
examples above, AutF(M) corresponds respectively to the subgroup of diffeomorphisms
and gauge transformations of the connection onV that preserve the rest of the structureF.

Once a differential refinement c is available, we have a degree d +1 differential form
ωc, the curvature of the differential cohomology class.We define on d-dimensional man-
ifolds a Chern-Simons term CSc, which has the property that whenever Md = ∂Md+1,
CSc(Md) = ∫

Md+1 ωc mod Z. Note that the fact that ωc has integral periods ensures that
CSc(Md) is well-definedmoduloZ. The completely general way of defining CSc(Md+1)

is through the integration map in differential cohomology [46]. In the physics literature,
CSc(Md) is often only defined under the assumption that the de Rham cohomology class
of ωc vanishes, by finding ηc such that dηc = ωc and defining CSc(Md) = ∫

Md+1 ηc.
Alternatively, it is defined onmanifolds that bound via the integration ofωc on a bounded
manifold.

When considered on a manifold Md,1 with boundary, CSc(Md,1) is in general not
invariant under AutF(Md,1). A Wess-Zumino term is a local quantity defined on ∂Md,1

whose variation under AutF(Md,1) is equal to the variation of CSc(Md,1) modulo Z.
Such terms, being local, can be included in the Lagrangian of any classical field theory.
Their anomalous variation under the symmetry group can cancel anomalous variations
coming from quantum anomalies; this is the celebrated Green-Schwarzmechanism [47].

We now want to show that when a Wess-Zumino term is added to the action of
a d − 1-dimensional field theory F , its anomaly field theory gets tensored with the
corresponding d-dimensional Wess-Zumino field theory. To see this, remark that the
partition function of the Wess-Zumino field theory is exactly the exponentiated Chern-
Simons term exp 2π iCSc(Md). The variation of the partition function of the field theory
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F under an element of AutF(Md−1) can be computed as follows. Let us pick any d + 1-
dimensional manifold Md with ∂Md = Md−1 � N , for N some d − 1-dimensional
manifold. We can always find such a pair (N , Md). Recall that the anomaly field theory
A, when evaluated onMd , produces an element of the Hermitian lineA(Md−1)⊗A(N ).
Now consider the closed d-dimensional manifold Pφ obtained by gluing Md to −Md ,
where we twist the gluing on Md−1 by an automorphism φ ∈ AutF(Md−1). A(Pφ)

computes the inner product ofA(Md) with φA(Md), i.e., the anomalous phase τφ,Md−1

picked under φ by the partition function F(Md−1). If we add a Wess-Zumino term
to the theory F , by definition this phase will be multiplied by exp 2π iCSc(Pφ). This
shows that adding a Wess-Zumino term changes the anomaly field theory from A to
A ⊗ WZc.

Classical chiralWZWmodel. In the case of the (classical) two-dimensionalWZWmodel,
the famous Wess-Zumino term appearing in the action can be understood as follows in
the framework above. Let G be a semi-simple simply laced Lie group. The structure F
contains the data of a principalG-bundleE with connection, in addition to an orientation,
smooth structure andRiemannianmetric.Wewrite F for the curvature of the connection.
We have a degree 4 characteristic class, given by a linear combination of c2(E ) and
c21(E ), whose de Rham cohomology class coincides with the de Rham cohomology
class of Tr(F2). The connection on E provides a differential refinement c. ThenWZc is
the standard three-dimensional classical Chern-Simons theory based on G.

It is well-known that the variation of the value of the Chern-Simons action on a
manifold with boundary under a gauge transformation is computed by the variation of
the Wess-Zumino term of the classical WZW model evaluated at the boundary (see for
instance Proposition 2 in Sect. 2.4 of [48]). The corresponding abelian bundle gerbes
have also been extensively studied in the literature, see for instance [49,50].

Abelian self-dual field.Assume that the structureF contains a differential cohomology lift
λ of the degree k Wu class of the underlying manifold [46], together with an orientation,
a smooth structure and a Riemannian metric. Recall that the Wu class νk of degree k on
a manifold M is an element of Hk(Md; Z2) such that for any class x of degree d − k,
x ∪ νk = Sqk(x). Let us take k even and d = 2k − 1.

The Riemannian metric provides a differential refinement L of the Hirzebruch genus.
Hopkins and Singer [46] constructed a differential cohomology class c of degree 2k + 1
given up to torsion by 1

8 L + 1
2λ

2. It was also shown in [46] that the field theory WZc
reproduces the global gauge anomaly of the self-dual field theory constructed from the
data F following [51]. It was shown in [31,52,53] thatWZc reproduces the full anomaly
of the self-dual field theory, including the gravitational part, solving a long-standing
problem [54]. This was used to check the cancellation of global anomalies in type IIB
[53] supergravity and on the worldvolume of five-branes [55].

5. Dai-Freed Theories

BeyondWess-Zumino terms and self-dual fields, there is a third class of anomalous the-
ories of great physical interest, namely the chiral fermionic theories. The corresponding
anomaly field theories are Dai-Freed theories, constructed in [22] as non-extended field
theories. Our aim is to extend this construction down to codimension 2. Here we content
ourselves with a definition of the theory, and do not claim a full proof that it defines a
2-functor.



Hamiltonian Anomalies from Extended Field Theories 1349

5.1. Definition. Assume that the data F(M) associated to a manifold M includes a
Riemannian metric and a vector bundle V with connection. The Riemannian metric
allows us to turn the cotangent bundle of M into a Clifford bundle, and we assume that
V is a Clifford module endowed with a Clifford connection ∇V . This data defines a
Dirac operator DF on V . In a local coordinate frame, we have DF = c(dxμ)∇V

∂μ
, where

c is the map from T ∗M into the corresponding Clifford bundle. In the following, d is
odd.

Closed d-dimensional manifolds. On Md , we can define the eta invariant ηF of DF. If
hF is the dimension of the kernel of DF, we define the modified eta invariant and the
corresponding tau invariant by

ξF = ηF + hF
2

, τF = exp 2π iξF. (5.1)

Then

DFF(Md) = τF. (5.2)

Closed d − 1-dimensional manifolds. On Md−1, DF decomposes into two chiral Dirac
operators DF,+ and DF,−. We can define a determinant line from the index vector space
of DF,+:

LF := det(kerDF,+) ⊗ (
det(cokerDF,+)

)−1
, (5.3)

where det denotes the top exterior power. We define

DFF(Md−1) = LF. (5.4)

d-dimensional manifolds with boundary Let us write M = Md,1, D = DF(Md,1)

and D∂ = DF(∂Md,1). Let K±
∂ (a) be the space of smooth positive/negative chirality

eigenspinors of D∂ with eigenvalue smaller than a > 0. Let E±
∂ (a) be its complement.

TheDirac Laplacian D2
∂ is invertible on E

±
∂ (a). Let T : K +

∂ (a) → K−
∂ (a) be an isometry

and consider the following boundary condition Ba,T on a spinor ψ on M :

Ba,T : ψ−
∂ +

⎛

⎜
⎝T ⊕ D∂

√
D2

∂

∣
∣
∣
∣
∣
∣
E+

∂ (a)

⎞

⎟
⎠ ψ+

∂ = 0, (5.5)

where ψ±
∂ are the positive/negative chirality components of the restriction of ψ to ∂M .

Dai and Freed [22] showed that D with the boundary condition Ba,T admits a well-
defined eta invariant ηa,T . Taking an inverse limit to eliminate the dependence on the
boundary condition, they show that the eta invariant becomes an elementDFF(Md,1) of
the determinant line DFF(∂Md,1).

They also showed that the gluing relations are satisfied, and therefore that DFF :
Bordd,1

F → H1 is a functor, i.e., a field theory.

Closed d − 2-dimensional manifolds. The value taken by the field theory on a closed
d−2-dimensional manifold Md−2 is a 2-Hermitian line associated to the index gerbe of
the Dirac operator1 [16,23,56]. It can be constructed as follows. The data F determines

1 We thank Dan Freed for suggesting the relevance of index gerbes in this context.
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again a Dirac operator DF on Md−2. Let h ∈ C∞
c (R) be a smooth real-valued function

with compact support. Using the spectral decomposition of DF, we can make sense of
h(DF). Let us write B for the subset of C∞

c (R) consisting of functions such that the
operator

DF,h := DF − h(DF) (5.6)

is invertible. For h ∈ B, let us write Hh
> (Hh

<) for the space of smooth spinor fields
generated by the eigenvectors of DF,h with positive (negative) eigenvalues. To any pair
h1, h2 ∈ B, we can associate a Hermitian line

L(h1,h2) := det(Hh1
> ∩ Hh2

< ) ⊗ det(Hh1
< ∩ Hh2

> )−1 (5.7)

where we define the determinant of the zero vector space to be C. These lines can be
used to construct a gerbe as follows. Consider the category C whose objects are maps
L : B → T1 such that

L(h1) = L(h1,h2) ⊗ L(h2), (5.8)

and whose morphisms are functors T1 → T1 that preserve these relations. We are here
freely identifying Hermitian lines with T-torsors, see Appendix A.3. C is a T1-torsor.
Indeed, remark that if we pick a particular h, we can make an arbitrary choice for the
value L(h). Once this choice is made, the map L is fully determined by (5.8). This
provides a (non-canonical) equivalence between C and T1. Moreover, as the map takes
value in T1, the product on T1 provides a free transitive action of T1 on C, which is
therefore a T1-torsor. Using (A.4), we define

DFF(Md−1) = LC, (5.9)

the 2-Hermitian line associated to C.
d−1-dimensional manifold with boundary. Consider now a d−1-dimensional manifold
with boundary Md−1,1. We want to check that DFF(Md−1,1) ∈ DFF(∂Md−1,1). To see
this, let us first simplify the notation and write M := Md−1,1, D+ := DF,+(Md−1,1)

and D∂ := DF(∂Md−1,1). Recall that the Riemannian metric on M is isometric to
a product metric on a neighborhood N of the boundary. Writing t for the coordinate
normal to the boundary, we have on N D+ = c(dt)∇V

∂t
+ D∂ . The standard Atiyah-

Patodi-Singer (APS) boundary conditions require spinors of positive (negative) chirality
on M to restrict to H0

< (H0
>) on the boundary, where we use the same notation as in

the previous paragraph, with Md−2 = ∂M . We consider the more general boundary
conditions where the positive (negative) chirality spinors are required to restrict in Hh

<

(Hh
>), for h ∈ B. These boundary conditions differ from the APS boundary conditions

on a finite dimensional subspace and are elliptic as well (see Chapter 18 of [57]). Then
for each choice h of boundary conditions, we obtain a line

LF(M, h) := det(kerD+) ⊗ (det(cokerD+))
−1 , (5.10)

where it is understood that the right-hand side is computed with the boundary condition
h.We do not want to pick a preferred boundary condition, so we should think ofDFF(M)

as a function associating the line LF(M, h) to each h ∈ B. We now prove:

Lemma 5.1. DFF(M) ∈ DFF(∂M)
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Proof. We must prove that the lines LF(M, h), h ∈ B, satisfy (5.8). For that, we need
to understand the effect of a change of the boundary condition from h1 to h2. Let
W+ (W−) be the space of smooth spinors on ∂M extending to M as smooth positive
(negative) chirality spinors ψ solving the Dirac equation D+ψ = 0 (D−ψ = 0). We
have W+ ∩ W− = {0}, from the invertibility of the Dirac operator on the double ([57],
Chapter 9). We also have

Kh,+ := kerD+ � W+ ∩ Hh
<, Kh,− := cokerD+ � W− ∩ Hh

>, (5.11)

where the isomorphisms are given by restriction to the boundary, which is surjective by
definition. The injectivity follows from the unique continuation property of the Dirac
operator ([57], Chapter 8), which ensures that there are no non-trivial solutions of the
Dirac equation that restrict trivially on the boundary. Now consider the virtual vector
space

V = (Hh1
> ∩ Hh2

< ) � (Hh1
< ∩ Hh2

> ). (5.12)

Note that detV = L(h1,h2). We have

V ∩ W+ � Kh2,+/(Kh1,+ ∩ Kh2,+) � Kh1,+/(Kh1,+ ∩ Kh2,+) (5.13)

V ∩ W− � Kh1,−/(Kh1,− ∩ Kh2,−) � Kh2,−/(Kh1,− ∩ Kh2,−) (5.14)

The existence of the solution of the Dirichlet problem for the associated Dirac Laplacian
(see for instance Remark 2.1 in [42]) ensures that (V ∩W+)⊕ (V ∩W−) = V . By taking
the direct sum of the previous two equations and then taking the determinant, we get

L(h1,h2) = LF(M, h2) ⊗ (LF(M, h1))
−1 (5.15)

so (5.8) is satisfied. ��
d-dimensional manifolds with corners. Assume that Md,2 has boundary components N1
and N2, and that the latter both have boundary −M1 � M2. A choice of function h as
in (5.6) provides boundary conditions for the Dirac operators on N1 and N2. Once we
have elliptic Dirac operators on the boundary, we can pick boundary conditions for the
Dirac operator on Md,2 as in (5.5). The whole boundary condition depends on a triplet
(h, a, T ). To construct the theory rigorously on d-dimensional manifolds with corners,
one should show that the Dirac operator on Md,2 with these boundary conditions admits
a well-defined eta invariant, for instance along the lines of Appendix A of [22]. Taking an
inverse limit to eliminate the dependence on the boundary condition, one should obtain
an elementDFF(Md,2) of the objectDFF(−N1 � N2) of the categoryDFF(−M1 � M2).

Compatibility with the dagger operation, monoidal structure and gluing. We know from
[22] that these compatibility conditions are satisfied on d- and d − 1-dimensional man-
ifolds. On a d − 2-dimensional manifold Md−2, a flip of the orientation multiplies
the Dirac operator by −1. For consistency, we must also change the function h to

h̄(x) = −h(−x). We see then that L(h1,h2)(M
d−2) =

(
L(h̄1,h̄2)(−Md−2)

)−1
. After

taking the inverse limit, we see that DFF(−Md−2) = (
DFF(Md−2)

)†
.

The compatibility with the monoidal structure comes readily from the fact that the
spectrum of a Dirac operator on a manifold with several connected components is the
union of the spectra of the restrictions to each component. This implies in particular
that the 2-Hermitian line associated to the whole manifold is the tensor product of the
2-Hermitian lines associated to the components.

The gluing condition seems more difficult to check and we will not attempt this here.
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5.2. Relation to chiral fermionic theories. Ond−1-dimensionalmanifolds, the structure
F determines a Dirac operator D that decomposes into two chiral Dirac operators D+ and
D−. The chiral Dirac operators can be used to construct chiral fermionic field theories
that are generally anomalous. It is known that over the moduli space of F-structures, the
partition function of a chiral fermionic theory is a section of the determinant line bundle
of the chiral Dirac operator [14]. The state space is an abelian bundle gerbe over the
moduli space constructed from the index gerbe [16,23]. Our definition of the cobordism
category does not allow us to speak about moduli spaces of cobordisms, but we can
restrict the statements above to a single point in the moduli space. We therefore see that
the partition function is an element of a determinant line and that the state space is an
abelian index gerbe. These facts are naturally explained if the anomaly field theory of
the chiral fermionic field theory is the extended Dai-Freed theory constructed above.
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in part by Forschungskredit FK-14-108, SNF Grant No. 200020-149150/1 and by NCCR SwissMAP, funded
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A. Review of Some Relevant Concepts

A.1. 2-categories and 2-functors. A useful reference for what follows is [29].

2-categories. A strict 2-category C is a category enriched in categories, namely a category
such that the collection of morphisms between any two objects is itself a category. In
more detail, it consists of the following:
• A collection OC of objects.
• For each pair X,Y ∈ OC , a category HomC(X,Y ) of morphisms. The objects of

HomC(X,Y ) are called1-morphisms and themorphisms in the categoryHomC(X,Y )

are called 2-morphisms.
• For each triplets X, Y, Z ∈ OC , a composition functorHomC(X,Y )×HomC(Y, Z) →

HomC(X, Z).
• For each X ∈ OC a 1-morphism idX ∈ HomC(X, X) that acts as a unit with respect

to the composition.
• The composition is required to be strictly associative, namely for W, X,Y, Z ∈ OC ,

the two obvious functors mapping HomC(W, X) ×HomC(X,Y ) ×HomC(Y, Z) to
HomC(W, Z) (obtained by composing two composition functors) coincide.
In a weak 2-category, or a bicategory, the unit idX is only required to satisfy the

unit axiom up to a 2-isomorphism (i.e., up to an invertible morphism in the appropriate
morphism category). Similarly, the composition functors need to satisfy the associativity
conditions only up to 2-isomorphisms. The corresponding diagrams can be found in [29].

2-functors. Let C and D be 2-categories. A 2-functor F between C and D consists of
• A map FO : OC → OD.
• For each X,Y ∈ OC , a functor FX,Y : HomC(X,Y ) → HomD(FO(X),FO(Y )).

This functor has to intertwine the composition ofmorphisms in C andD, and preserve
the units.

Depending on which type of 2-categories we are working with, “intertwine” and “pre-
serve” are understood either exactly or up to natural transformations. Again, see [29]
for details.

2-natural transformations. A 2-natural transformation n between two 2-functors F ,G
between two 2-categories C,D consists of:
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• For each X ∈ OC , an object n(X) ∈ HomD(F(X),G(X)).
• For each X,Y ∈ OC , f ∈ HomC(X,Y ), a morphism n( f ) of the category HomD

(F(X),G(Y )) from G( f ) ◦ n(X) to n(Y ) ◦ F( f ).

These morphisms must satisfy relations that are spelled out in [29].

A.2. 2-vector spaces and 2-Hilbert spaces. 2-vector spaces. 2-vector spaces were first
defined in [26] (see also [58]), but we follow here the approach of [28], Sect. 3.2. A
category C is C-linear if for each pair of objects X,Y ∈ C, the collection of mor-
phisms HomC(X,Y ) from X to Y is a finite dimensional complex vector space, and
the composition of morphisms is bilinear. A linear functor between C-linear categories
C,D is a functor F : C → D such that the induced map FX,Y : HomC(X,Y ) →
HomD(F(X),F(Y )) is a C-linear map. (A word of warning, what is called a linear
functor in [28] is what we call a V1-linear functor, see the definition below.) A linear
equivalence of C-linear categories is an equivalence of categories whose underlying
functors are linear. Finally, define Vn

1 to be the nth Cartesian product of the category V1
of finite vector spaces.

A finite dimensional 2-vector space is a C-linear category linearly equivalent to Vn
1

for some n ∈ N.
To make sense of this definition, one should think of the category V1 as taking the

role that C is playing for finite-dimensional vector spaces. While C is a field, we only
have a semiring structure on V1 provided by the direct sum and the tensor product (i.e.
V1 is a symmetric bimonoidal category). Vn

1 is a free module over the category V1 with
n generators. An obvious consequence of the definition above is that any 2-vector space
C can be pictured as Vn

1 , albeit non-canonically. We call n the dimension of the 2-vector
space. This is the analog of the fact that any complex vector space can be pictured
as C

n , generally in a non-canonical way. We can extend the operation of direct sum
componentwise to Vn

1 , The categorical biproduct provides a monoidal structure on C,
which coincides with the componentwise direct sum under the equivalence with Vn

1 .
This is the analog of the addition operation on vector spaces. Scalar multiplication of an
object O ∈ Vn

1 by V ∈ V1 is defined by taking the tensor product of V with each of the
components of O . This induces a scalar multiplication on C up to isomorphism. There
is also a zero-dimensional 2-vector space equivalent to V0

1 , that has a unique object and
morphism. In general there is no notion of tensor product in a 2-vector space C, just like
there is no notion of product on a generic vector space.
The 2-category. V2 The collection Cat of all categories can be given the structure of
a strict 2-category, whose objects are categories, whose 1-morphisms are functors and
whose 2-morphisms are natural transformations. We will construct the 2-category V2 of
2-vector spaces as a subcategory of Cat.

Given any two 2-vector spaces C ∼ Vn
1 and D ∼ Vm

1 , a functor F : C → D
determines a naturally isomorphic functor F̃ : Vn

1 → Vm
1 . A V1-linear functor is a

functor F such that F̃ is compatible with the V1-module structures on Vn
1 and Vm

1 . F̃
always takes the form of an m × n matrix of complex vector spaces, acting on Vn

1 by the
usual rules of matrix multiplication [28]. The 1-morphisms in V2 are V1-linear functors
between 2-vector spaces and the 2-morphisms are natural transformations.

The higher analogues of the direct sum and tensor product should be a pair of com-
mutative monoidal structures on V2 satisfying the axioms of a semiring. V2 is an additive
category, and the direct sum is provided by the categorical biproduct. One can check
that given two 2-vector spaces C and D, their biproduct C ⊕ D is a 2-vector space as
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well. Indeed, given two linear equivalences C → Vn
1 and D → Vm

1 , one can construct a
linear equivalence C ⊕ D → Vn+m

1 .
For a coordinate independent description of the tensor product, we refer the reader to

Sect. 4.4 of [27]. Given two 2-vector spaces C and D endowed with linear equivalences
C → Vn

1 and D → Vm
1 , C ⊗ D is linearly equivalent to Vnm

1 , as the intuition from the
tensor product of vector spaces suggests. Given objects in C and D, pictured as vectors
of size n andm of vector spaces, their tensor product inVnm

1 is an n bym matrix of vector
spaces whose entries are the (ordinary) tensor products of the vector space components.
The tensor product is defined similarly on morphisms between objects. It also extends
to 1-morphisms and 2-morphisms in V2.

2-Hilbert spaces. We now turn to the definition of finite dimensional 2-Hilbert spaces.
A comprehensive reference is [27].

Let us write H1 for the category of finite dimensional Hilbert spaces. Following the
same logic as above, in the realm of 2-Hilbert spaces, the role C is playing for finite
dimensional Hilbert spaces should be taken over by H1. The role of the inner product
will be played by the hom functor. Recall that given any (locally small) category C the
hom functor is a functor Hom : Cop × C → Set taking a pair of objects (X,Y ) to the set
of morphisms Hom(X,Y ) between X and Y . Suppose now that C is a 2-vector space. As
C is C-linear, Hom(X,Y ) is a complex vector space. In order to ensure that Hom(X,Y )

is a Hilbert space, we need to restrict ourselves to the 2-vector spaces that are categories
enriched in H1, i.e. such that their vector spaces of morphisms are Hilbert spaces. In
addition, we must ensure that the inner product is Hermitian. The analog of the complex
conjugation on C is the complex conjugation of Hilbert spaces inH1. We therefore need
isomorphisms Hom(X,Y ) � Hom(Y, X). This happens if C is an H∗-category [27].
Practically, an H∗-category is a category enriched over H1 equipped with antilinear
maps † : Hom(X,Y ) � Hom(Y, X) satisfying:

• f †† = f
• ( f g)† = g† f †

• 〈 f g, h〉 = 〈g, f †h〉
• 〈 f g, h〉 = 〈 f, hg†〉
for all f ∈ Hom(X,Y ), g ∈ Hom(W, X), h ∈ Hom(W,Y ), W, X,Y ∈ OC . 〈•, •〉
denotes here the inner products on the homHilbert spaces. Note that the first two axioms
are those of a †-structure on C.

Therefore, to summarize, a 2-Hilbert space is a 2-vector space that is also an H∗-
category. The inner product is valued in H1, the category of finite dimensional Hilbert
space. It is sesquilinear with respect to the scalar multiplication by elements of H1 and
the complex conjugation of Hilbert spaces. We writeH2 for the 2-category of 2-Hilbert
spaces.

The tensor product on the category of 2-vector spaces passes toH2. Let C1 and C2 be
two 2-Hilbert spaces and let C1,C3 ∈ C1 and C2,C4 ∈ C2. Then we have the following
relation between the inner products:

〈C1 ⊗ C2,C3 ⊗ C4〉C1⊗C2 = 〈C1,C3〉C1 ⊗ 〈C2,C4〉C2 , (A.1)

where the tensor product on the right-hand side is the one in H1. This formula mimics
of course the properties of the tensor product in H1 with respect to the multiplication,
one degree higher in the category hierarchy.

It will sometimes be convenient to see C as a category H0 that has no morphisms
and whose objects are elements of C.
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2-Hermitian lines. Let us first discuss Hermitian lines. A Hermitian line L is a Hilbert
space isomorphic to C. What makes this concept non-vacuous is that there might not be
a canonical isomorphism to C. This is what happens for instance with the determinant
line of a Dirac operator (see Sect. 5). A concrete consequence of the fact that the deter-
minant line is not canonically isomorphic to C is that when considered in families, the
determinant line becomes a possibly non-trivial determinant line bundle. If there was a
canonical isomorphic from the determinant line to C, this line bundle would necessarily
be trivial.

The definition of 2-Hermitian lines is completely analogous. A 2-Hermitian line L
is a one-dimensional 2-Hilbert space, and therefore a category equivalent toH1, but not
necessarily canonically. We will see a way of constructing 2-Hermitian lines in the next
section. The tensor product of two 2-Hermitian lines is again a 2-Hermitian line, as is
easily checked by picking an equivalence withH1 and using the definition of the tensor
product given above. Moreover, every 2-Hermitian line L admits an inverse L−1 such
that L ⊗ L−1 is canonically equivalent toH1.

A.3. Higher circle groups. T-torsors Consider the unit circle group T ⊂ C. Its higher
categorical analogues can be described as follows (see [3], Sect. 1). Let us define a
T-torsor T to be a manifold endowed with a smooth, free and transitive action of T.
As the action of T is free and transitive, T is diffeomorphic to T, but generally not in
a canonical way. We write the action of T on T as t · τ , for t ∈ T and τ ∈ T. Remark
that we can canonically associate a T-torsor to a Hermitian line and vice versa. Given a
T-torsor T , we can define

LT = {(t, z) ∈ T × C}/{(t · τ, z) ∼ (t, τ z), τ ∈ T}. (A.2)

Conversely, given a Hermitian line L , its unit norm elements form a T-torsor. Because
of this, we will often not distinguish explicitly between T-torsor and Hermitian lines.

Write T0 = T and let T1 be the category of T-torsors, the morphisms being smooth
maps intertwining the actions of T. Remark that due to the identification of Hermitian
lines with T-torsors, we can see T1 as a subcategory of H1, namely the subcategory
of Hermitian lines. T is itself a T-torsor, corresponding to the Hermitian line C. Given
two torsors T1, T2, the space of morphisms from T1 to T2 in T1 is a T-torsor as well.
Moreover, any morphism is invertible, making T1 a groupoid. Just like there is a group
structure on T, there is a (weak) 2-group structure on T1. Given two torsors T1 and T2,
we define the multiplication

T1 · T2 = {(t1, t2) ∈ T1 × T2}/{(t1 · τ, t2) ∼ (t1, t2 · τ), τ ∈ T}. (A.3)

Thismultiplication is associative up to canonical isomorphism.The identity isT, andT−1

is the torsor that coincides with T as a manifold and carries the action t ·T−1 τ = t ·T τ−1,
t ∈ T , τ ∈ T. There is a canonical isomorphism between T · T−1 and T.
T-gerbesMoving one step higher in the categorical hierarchy, we define a T-gerbe G to
be a T1-torsor. By this, we mean that G is a category endowed with a free and transitive
action of T1. This action is described by a functor G × T1 → G, (G, T ) �→ G · T . We
can ensure that it is free and transitive by requiring the existence of an equivalence of
categories between G×T1 and G×G mapping (G, T ) to (G,G ·T ). We refer the reader
to [3] for a bit more information about T1-torsors. We only note here that they form a
2-category T2.
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There is a canonical bijection between T-gerbes and 2-Hermitian lines. Given a T-
gerbe G, we can construct the 2-Hermitian line

LG = {(G, H) ∈ G × H1}/{(G · T, H) ∼ (G, H ⊗ LT ), T ∈ T1} (A.4)

(comparewith (A.2)).Conversely, given a2-Hermitian lineL, consider the subcategoryG
formedby all of the objects thatmapped toT1 ⊂ H1 by any (non-canonical) isomorphism
L � H1. G is a T-gerbe that is independent of the choice of isomorphism used to define
it. Because of this bijection, we will not always distinguish between T-gerbes and 2-
Hermitian lines.

A.4. Geometric bordism 2-categories. We sketch here the construction of the geometric
bordism 2-categories that are the domains of the functors representing the various anom-
aly field theories. A detailed treatment of geometric bordism categories can be found in
[17]. We adopt an approach in which bordisms are defined abstractly and which yields a
strict 2-category. In order to treat families, it would be best to used framed bordisms, i.e.,
to picture manifolds and bordisms as embedded in R

n for some large n together with a
trivialization of their normal bundle. Indeed, in this case the moduli spaces of bordisms
and manifolds come with natural topologies. In this approach one would presumably
only obtain a weak 2-category.

Manifoldswith structures.Wewill assume thatwe have a geometric/topological structure
F that can be put on smooth manifolds of any dimension. We call manifolds endowed
with an F-structure F-manifolds. We list below a series of assumptions that F should
satisfy and that are fulfilled by the concrete examples of such structures met in the main
text. The correct formalization is probably the concept of equivariant sheaf of [17].

We assume that F always includes an orientation and a smooth structure. We assume
that we have a well-defined notion of germ of F-structure on submanifolds. In the
following, a codimension p germ of F-structure on a manifold M is a germ for the
inclusion of M × {0} ⊂ M × (−ε, ε)p for some ε ∈ R+.

We also assume that we can pull-back (germs of) F-structures along smooth maps of
manifolds. We define a morphism of F-manifolds to be a smooth map of the underlying
manifolds that preserves the (germs of) F-structure, namely the pulled back (germ of)
F-structure should coincide with the (germ of) F-structure on the domain. F-manifolds,
possibly endowed with germs of F-structure, then form a category MF.

We do not identify isomorphic objects in MF. We write M̄F for the equivalent
category whose objects are isomorphism classes of F-manifolds. Given an F-manifold
M ∈ MF, we have an isomorphism class [M] ∈ M̄F. We write AutF([M]) for the
corresponding automorphism group in M̄F. AutF([M]) acts on the collection of F-
manifolds isomorphic to M in MF. Given φ ∈ AutF([M]), we write φM for the F-
manifold obtained from M by the action of φ.

The bordism 2-category. We now define the bordism 2-category Bd,2
F . In what follows,

all the manifolds are assumed to be compact F-manifolds. The objects of Bd,2
F are d−2-

dimensional closedmanifoldsMd−2 endowedwith a codimension 2 germ ofF structure.
1-morphisms are of two types. First, we have regular 1-morphisms from an object

Md−2− to an object Md−2
+ that are triplets (Md−1,1, θ−, θ+) whose content is as follows.

Md−1,1 is a d − 1-dimensional manifold endowed with a codimension 1 germ of F-
structure. The boundary ∂Md−1,1 = ∂−Md−1,1 � ∂+Md−1,1 is partitioned into two
disjoint components. θ+ : Md−2

+ → ∂+Md−1,1 and θ− : −Md−2− → ∂−Md−1,1 are
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isomorphisms of F-manifolds. (A minus denotes the orientation flip.) A consequence of
our assumptions is that the codimension 2 germ of F-structure on Md−2± coincides with
the one obtained by pulling-back through θ± the restriction of the codimension 1 germ
on Md−1,1 to ∂±Md−1,1.

For each object Md−2, we also include pairs (Md−2, ρ), where ρ ∈ AutF([Md−2]),
as 1-morphisms from Md−2 to ρMd−2. We call such 1-morphisms limit morphisms.
Limit morphisms can be thought of as limits as ε goes to zero of regular morphisms of
the form (Md−2 × (−ε, ε), id−Md−2 , ρ).

The composition of 1-morphisms is defined as follows for regular morphisms. Given
1-morphisms (Md−1,1

0 , θ−
0 , θ+0 ) from Md−2

0− to Md−2
0+ and (Md−1,1

1 , θ−
1 , θ+1 ) from Md−2

1−
toMd−2

1+ , withMd−2
1− = Md−2

0+ , letMd−1,1
01 be the gluingMd−1,1

0 �Md−2
0+

Md−1,1
1 along the

maps θ+0 and θ−
1 . We define the composition to be (Md−1,1

01 , θ−
0 , θ+1 ). The composition

involving limit morphisms is defined similarly. The composition of morphisms is strictly
associative.

For ρ = idMd−2 , limit morphisms provide the strict identity morphisms required by
the axioms of strict 2-categories. When ρ is non-trivial, limit morphisms implement the
action of automorphism group AutF([Md−2]) on the collection of objects isomorphic to
Md−2 ∈ Bd,2

F . They turn out to be very useful in relating the abstract categorical language
to the physical point of view on anomalies as a symmetry breaking phenomenon (see
Sect. 3).

Given two 1-morphisms (Md−1,1
0 , θ−

0 , θ+0 ) and (Md−1,1
1 , θ−

1 , θ+1 ) from Md−2− to

Md−2
+ , a 2-morphism from Md−1,1

0 to Md−1,1
1 is a pair (Md,2, σ ), where Md,2 is d-

dimensional manifold with corners, and σ

σ :
(
−Md−1,1

0 �−Md−2− �Md−2
+

Md−1,1
1

)
→ ∂Md,2, (A.5)

is a bijective morphism of manifolds with germs of F-structure. The gluing on the left-
hand side is performed using the maps θ±

0,1. σ is also required to map compatibly the

germ of F-structure on the left-hand-side into the F-structure on Md,2.
We call 2-morphism of the type just described regular 2-morphisms. Just like for 1-

morphisms, we need to add limit 2-morphisms. Given a 1-morphism (Md−1,1, θ−, θ+)

fromMd−2− toMd−2
+ , a limit 2-morphism is a pair (Md−1,1, τ ),where τ ∈ AutF([Md−1,1])

is an automorphism restricting to the identity on ∂Md−1,1.
The composition of 2-morphism is defined in the obvious way. The above defines the

strict 2-category Bd,2
F of bordism with F-structure.

Truncation. Wewill need to consider the truncation ofBd,2
F to manifolds and bordisms of

dimension d − 1 or lower, which we write Bd,2
F |d−1. Bd,2

F |d−1 is simply the 2-category

that has the same objects and 1-morphism as Bd,2
F , but whose only 2-morphisms are

limit 2-morphism. Given any 2-functor F : Bd,2
F → C, for C some 2-category, we write

F |d−1 : Bd,2
F |d−1 → C for its restriction to the truncated bordism category.

A.5. Differential cocycles. Let M be a manifold. Let us write C p(M;K) for the space
of singular cochains of degree p on M valued in a ring K. Let us also write �p(M) for
the space of real-valued differential forms of degree p on M . An (unshifted) differential
cochain of degree p over M is an element
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Ǎ = (a, h, ω) ∈ C p(M;Z) × C p−1(M;R) × �p(M) = Č(Y ). (A.6)

We call a the characteristic of Ǎ and ω its curvature. We define a differential by

d Ǎ = (da, ω − dh − a, dω), (A.7)

where d on the right-hand side denotes the differential on singular cocycles and dif-
ferential forms, and we see ω as a real valued singular cocycle using integration. The
(higher) category Ž p(M) of differential cocycles of degree p is defined as follows:

• Its objects are differential cocycles, i.e. differential cochains on M that are closed
with respect to d.

• Its 1-morphisms are differential cochains of degree p − 1 with vanishing curvature.
If B̌ is such a cochain, it provides a morphism from Ǎ to Ǎ + d B̌.

• Its k-morphisms are differential cochains of degree p − k with vanishing curvature.
If Č is such a cochain, it provides a k-morphism from the k − 1-morphism B̌ to the
k − 1-morphism B̌ + dČ .

We write Ž p(M) for the group of objects of Ž p(M). The group of isomorphism classes
of objects in Ž p(M) is the pth differential cohomology group Ȟ p(M) of M .

A.6. Inverse limits. The inverse limit is a useful construction that we are borrowing
from [3].

Let G be a groupoid and let A be a functor from G to Hp, for p = 1 or 2. By a
functor from a category into H2, we mean an assignment of a 2-Hilbert space to each
object of G, as well as a unitary 1-morphism ofH2 to each morphism in G, such that the
composition of morphisms in G is intertwined with the composition of 1-morphisms in
H2. Presumably this construction makes sense for more general targets but this will be
sufficient for our purpose. The set of isomorphism classes of objects of G will be written
Ḡ, and the isomorphism class of G ∈ G will be written [G].

A section s ofA is an assignment of an element ofA(G) to each object G of G. If G
is finite, sections are elements of

S :=
⊕

G∈G
A(G), (A.8)

where
⊕

is the usual direct sum for p = 1, and the additive structure onH2 described in
Appendix A.1 for p = 2. We will be forced to work with groupoids that have an infinite
number of elements, although the number of isomorphism classes will always be finite.
In this case, the space of sections cannot be naturally pictured as an object in Hp, as
all our p-Hilbert spaces are finite-dimensional. Fortunately, this has no consequence on
the following. Let us write s(G) ∈ A(G), for the value of the section at G. An invariant
section s is a section satisfying the relation s(G ′) = A(φ)s(G) for each morphism
φ : G → G ′ in G.

We define an inner product between invariant sections by

(s, s′) =
∑

[G]∈Ḡ
(s(G), s′(G))A(G), (A.9)

where the sum is taken over the set Ḡ of isomorphism classes of objects of G and we used
the inner product of G(G) on the right-hand side. As A(φ) is unitary and the sections
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are invariant, this definition does not depend on the choice of representatives G of the
isomorphism classes [G]. The sum in (A.9) is an ordinary sum for p = 1, but is a direct
sum for p = 2.

The collection IA of invariant sections ofA is therefore an object ofHp, the inverse
limit of A. IA decomposes into a direct sum

IA =
⊕

[G]∈Ḡ
IA([G]) (A.10)

where IA([G]) ∈ Hp is isomorphic to A(G). The inverse limit construction should
therefore be seen as a way of assigning an object of Hp to each isomorphism class of
objects of G.

Note that in the case where G has a single object G, and therefore corresponds to a
group �, A is an action of � on a p-Hilbert space, and the inverse limit is given by the
space of invariants of the action.
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