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Abstract In this work we investigate the advantages of multiscale methods in Petrov–
Galerkin (PG) formulation in a general framework. The framework is based on a
localized orthogonal decomposition of a high dimensional solution space into a low
dimensional multiscale space with good approximation properties and a high dimen-
sional remainder space, which only contains negligible fine scale information. The
multiscale space can then be used to obtain accurate Galerkin approximations. As a
model problem we consider the Poisson equation. We prove that a Petrov–Galerkin
formulation does not suffer from a significant loss of accuracy, and still preserve the
convergence order of the original multiscale method. We also prove inf-sup stability
of a PG continuous and a discontinuous Galerkin finite element multiscale method.
Furthermore, we demonstrate that the Petrov–Galerkin method can decrease the com-
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644 D. Elfverson et al.

putational complexity significantly, allowing for more efficient solution algorithms.
As another application of the framework, we show how the Petrov–Galerkin frame-
work can be used to construct a locally mass conservative solver for two-phase flow
simulation that employs the Buckley–Leverett equation. To achieve this, we couple
a PG discontinuous Galerkin finite element method with an upwind scheme for a
hyperbolic conservation law.

Mathematics Subject Classification 35J15 · 65N12 · 65N30 · 76S05

1 Introduction

In this contributionwe consider linear elliptic problemswith a heterogenous and highly
variable diffusion coefficient A as arisen often in hydrology or in material sciences.
In the following, we are looking for u which solves

−∇ · A∇u = f in �,

u = 0 on ∂�,

in a weak sense. Here, we denote

(A1) � ⊂ R
d , d = 1, 2, 3, a bounded Lipschitz domain with a piecewise

polygonal boundary,

(A2) f ∈ L2(�) a source term, and,

(A3) A ∈ L∞(�,Rd×d
sym ) a symmetric matrix-valued function with uniform

spectral bounds β0 ≥ α0 > 0, σ(A(x)) ⊂ [α0, β0] for almost all x ∈ �.

We call the ratio β0/α0 the contrast of A.

Under assumptions (A1)–(A3) and by the Lax–Milgram theorem, there exists a unique
weak solution u ∈ H1

0 (�) to

a(u, v) = ( f, v) for all v ∈ H1
0 (�), (1)

where

a(v,w) :=
∫

�

A∇v · ∇w and (v,w) := (v,w)L2(�).

The problematic term in the equation is the diffusion matrix A, which is known
to exhibit very fast variations on a very fine scale (i.e. it has a multiscale character).
These variations can be highly heterogenous and unstructured, which is why it is
often necessary to resolve them globally by an underlying computational grid that
matches the said heterogeneity. Using standard finite element methods, this results
in high dimensional solution spaces and hence an enormous computational demand,
which often cannot be handled even by today’s computing technology. Consequently,
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Petrov–Galerkin formulation 645

there is a need for alternative methods, so called multiscale methods, which can either
operate below linear computational complexity by using local representative elements
(cf. [1,2,17,18,23,36,40]) or which can split the original problem into very localized
subproblems that cover � but that can be solved cheaply and independent from each
other (cf. [5,8,11,12,16,25,27,28,31,33,37,38]).

In this paper, we focus on a rather recent approach called localized orthogonal
decomposition (LOD) that was introduced byMålqvist and Peterseim [35] and further
generalized in [19,24].

We consider a coarse space VH , which is low-dimensional but possibly inadequate
for finding a reliable Galerkin approximation to the multiscale solution of problem
(1). The idea of the method is to start from this coarse space and to update the corre-
sponding set of basis functions step-by-step to improve the approximation properties
of the space. In a summarized form, this can be described in four steps: (1) define a
(quasi) interpolation operator IH from H1

0 (�) onto VH , (2) information in the kernel
of the interpolation operator is considered to be negligible (having a small L2-norm),
(3) hence define the space of negligible information by the kernel of this interpolation,
i.e. W := kern(IH ), and (4) find the orthogonal complement of W with respect to
a scalar product ah(·, ·), where ah(·, ·) describes a discretization of the problem to
solve. In many cases, it can be shown, that this (low dimensional) orthogonal com-
plement space has very accurate approximation properties with respect to the exact
solution. Typically, the computation of the orthogonal decomposition is localized to
small patches in order to reduce the computational complexity.

So far, the concept of the LOD has been successfully applied to nonlinear elliptic
problems [20], eigenvalue problems [34] and the nonlinear Schrödinger equation [21].
Furthermore, it was combined with a discontinuous Galerkin method [13,14] and
extended to the setting of partition of unity methods [22].

In this work, we are concerned with analyzing the LOD framework in Petrov–
Galerkin formulation, i.e. for the case that the discrete trial and test spaces are not
identical. We show that an LOD method in Petrov–Galerkin formulations still pre-
serves the convergence rates of the original formulation of the method. At the same
time, the new method can exhibit significant advantages, such as decreased compu-
tational complexity and mass conservation properties. In this paper, we discuss these
advantages in detail; we give examples for realizations and present numerical experi-
ments. In particular, we apply the proposed framework to design a locally conserva-
tive multiscale solver for the simulation of two-phase flow models as governed by the
Buckley–Leverett equation. We remark that employing Petrov–Galerkin variational
frameworks in the construction and analysis of multiscale methods for solving elliptic
problems in heterogeneous media has been investigated in the past, see for example
[16,26].

The rest of the paper is organized as follows. Section 2 lays out the setting and
notation for the formulation of the multiscale methods that includes the description
of two-grid discretization and the LOD. In Sect. 3, we present the multiscale methods
based on the LOD framework, starting from the usual Galerkin variational equation
and concentrating further on the Petrov–Galerkin variational equation that is the main
contribution of the paper. We establish in this section that the Petrov–Galerkin LOD
(PG-LOD) exhibits the same convergence behavior as the usual Galerkin LOD (G-
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LOD). Furthermore, we draw a contrast in the aspect of practical implementation that
makes up a strong advantage of PG-LOD in relative comparison to G-LOD. The other
advantage of the PG-LODwhich cannot be achieved with G-LOD is the ability to pro-
duce a locally conservative flux field at the elemental level when discontinuous finite
element is utilized. We also discuss in this section an application of the PG-LOD for
solving the pressure equation in the simulation of two-phase flow models to demon-
strate this particular advantage. Section 4 gives two sets of numerical experiment: one
that confirms the theoretical finding and the other demonstrating the application of
PG-LOD in the two-phase flow simulation. We present the proofs of the theoretical
findings in Sect. 5.

2 Discretization

In this section we introduce notations that are required for the formulation of the
multiscale methods.

2.1 Abstract two-grid discretization

We define two different meshes on�. The first mesh is a ‘coarse mesh’ and is denoted
by TH , where H > 0 denote the maximum diameter of all elements of TH . The second
mesh is a ‘fine mesh’ denoted by Th with h representing the maximum diameter of all
elements of Th . By ‘fine’ we mean that any variation of the coefficient A is resolved
within this grid, leading to a high dimensional discrete space that is associated with
this mesh. The mesh Th is assumed to be a (possibly non-uniform) refinement of TH .
Furthermore, both grids are shape-regular and conforming partitions of � and we
assume that h < H/2. For the subsequent methods to make sense, we also assume
that each element of TH is at least twice uniformly refined to create Th . The set of all
Lagrange points (vertices) of T� is denoted by N�, and the set of interior Lagrange
points is denoted by N 0

� , where � is either H or h.
Now we consider an abstract discretization of the exact problem (1). For this pur-

pose, we let Vh denote a high dimensional discrete space in which we seek an approx-
imation uh of u. A simple example would be the classical P1 Lagrange finite element
space associated with Th . However, note that we do not assume that Vh is a subspace
of H1

0 (�). In fact, later we give an example for which Vh consists of non-continuous
piecewise linear functions. Next, we assume that we are interested in solving a fine
scale problem, that can be characterized by a scalar product ah(·, ·) on Vh . Accord-
ingly, a method on the coarse scale can be described by some aH (·, ·), which we
specify by assuming

(A4) a�(·, ·) is a scalar product on V� where � is either h or H .

This allows us to define the abstract reference problem stated below.

Definition 1 (Fine scale reference problem) We call uh ∈ Vh the fine scale reference
solution if it solves

ah(uh, vh) = ( f, vh)L2(�) for all vh ∈ Vh, (2)
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Petrov–Galerkin formulation 647

where ah(·, ·) ‘describes the method’. It is implicitly assumed that problem (2) is of
tremendous computational complexity and cannot be solved by available computing
resources i n a convenient time.

A simple example of ah(·, ·) is ah(vh, wh) = aH (vh, wh) = a(vh, wh). A more
complex example is the ah(·, ·) that stems from a discontinuous Galerkin approxi-
mation, in which case ah(·, ·) is different from aH (·, ·). The goal is to approximate
problem (2) by a new problem that reaches a comparable accuracy but one that can be
solved with a significantly lower computational demand.

2.2 Localized orthogonal decomposition

In this subsection, we introduce the notation that is required in the formulation of the
multiscalemethod. In particular,we introduce an orthogonal decomposition of the high
dimensional solution space Vh into the orthogonal direct sum of a low dimensional
space with good approximation properties and a high dimensional remainder space.
For this purpose, we make the following abstract assumptions.

(A5) ||| · |||h denotes a norm on Vh that is equivalent to the norm that is
induced by ah(·, ·), hence there exist generic constants 0 < α ≤ β

such that

α|||vh |||2h ≤ ah(vh, vh) and ah(vh, wh) ≤ β|||vh |||h |||wh |||h
for all vh, wh ∈ Vh . In the same way, ||| · |||H denotes a norm on VH

(equivalent to the norm induced by aH (·, ·)). Furthermore, we let
CH,h denote the constant with |||v|||H ≤ CH,h |||v|||h for all v ∈ Vh .
Note that CH,h might degenerate for h → 0.

(A6) The coarse space VH ⊂ Vh is a low dimensional subspace of Vh that
is associated with TH .

(A7) Let IH : Vh → VH be an L2-stable quasi-interpolation (or
projection) operator with the properties

• there exists a generic constant CIH (only depending on the
shape regularity of TH and Th) such that for all vh ∈ Vh

and vH ∈ VH it holds ‖vh − IH (vh)‖L2(�) ≤ CIH H |||vh |||h ;
|||IH (vh)|||H ≤ CIH |||vh |||h ; ‖vH − IH (vH )‖L2(�) ≤ CIH H |||vH |||H

and ‖IH (vH )‖L2(�) ≤ CIH |||vH |||H ,

• the restriction (IH )|VH is an isomorphism with ||| · |||H -stable
inverse, i.e. we have vH = (IH ◦ (IH |VH )−1)(vH ) for vH ∈ VH

and there exists a generic CI −1
H

such that for all vH ∈ VH it holds

|||(IH |VH )−1(vH )|||H ≤ CI −1
H

|||vH |||H .

123
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Typically, L2-projections onto VH can be verified to fulfill assumption (A7). Sim-
ilarly, IH can be a quasi-interpolation of the Clément-type that is related to the L2-
projection. An example for this case is given in Eq. (13) below. Alternatively, IH can
be also constructed from local L2-projections as it is done for the classical Clément
interpolation. Nodal interpolations typically do not satisfy (A7).

Using the assumption that (IH )|VH : VH → VH is an isomorphism (i.e. assumption
(A7)), a splitting of the space Vh is given by the direct sum

Vh = VH ⊕ Wh, with Wh := {vh ∈ Vh |IH (vh) = 0}. (3)

Observe that the ‘remainder space’ Wh contains all fine scale features of Vh that cannot
be expressed in the coarse space VH .

Next, consider the ah(·, ·)-orthogonal projection Ph : Vh → Wh that fulfills:

ah(Ph(vh), wh) = ah(vh, wh) for all wh ∈ Wh . (4)

Since Vh = VH ⊕ Wh , we have that Vms
� := kern(Ph) = (1 − Ph)(VH ) induces the

ah(·, ·)-orthogonal splitting

Vh = Vms
� ⊕ Wh .

Note that Vms
� is a low dimensional space in the sense that it has the same dimension

as VH . As shown for several applications (cf. [20,21,34]) the space Vms
� has very rich

approximation properties in the |||·|||h-norm.However, it is very expensive to assemble
Vms

� , which is why it is practically necessary to localize the space Wh (respectively
localize the projection). This is done using admissible patches of the following type.

Definition 2 (Admissible patch) For any coarse element T ∈ TH , we say that the
open and connected set U (T ) is an admissible patch of T , if T ⊂ U (T ) ⊂ � and if
it consists of elements from the fine grid, i.e.

U (T ) = int
⋃

τ∈T U
h

τ , where T U
h ⊂ Th .

It is now relevant to define the restriction of Wh to an admissible patch U (T ) ⊂ �

by

W̊h(U (T )) := {vh ∈ Wh |vh = 0 in �\U (T )}.

A general localization strategy for the space Vms
� can be described as follows (see

[19] for a special case of this localization and [35] for a different localization strategy).

Definition 3 (Localization of the solution space) Let the bilinear form aT
h (·, ·) be a

localization of ah(·, ·) on T ∈ TH in the sense that

ah(vh, wh) =
∑

T ∈TH

aT
h (vh, wh), (5)
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Petrov–Galerkin formulation 649

where aT
h (·, ·) acts only on T or a small environment of T . Let furthermore U (T ) be

an admissible patch associated with T ∈ TH . Let QT
h : Vh → W̊h(U (T )) be a local

correction operator that is defined as finding QT
h (φh) ∈ W̊h(U (T )) satisfying

ah(QT
h (φh), wh) = −aT

h (φh, wh) for all wh ∈ W̊h(U (T )), (6)

where φh ∈ Vh . The global corrector is given by

Qh(φh) :=
∑

T ∈TH

QT
h (φh). (7)

A (localized) generalized finite element space is defined as

Vms := {
H + Qh(
H )| 
H ∈ VH }.

The variational formulation (6) is called the corrector problem associated with
T ∈ TH . Solvability of each of these problems is guaranteed by the Lax–Milgram
theorem. By its nature, the system matrix corresponding to (6) is localized to the
patch U (T ) since the support of wh is in U (T ). Furthermore, each of (6) pertaining to
T ∈ TH is designed to be elementally independent and thus attributing to its immediate
parallelizability. The corrector problems are solved in a preprocessing step and can
be reused for different source terms and for different realization of the LOD methods.
Since Vms is a low dimensional space with locally supported basis functions, solving
a problem in Vms is rather inexpensive. Normally, the solutions QT

h (φh) of (6) decays
exponentially to zero outside of T . This is the reason why we can hope for good
approximations even for small patches U (T ). Later, we quantify this decay by an
abstract assumption (which is known to hold true for many relevant applications).

Remark 1 If U (T ) = � for all T ∈ TH , then Qh = −Ph , where Ph is the orthogonal
projection given by (4). In this sense, Vms is localization of the space Vms

� . This can
be verified using (5), which yields for all wh ∈ Wh

ah(φh + Qh(φh), wh) =
∑

T ∈TH

(
aT

h (φh, wh) + ah(QT
h (φh), wh)

)
= 0.

By uniqueness of the projection, we conclude Qh = −Ph .

The above setting is used to construct the multiscale methods utilizing the LOD
method as e.g. done in [19,35] for the standard finite element formulation and a
corresponding Petrov–Galerkin formulation.

3 Methods and properties

In this section, we state the LOD in Galerkin and in Petrov–Galerkin formulation
along with their respective a priori error estimates and the inf-sup stability. In the last

123
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part of this section, we give two explicit examples and discuss the advantages of the
Petrov–Galerkin formulation. Subsequently we use the notation a � b to abbreviate
a ≤ Cb, where C is a constant that is independent of the mesh sizes H and h; and
which is independent of the possibly rapid oscillations in A.

In order to state proper a priori error estimates, we describe the notion of ‘patch
size’ and how the size ofU (T ) affects the final approximation. All the stated theorems
on the error estimates of the LOD methods are proved in Sect. 5.

Definition 4 (Patch size) Let k ∈ N>0 be fixed. We define patches U (T ) that consist
of the element T and k-layers of coarse element around it. For all T ∈ TH , we define
element patches in the coarse mesh TH by

U0(T ) := T,

Uk(T ) := ∪ {
T ′ ∈ TH |T ′ ∩ Uk−1(T ) �= ∅}

k = 1, 2, . . . . (8)

The above concept of patch sizes and patch shapes can be also generalized. See for
instance [22] for a LOD that is purely based on partitions of unity. Using Definition
4, we make an abstract assumption on the decay of the local correctors QT

h (
H ) for

H ∈ VH :

(A8) Let Q�,T
h (
H ) be the optimal local corrector using U (T ) = � that

is defined according to (6) and let Q�
h (
H ) := ∑

T ∈TH
Q�,T

h (
H ).
Let k ∈N>0 and for all T ∈ TH let U (T ) = Uk(T ) as in Definition 4.
Then there exists p ∈ {0, 1} and a generic constant 0 < θ < 1 that
can depend on the contrast, but not on H , h or the variations of A
such that for all 
H ∈ VH ,

∣∣∣∣∣∣(Qh − Q�
h )(
H )

∣∣∣∣∣∣2
h � kdθ2k(1/H)2p

∣∣∣∣∣∣
H + Q�
h (
H )

∣∣∣∣∣∣2
h , (9)

where Qh(
H ) is given by (7) for U (T ) = Uk(T ).

Assumption (A8) quantifies the decay of local correctors, by stating that the solu-
tions of the local corrector problems decay exponentially to zero outside of T . This is
central for all a priori error estimates. For continuous Galerkin methods, we can obtain
the optimal order p = 0 for the exponent in (9). This means, that the (1/H)-term fully
vanishes. However, depending on the localization strategy [i.e. how Qh(
H ) is com-
puted] it is also possible that p takes the value 1 and that hence a pollution term of
order (1/H) arises (see [19, Remark 3.8] for a discussion). For discontinuous Galerkin
methods, the optimal known order is p = 1. However, even for this case it is known
that the (1/H)-term is rapidly overtaken by the decay, leading purely to slightly larger
patch sizes (see e.g. [35]).

3.1 Galerkin LOD

This method was originally proposed in [35]: find uG-LOD
H ∈ Vms that satisfies

ah

(
u G-LOD

H ,
ms
)

= ( f,
ms) for all 
ms ∈ Vms. (10)
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Petrov–Galerkin formulation 651

Theorem 1 (A priori error estimate for Galerkin LOD) Assume (A1)–(A8). Given a
positive k ∈ N>0, let for all T ∈ TH the patch U (T ) = Uk(T ) be defined as in (8)
and let u G-LOD

H ∈ Vms be as governed by (10). Let uh ∈ Vh be the fine scale reference
solution governed by (2). Then, the following a priori error estimate holds true

∥∥∥uh − ((IH |VH )−1 ◦ IH )(uG-LOD
H )

∥∥∥
L2(�)

+ ∣∣∣∣∣∣uh − uG-LOD
H

∣∣∣∣∣∣
h

� (H + (1/H)pkd/2θk)‖ f ‖L2(�), (11)

where 0 < θ < 1 and p ∈ {0, 1} are the generic constants in (A8).

The term ((IH |VH )−1 ◦ IH )(uG-LOD
H ) describes the coarse part (resulting from VH )

of uG-LOD
H and thus is numerically homogenized (the oscillations are averaged out).

In this sense, we can say that uG-LOD
H is an H1-approximation of uh and ((IH |VH )−1 ◦

IH )(uG-LOD
H ) an L2-approximation of uh , respectively. Furthermore, because k

d
2 θk

converges with exponential order to zero, the error |||uh − uG-LOD
H |||h is typically

dominated by the first term of order O(H). This was observed in various numerical
experiments in different works, cf. [19,20,35]. In particular, a specific choice k � (p+
1)| log(H)| leads to a O(H) convergence for the total H1-error, see also [19,20,35].

3.2 Petrov–Galerkin LOD

In a straightforward manner, we can now state the LOD in Petrov–Galerkin formula-
tion: find u PG-LOD

H ∈ Vms that satisfies

ah

(
u PG-LOD

H ,
H

)
= ( f,
H ) for all 
H ∈ VH . (12)

A unique solution of (12) is guaranteed by the inf-sup stability. In practice, inf-sup
stability is clearly observable in numerical experiments (see Sect. 4). Analytically we
can make the following observations.

Remark 2 (Quasi-orthogonality and inf-sup stability) The inf-sup stability of the LOD
in Petrov–Galerkin formulation is a natural property to expect, since we have quasi-
orthogonality in ah(·, ·) of the spaces Vms and Wh . This can be verified by a simple
computation. Let 
ms = 
H + Qh(
H ) ∈ Vms, let wh ∈ Wh and let Q�

h (
H ) the
optimal corrector as in assumption (A8), then

ah(
ms, wh) = ah(
H + Qh(
H ), wh)

= ah
(
Qh(
H ) − Q�

h (
H ), wh
)

≤ ∣∣∣∣∣∣Qh(
H ) − Q�
h (
H )

∣∣∣∣∣∣
h |||wh |||h

� kd/2θk(1/H)p
∣∣∣∣∣∣
H + Q�

h (
H )
∣∣∣∣∣∣

h |||wh |||h,

with generic constants 0 < θ < 1 and p ∈ {0, 1} as in (A8). This means that
ah(
ms, wh) converges exponentially in k to zero, and it is identical to zero for all
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sufficiently large k [because then Qh(
H ) = Q�
h (
H )].Writing thePG-LODbilinear

form as

ah(
H + Qh(
H ),�H )

= ah(
H + Qh(
H ),�H + Qh(�H )) + ah(
H + Qh(
H ), Qh(�H )),

we see that it is only a small perturbation of the symmetric (coercive) G-LOD version,
where the difference can be bounded by the quasi-orthogonality.

Even though the quasi-orthogonality suggests inf-sup stability, the given assump-
tions (A1)–(A8) do not seem to be sufficient for rigorously proving it. Here, it seems
necessary to leave the abstract setting and to prove the inf-sup stability result for the
various LOD realizations separately. For simplification, we therefore make the inf-sup
stability to be an additional assumption [see (A9) below]. Later we give an example
how to prove this assumption for a certain realization of the method. We also note that
the inf-sup stability can be always verified numerically (for a given k) by investigating
the system matrix SPG-LOD given by the entries

(S PG-LOD)i j = ah(
 j + Qh(
 j ),
i )

for 1 ≤ i, j ≤ NH where NH denotes the dimension of VH and where {
i | 1 ≤
i ≤ NH } denotes a basis of VH . To check the inf-sup stability we must compute the
eigenvalues of S PG-LOD. If their real parts are all strictly positive, we have inf-sup
stability and the inf-sup constant is identical to the smallest real part of an eigenvalue.
Standard approaches for computing the eigenvalues of a non-symmetric matrix are
the Arnoldi method, the Jacobi–Davidson method and the non-symmetric Lanczos
algorithm (cf. [39] for a comprehensive overview). Since NH is moderately small, the
cost for applying one of the methods are still feasible.

(A9) We assume that the LOD in Petrov–Galerkin formulation is inf-sup stable in
the following sense: there exists a sequence of constants α(k) and a generic
limit α0 > 0 (independent of H , h, k or the oscillations of A) such that
α(k) converges with exponential speed to α0, i.e. there exist constants C(H)

(possibly depending on H , but not on h, k or the oscillations of A) and a
generic θ ∈ (0, 1) such that |α(k)−α0| ≤ C(H)kd/2θk . Furthermore it holds
α(k̄) = α0 for all sufficiently large k̄ and

ah(
ms,
H )

|||
H |||H
≥ α(k)|||
ms|||h,

for all 
ms ∈ Vms and 
H := ((IH |VH )−1 ◦ IH )(
ms) ∈ VH .

The following result states that the approximation quality of the LOD in Petrov–
Galerkin formulation is of the same order as for the Galerkin LOD, up to a possible
pollution term depending on CH,h , but which still converges exponentially to zero.

Theorem 2 (A priori error estimate for PG-LOD)Assume (A1)–(A9). Given a positive
k ∈ N>0, let for all T ∈ TH the patch U (T ) = Uk(T ) be defined as in (8) and large
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Petrov–Galerkin formulation 653

enough so that the inf-sup constant in (A9) fulfills α(k) ≥ ᾱ for some ᾱ > 0 and
let uPG-LOD

H be the unique solution of (12). Let uh ∈ Vh be the fine scale reference
solution governed by (2). Then, the following a priori error estimate holds true

∥∥∥uh − ((IH |VH )−1 ◦ IH )(u PG-LOD
H )

∥∥∥
L2(�)

+ ∣∣∣∣∣∣uh − uPG-LOD
H

∣∣∣∣∣∣
h

� (H + (1/H)p(1 + (1/ᾱ))(1 + CH,h)kd/2θk)‖ f ‖L2(�),

where 0 < θ < 1 and p ∈ {0, 1} are the generic constants from assumption (A8) and
CH,h as in (A5).

3.3 Example 1: continuous Galerkin finite element method

The previous subsection showed that the Petrov–Galerkin formulation of the LOD
does not suffer from a loss in accuracy with respect to the symmetric formulation. In
this subsection, we give the specific example of the LOD for the continuous Galerkin
finite element method. In particular, we discuss the advantage of the PG formulation
over the symmetric formulation. Let us first introduce the specific setting and the
corresponding argument about the validity of (A4)–(A9) on this setting.

In addition to the assumptions that we made on the shape regular partitions TH

and Th in Sect. 2.1, we assume that TH and Th are either triangular or quadrilateral
meshes. Accordingly, for T = TH , Th we denote

P1(T ) :=
{
v ∈ C0(�)|∀T ∈ T , v|T is a polynomial of total degree ≤1

}
and

Q1(T ) :=
{
v ∈ C0(�)|∀T ∈ T , v|T is a polynomial of partial degree ≤1

}

and define Vh := P1(Th)∩ H1
0 (�) if Th is simplicial and Vh := Q1(Th)∩ H1

0 (�) if it
is a quadrilation. The coarse space VH ⊂ Vh is defined in the same fashion and since
Th is a refinement of TH , assumption (A6) is obviously fulfilled. For simplicity, we
also assume that the coarse mesh TH is quasi-uniform (which is the typical choice in
applications).

The bilinear form ah(·, ·) is defined by the standard energy scalar product on H1
0 (�)

that belongs to the elliptic problem to solve, i.e.

ah(v,w) :=
∫

�

A∇v · ∇w for v,w ∈ H1
0 (�).

Accordingly, we set |||v|||h := |||v|||H := ‖A1/2∇v‖L2(�) for v ∈ H1(�). Hence,
assumptions (A5) and (A6) are fulfilled and the solution uh ∈ Vh of (2) is nothing but
the standard continuous Galerkin finite element solution on the fine grid Th .

Next, we specify IH : Vh → Wh in (A7). For this purpose, let
z ∈ VH be the nodal
basis function associated with the coarse grid node z ∈ NH , i.e., 
z(y) = δyz . Let IH

be the weighted Clément-type quasi-interpolation operator as defined in [9,10]:
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IH : H1
0 (�) → VH , v �→ IH (v) :=

∑
z∈N 0

H

vz
z with vz := (v,
z)L2(�)

(1,
z)L2(�)

. (13)

First we note that it was shown in [35] that (IH )|VH : VH → VH is an isomorphism
[but not a projection, i.e. (IH |VH )−1 �= IH |VH ]. Hence, (IH )−1

|VH
exists. This is one

of the properties in (A7). The L2- and H1-stability of IH , as well as correspond-
ing approximation properties, were proved in [9]. It only remains to check the H1-
stability of (IH )−1

|VH
. Unfortunately, this property is not trivial to fulfill. First, we

note that it was shown in [34] that the mapping (IH )−1
|VH

◦ IH is nothing but the

L2-projection PL2 : H1
0 (�) → VH (see also Remark 5 below). Consequently, the

question of H1-stability of (IH )−1
|VH

is equivalent to the question of H1-stability of

the L2-projection. This result is well-established for quasi uniform grids (cf. [6])
as assumed at the beginning of this section. However it is still open for arbitrary
refinements. The most recent results on this issue can be found in [7,15,29], where
the desired H1-stability was shown for certain types of adaptively refined meshes.
To avoid complicated mesh assumptions in this paper, we simply assume TH to be
quasi-uniform. This is not very restrictive since adaptive refinements should typi-
cally take place on the fine mesh Th . Alternatively, in light of [7,15,29], we could also
directly assume that the L2-projection on VH is H1-stable to allowmore general coarse
meshes.

It remains to specify aT
h (·, ·), which we define by

aT
h (v,w) :=

∫
T

A∇v · ∇w for v,w ∈ H1
0 (�).

Let us for simplicity denote ||| · |||h,T := ‖A1/2∇ · ‖L2(T ). The decay assumption
(A8) was essentially proved in [19, Lemma 3.6], which established the existence of a
generic constant 0 < θ < 1 with the properties as in (A8) such that

∣∣∣∣∣∣(Qh − Q�
h )(
H )

∣∣∣∣∣∣2
h � kdθ2k

∑
T ∈TH

∣∣∣
∣∣∣
∣∣∣Q�,T

h (
H )

∣∣∣
∣∣∣
∣∣∣2
h
, (14)

for all 
H ∈ VH . On the other hand we have by ||| · |||h,T = ‖A1/2∇ · ‖L2(T ) and Eq.
(6) that

∣∣∣
∣∣∣
∣∣∣Q�,T

h (
H )

∣∣∣
∣∣∣
∣∣∣2
h

� ah

(
Q�,T

h (
H ), Q�,T
h (
H )

)

= −aT
h

(

H , Q�,T

h (
H )
)

� |||
H |||h,T

∣∣∣
∣∣∣
∣∣∣Q�,T

h (
H )

∣∣∣
∣∣∣
∣∣∣
h
. (15)
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Hence, by plugging this result into (14):
∣∣∣∣∣∣(Qh − Q�

h )(
H )
∣∣∣∣∣∣2

h � kdθ2k
∑

T ∈TH

|||
H |||2h,T

� kdθ2k |||
H |||2h = kdθ2k |||((IH |VH )−1 ◦ IH )(
H + Q�
h (
H ))|||2h

(A7)
� kdθ2k |||
H + Q�

h (
H )|||2h,

which proves that assumption (A8) holds even with p = 0. The remaining assumption
(A9) is less obvious and requires a proof.Wegive this proof for the continuousGalerkin
PG-LOD in Sect. 5. We summarize the result in the following lemma.

Lemma 1 (Inf-sup stability of continuous Galerkin PG-LOD) For all T ∈ TH let
U (T ) = Uk(T ) for k ∈ N. Then there exist generic constants C1, C2 (independent of
H, h, k or the oscillations of A) and 0 < θ < 1 as in assumption (A8), so that it holds

inf

H ∈VH

sup

ms∈Vms

a(
ms,
H )

|||
ms|||h |||
H |||h ≥ α(k),

for α(k) := C1α − C2kθkω(
ms) and

0 ≤ ω(
ms) := inf
wh∈W T

h

∥∥∇
ms − ∇((IH |VH )−1 ◦ IH )(
ms) − ∇wh
∥∥∥∥∇
ms − ∇((IH |VH )−1 ◦ IH )(
ms)

∥∥ ≤ 1,

where W T
h := {wh ∈ Wh | wh |T ∈ Wh(T )}, i.e. the space of all functions from Wh that

are zero on the boundary of the coarse grid elements. Observe that α(k) converges with
exponential speed to αC1. Furthermore we have α(0) = C1α [because ω(
ms) = 0]
and also α(�) = C1α for all sufficiently large �.

Remark 3 Let U (T ) = Uk(T ) for k ∈ N with k � | log(H)|, then the CG-LOD in
Petrov–Galerkin formulation is inf-sup stable for sufficiently small H . In particular,
there exists a unique solution of problem (12).

Remark 4 Lemma 1 does not allow to conclude to inf-sup stability for the regime
0 < k � | log(H)|. However, even though this regime is not of practical relevance, it
is interesting to note that we could not observe a violation of the inf-sup stability for
any value of k and in any numerical experiment that we set up so far.

Since assumptions (A1)–(A9) are fulfilled for this setting, Theorems 1 and 2 hold
true for the arising method. Furthermore, we have p = 0 and CH,h = 1 in the
estimates, meaning that the (1/H)-pollution in front of the decay term vanishes. We
can summarize the result in the following conclusion.

Conclusion 3 Assume the (continuous Galerkin) setting of this subsection and let
uPG-LOD

H denote a Petrov–Galerkin solution of (12). If k � m H | log(H)| for m ∈ N,
then it holds

∥∥uh − uPG-LOD
H

∥∥
H1(�)

� (H + Hm)‖ f ‖L2(�).
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In particular, the bound is independent of CH,h.

3.4 Discussion of advantages

The central disadvantage of the Galerkin LOD is that it requires a communication
between solutions of different patches. Consider for instance the assembly of the
system matrix that belongs to problem (10). Here it is necessary to compute entries of
the type

∫
�

A∇(
i + Qh(
i )) · ∇(
 j + Qh(
 j )),

which particularly involves the computation of the term

∑
T ∈TH
T ⊂ωi

∑
K∈TH
K⊂ω j

∫
U (T )∩U (K )

A∇QT
h (
i ) · ∇QK

h (
 j ), (16)

where 
i ,
 j ∈ VH denote two coarse nodal basis functions and ωi and ω j its cor-
responding supports. The efficient computation of (16) requires information about
the intersection area of any two patches U (T ) and U (K ). Even if T and K are not
adjacent or close to each other, the intersection of the corresponding patches can be
complicated and non-empty. The drawback becomes obvious: first, these intersection
areas must be determined, stored and handled in an efficient way and second, the
number of relevant entries of the stiffness matrix (i.e. the non-zeros) increases con-
siderably. Note that this also leads to a restriction in the parallelization capabilities,
in the sense that the assembly of the stiffness matrix can only be ‘started’ if the cor-
rectors Qh(
i ) are already computed. Another disadvantage is that the assembly of
the right hand side vector associated with ( f,
ms) in (10) is much more expensive
since it involves the computation of entries ( f,
i + Qh(
i ))L2(�). First, the inte-
gration area is ∪{U (T )| T ∈ TH , T ⊂ ωi } instead of typically ωi . This increases
the computational costs. At the same time, it is also hard to assemble these entries
by performing (typically more efficient) element-wise computations (for which each
coarse element has to be visited only once). Second, ( f,
i + Qh(
i ))L2(�) involves
a quadrature rule of high order, since Qh(
i ) is rapidly oscillating. These oscillations
must be resolved by the quadrature rule, even if f is a purely macroscopic function
that can be handled exactly by a low order quadrature. Hence, the costs for comput-
ing ( f,
i + Qh(
i ))L2(�) depend indirectly on the oscillations of A. Finally, if the
LOD shall be applied to a sequence of problems of type (1), which only differ in the
source term f (or a boundary condition), the system matrix can be fully reused, but
the complications that come with the right hand side have to be addressed each time
again.

The Petrov–Galerkin formulation of the LOD clearly solves these problemswithout
suffering from a loss in accuracy. In particular:
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– The PG-LOD does not require any communication between two different patches
and the resulting stiffness matrix is sparser than the one for the symmetric LOD. In
particular, the entries of the system matrix S can be computed with the following
algorithm:

Let S denote the empty system matrix with entries Si j .

Algorithm: assembleSystemMatrix( TH , Th , k )

In parallel foreach T ∈ TH do
foreach zi ∈ N 0

H with zi ∈ T do

compute QT
h (
zi ) ∈ Wh(Uk (T )) with

a(QT
h (
zi ), wh) = −

∫
T

A∇
zi · ∇wh for all wh ∈ Wh(Uk (T )).

foreach z j ∈ N 0
H with z j ∈ U (T ) do

update the system matrix:

S ji +=
∫
ω j

A
(

zi + ∇QT

h (
zi )
)

· ∇
z j .

end
end

end

Observe that it is possible to add the local terms a(
zi + QT
h (
zi ),
z j ) directly to

the system matrix S, i.e. the assembling of the matrix is parallelized in a straight-
forward way and does not rely on the availability of other results.

– Replacing the source term f in (1), only involves the re-computation of the terms
( f,
i )L2(ωi )

for coarse nodal basis functions 
i , i.e. the same costs as for the
standard FEmethod on the coarse scale. Furthermore, the choice of the quadrature
rule relies purely on f , but not on the oscillations of A.

Besides the previously mentioned advantages, there is still a memory consuming
issue left: the storage of the local correctors QT

h (
zi ). These local correctors need to
be saved in order to express the final approximation u PG-LOD

H which is spanned by
the multiscale basis functions 
i + Qh(
i ). As long as we are interested in a good
H1-approximation of the solution, this problem seems to be unavoidable. However,
in many applications we can even overcome this difficulty by exploiting another very
big advantage of the PG-LOD: Theorem 2 predicts that alone the ‘coarse part’ of
u PG-LOD

H , denoted by u H := ((IH |VH )−1 ◦ IH )(u PG-LOD
H )) ∈ VH , already exhibits

very good L2-approximation properties, i.e. if k � | log(H)| we have essentially

‖uh − u H ‖L2(�) ≤ O(H).

In contrast to u PG-LOD
H , the representation of u H does only require the classical

coarse finite element basis functions. Hence, we can use the algorithm presented
earlier, with the difference that we can immediately delete QT

h (
i ) after updating the
stiffness matrix. Observe that even if computations have to be repeated for different
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source terms f , this stiffness matrix can be reused again and again. Also, if a user is
interested in the fine scale behavior in a local region [but the QT

h (
i ) were already
dropped], it is still possible to quickly re-compute the desired local corrector for the
region.

As an application, consider for instance the case that the problem

∫
�

A∇u · ∇v =
∫

�

f v

describes the diffusion of a pollutant in groundwater. Here, u describes the concen-
tration of the pollutant, A the (rapidly varying) hydraulic conductivity and f a source
term describing the injection of the pollutant. In such a scenario, there is typically
not much interest in finding a good approximation of the (locally fluctuating) gradient
∇u, but rather in the macroscopic behavior of pollutant u, i.e. in purely finding a
good L2-approximation that allows to conclude where the pollutant spreads. A sim-
ilar scenario is the investigation of the properties of a composite material, where A
describes the heterogenous material and f some external force. Again, the interest
is in finding an accurate L2-approximation. Besides, the corresponding simulations
are typically performed for a variety of different source terms f , investigating differ-
ent scenarios. In this case, the PG-LOD yields reliable approximations with very low
costs, independent of the structure of A.

Remark 5 (Relation to the L2-projection) Assume the setting of this subsection. In
[34] it was shown that (vH , wh)L2(�) = 0 for all vH ∈ VH and wh ∈ Wh , i.e. VH and
Wh are L2-orthogonal. This implies that

(IH |VH )−1 ◦ IH = PL2 ,

with PL2 denoting the L2-projection on VH . To verify this, let vh ∈ Vh be arbitrary.
Then due to Vh = VH ⊕Wh we canwrite vh = vH +wh (with vH ∈ VH andwh ∈ Wh)
and observe for all 
H ∈ VH

∫
�

PL2(vh) 
H =
∫

�

vh 
H
VH ⊥L2 Wh=

∫
�

vH 
H

=
∫

�

((IH |VH )−1 ◦ IH )(vH ) 
H
IH (wh)=0=

∫
�

((IH |VH )−1 ◦ IH )(vh) 
H .

Hence, u PG-LOD
H = u H + Qh(u H ) with u H = PL2(u PG-LOD

H ).

Conclusion 4 (Application to homogenization problems) Assume the setting of this
subsection and let PL2 denote the L2-projection on VH as in Remark 5. We consider
now a typical homogenization setting with (ε)>0 ⊂ R>0 being a sequence of positive
parameters that converges to zero. Let Y := [0, 1]d denote the unique cube in R

d and
let Aε(x) = Ap(x, x

ε
) for a function Ap ∈ W 1,∞(� × Y ) that is Y -periodic in the

second argument (hence Aε is rapidly oscillating with frequency ε). The corresponding
exact solution of problem (1) shall be denoted by uε ∈ H1

0 (�). It is well known (cf. [3])
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that uε converges weakly in H1 (but not strongly) to some unique function u0 ∈ H1
0 (�).

Furthermore, if ‖ f ‖L2(�) � 1 it holds ‖uε − u0‖L2(�) � ε. With Theorem 2 together
with Remark 5 and standard error estimates for FE problems, we hence obtain:

‖u0 − u H ‖L2(�) � ε +
(

h

ε

)2

+ H,

for u H = PL2(u PG-LOD
H ). Homogenization problems are typical problems, where one

is often purely interested in the L2-approximation of the exact solution uε , meaning
one is interested in the homogenized solution u0.

As discussed in this section, the PG-LOD can have significant advantages over
the (symmetric) G-LOD with respect to computational costs, efficiency and memory
demand. In Sect. 4.1 we additionally present a numerical experiment to demonstrate
that the approximations produced by the PG-LOD are in fact very close to the ones
produced by (symmetric) G-LOD, i.e. not only of the same order as predicted by the
theorems, but also of the same quality.

Remark 6 (Nonlinear problems) The above results suggest that the advantages can
become even more pronounced for certain types of nonlinear problems. For instance,
consider a well-posed problem of the type

−∇ · A∇u + c(u) = f,

for a nonlinear function c. Here, it is intuitively reasonable to construct Qh(
H ) as
before using only the linear elliptic part of the problem. This is a preprocessing step
that is done once and can be immediately deleted stiffness matrix is calculated and
saved. Then we solve for u H ∈ VH that satisfies

(A∇(u H + Qh(u H )),∇
H )L2(�) + (c(u H ),
H )L2(�) = ( f,
H )L2(�)

for all 
H ∈ VH . Clearly, typical iterative solvers can be utilized to solve this vari-
ational problem. This iteration is inexpensive because it is done in VH and the pre-
constructed stiffness matrix can be fully reused within every iteration and since the
other contributions are independent of Qh . Performing iterations on the coarse space
for solving nonlinear problems within the framework of multiscale finite element has
been investigated (see for example [12,16]).

3.5 Example 2: discontinuous Galerkin finite element method

In this subsection, we apply the results of Sect. 3.2 to a LODMethod that is based on a
discontinuous Galerkin approach. The DG-LOD was originally proposed in [14] and
fits into the framework proposed in Sect. 2.2. First, we show that the setting fulfills
assumptions (A4)–(A8) and after we discuss the advantage of the PG DG-LOD over
the symmetric DG-LOD. For simplification, we assume that A is piecewise constant
with respect to the fine mesh Th so that all of the subsequent traces are well-defined.

123



660 D. Elfverson et al.

Again, we make the same assumptions on the partitions TH and Th as in Sect. 2.1
and additionally assume that TH and Th are either triangular or quadrilateral meshes.
The corresponding total sets of edges (or faces for d = 3) are denoted by Eh (for Th),
where Eh(�) and Eh(∂�) denotes the set of interior and boundary edges, respectively.

Furthermore, for T = TH , Th we denote the spaces of discontinuous functions with
total, respectively partial, polynomial degree equal to or less than 1 by

P1(T ) :=
{
v ∈ L2�)|∀T ∈ T , v|T is a polynomial of total degree ≤1

}
and

Q1(T ) :=
{
v ∈ L2(�)|∀T ∈ T , v|T is a polynomial of partial degree ≤1

}

anddefineVh := P1(Th) ifTh is a triangulation andVh := Q1(Th) if it is a quadrilation.
The coarse space VH ⊂ Vh is defined in the same fashion with TH instead of Th . Note
that these spaces are no subspaces of H1(�) as in the previous example. For this
purpose, we define ∇h to be the Th-piecewise gradient [i.e. (∇hvh)|t := ∇(vh |t) for
vh ∈ Vh and t ∈ Th].

For every edge/face e ∈ Eh(�) there are two adjacent elements t−, t+ ∈ Th with
e = ∂t− ∩ ∂t+. We define the jump and average operators across e ∈ Eh(�) by

[v] := (v|t− − v|t+) and {A∇v · n} := 1

2
((A∇v)|t− + (A∇v)|t+) · n,

where n be the unit normal on e that points from t− to t+, and on e ∈ Eh(∂�) by

[v] := w|t and {A∇v · n} := (A∇v)|t · n

where n is the outwards unit normal of t ∈ Th (and �). Observe that flipping the roles
of t− and t+ leads to the same terms in the bilinear form defined below.

With that, we can define the typical bilinear form that characterizes the discontin-
uous Galerkin method:

ah(vh, wh) := (A∇hvh,∇hwh)L2(�) +
∑
e∈Eh

σ

he
([vh], [wh])L2(e)

−
∑
e∈Eh

(
({A∇vh · n}, [wh])L2(e) + ({A∇wh · n}, [vh])L2(e)

)
.

Here, σ is a penalty parameter that is chosen sufficiently large and he = diam(e). The
coarse bilinear form aH (·, ·) is defined analogously with coarse scale quantities. It is
well known, that ah(·, ·) [respectively aH (·, ·)] is a scalar product on Vh (respectively
VH ). Consequently (A4) is fulfilled. As a norm on Vh that fulfills assumption (A5),
we can pick
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|||v|||h :=
∥∥∥A1/2∇hv

∥∥∥
L2(�)

+
⎛
⎝∑

e∈Eh

σ

he
‖[v]‖2L2(e)

⎞
⎠

1/2

.

Analogously, we define |||v|||H to be a norm on VH . In this case we obtain the constant
CH,h = √

H/h. Assumption (A6) is obviously fulfilled.
As the operator in assumption (A7) we pick the L2-projection on VH , i.e. for

vh ∈ Vh we have

(Ih(vh),
H )L2(�) = (vh,
H )L2(�) for all 
H ∈ VH .

In [14, Lemma 5] it was proved that the operator fulfills the desired approximation
and stability properties. Since IH is a projection, we have IH = (IH |VH )−1 and hence
obviously also ||| · |||H -stability of the inverse on VH .

The localizedbilinear formaT
h (·, ·) in (5) is definedbyaT

h (vh, wh) := ah(χT vh, wh)

where χT = 1 in T and 0 otherwise, is the element indicator function. Obviously we
have for all vh, wh ∈ Vh that

ah(vh, wh) =
∑

T ∈TH

aT
h (vh, wh).

In [14] the DG-LOD is presented in a slightly different way, in the sense that
there exists no general corrector operator Qh . Instead, ‘basis function correctors’ are
introduced.However, it is easily checkable that each of these ‘basis function correctors’
is nothing but the corrector operator, defined via (6), applied to an original coarse basis
function. Therefore, the correctors given by (6) are just an extension of the definition
to arbitrary coarse functions. Hence, both methods coincide and are just presented in
a different way.

Next, we discuss (A8). This property was shown in [14, Lemmas 11 and 12],
however not explicitly for the setting that we established in Definition 3. It was only
shown for
H = λT, j , where λT, j ∈ VH denotes a basis function on T associatedwith
the j’th node. However, the proofs in [14] directly generalize to the local correctors
QT

h (
H ) given by Eq. (6). More precisely, following the proofs in [14] it becomes
evident that the availability of the required decay property (A8) purely relies on the
fact, that the right hand side in the local problems is only locally supported (with a
support that remains fixed, even if the patch size decreases). Therefore (A8) can be
proved analogously.

Finally, assumption (A9) is not easy to verify. It is obviously fulfilled for the case
U (T ) = �, but the generalized result is harder to verify. The following result holds
under some restrictions on the meshes TH and Th .

Lemma 2 (Inf-sup stability of discontinuous Galerkin PG-LOD) Assume that TH is
quasi-uniform and that there exists an exponent m ∈ R with m > 1 such that for all
T ∈ TH

diam(T )m � min
{
he| e ∈ Eh and e ⊂ T

}
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(i.e. if Th is also quasi-uniform we assume Hm � h). If k ∈ N is such that k �
(m+3)

2 | log(H)| then, for sufficiently small H, there exist generic positive constants
C1, C2 such that

inf

H ∈VH

sup

ms∈Vms

ah(
ms,
H )

|||
ms|||h |||
H |||H
≥ C1(α − C2H).

Hence, we have inf-sup stability for sufficiently small H.

The proof is given in Sect. 5. We note that the inf-sup stability can be observed
numerically already under weaker assumptions (see Sect. 4) and that it is in general
‘a reasonable thing to expect’ as discussed in Remark 2.

In conclusion, the discontinuous Galerkin LOD in Petrov–Galerkin formulation
fulfills the assumptions of our framework [up to a discussion on (A9)]. The advantages
that we discussed in the previous subsection for the Petrov–Galerkin continuous finite
element method in terms of memory and efficiency remains true. However, for the PG
DG-LOD there is a very important additional advantage. It is known that the classical
DG method has the feature of local mass conservation with respect to the elements
of the underlying mesh. This can be easily checked by testing with the indicator
function of an element T in the variational formulation of the method. The local mass
conservation is a highly desired property for various flow and transport problems.
However, the DG-LOD does not preserve this property, since the indicator function of
an element (whether coarse or fine) is not in the space Vms. This problem is solved in
the PG DG-LOD, where we can test with any element from VH and in particular with
the indicator function of a coarse element. Hence, in contrast to the symmetric DG-
LOD, the PG DG-LOD is locally mass conservative with respect to coarse elements
T ∈ TH . This allows for example the coupling of the PG DG-LOD for an elliptic
problem with the solver for a hyperbolic conservation law, which was not possible
before without relinquishing the mass conservation. We discuss this further in the next
subsection.

3.6 Perspectives towards two-phase flow

In this subsection, we investigate an application of the Petrov–Galerkin DG-LOD
in the simulation of two-phase flow as governed by the Buckley–Leverett equation.
Specifically, the LOD framework is utilized to solve the pressure equation, which is
an elliptic boundary value problem, and is coupled with a solver for a hyperbolic
conservation law. The Buckley–Leverett equation can be used to model two-phase
flow in a porous medium. Generally, the flow of two immiscible and incompressible
fluids is driven by the law of mass balance for the two fluids:

�∂t Sα + ∇ · vα = qα in � × (0, Tend ] for α = w, n. (17)

Here, � is a computational domain, (0, Tend ] a time interval, the unknowns Sw, Sn :
� → [0, 1] describe the saturations of a wetting and a non-wetting fluid and vw and
vn are the corresponding fluxes. Furthermore, � describes the porosity and qw and qn
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are two source terms. Darcy’s law relates the fluxes with the two unknown pressures
pn and pw by

vα = −K
kα(Sα)

μα

(∇ pα − ρα g) for α = w, n.

Here, K denotes the hydraulic conductivity, kw and kn the relative permeabilities
depending on the saturations, μw and μn the viscosities, ρw and ρn the densities and
g the gravity vector. The saturations are coupled via Sn+Sw = 1 and a relation between
the twopressures is typically givenby the capillary pressure relation Pc(Sw) = pn−pw

for a monotonically decreasing capillary pressure curve Pc. In this case, we obtain
the full two-phase flow system, which consists of two strongly coupled, possibly
degenerate parabolic equations. However, if we neglect the gravity and the capillary
pressure [i.e. assume that Pc(Sw) = 0], the system reduces to the so called Buckley–
Leverett system with an elliptic pressure equation and an hyperbolic equation for the
saturation:

−∇ · (Kλ(S)∇ p) = q and �∂t S + ∇ · ( f (S)v) = qw, (18)

wherewe have S = Sw, p = pw = pn , the totalmobilityλ(S) := kw(S)
μw

+ kn(1−S)
μn

> 0,

the flux v := −Kλ(S)∇ p and the flux function f (S) := kw(S)
μwλ(S)

. The total source is

given by q := qw+qn
2 . Observe that (18) is obtained from (17) by summing up the

equations for the saturations, using ∂t (sn + sw) = ∂t1 = 0.
An application for which neglecting the capillary pressure is typically justified

are oil recovery processes. Here, a replacement fluid, such as water or liquid carbon
dioxide, is injectedwith veryhigh rates into a reservoir tomoveoil towards aproduction
well. However, often oil is trapped at interfaces of a low and a high conductivity region.
This oil would become inaccessible which is why detailed simulations are required
before the replacement fluid can be actually injected.

Depending on the choice for the mobilities, the hyperbolic Buckley–Leverett prob-
lem can have one or more weak solutions (cf. [32]). One approach for solving the
problem numerically is to use an operator splitting technique as proposed in [4],
which is more well-known as the implicit pressure explicit saturation (IMPES). Here,
the hyperbolic Buckley–Leverett problem is treated with an explicit time stepping
method where the flux velocity v is kept constant for a certain time interval and
then updated by solving the elliptic problem with the saturation from the previous
time step (see Fig. 1 for an illustration). Alternatively, depending on the type of the
flux function f , the hyperbolic problem can be also solved implicitly with a suitable
numerical scheme for conservation laws (cf. [30]) where the flux v arising from the
Darcy equation is, as in the previous case, only updated every fixed number of time
steps.

Observe that the difficulties produced by the multiscale character of the problem
are primarily related to the elliptic part of the problem. Once the Darcy problem is
solved to update the flux velocity, the grid for solving the hyperbolic problem can be
significantly coarsened. The reason is that v = −Kλ(S)∇ p is possibly still rapidly
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prev
ious

valu
es

Pressure

new values(pn−1, vn−1, Sn−1)

Sn−1 (pn, vn)

(Sn−1, vn) Sn (pn, vn, Sn)

Fig. 1 A schematic of operator splitting (IMPES) for system (18)

oscillating, but the relative amplitude of the oscillations is expected to remain small.
In other words, just like for standard elliptic homogenization problems, v behaves
like an upscaled quantity −K0λ(S0)∇ p0 with effective/homogenized functions K0,
S0 and p0.

Remark 7 Any realization of the LOD involves to solve a number of local problems
that help us to construct the low dimensional space Vms. One might consider to update
this space every time that the Darcy problem has to be solved with a new saturation.
However, since λ(S) is essentially macroscopic, it is generally sufficient to construct
the space only once for λ = 1 and reuse the result for every time step. This makes
solving the elliptic multiscale problem much cheaper after the multiscale space is
assembled. A justification for this reusing of the basis can be e.g. found in [20] where
itwas shown that oscillations coming fromadvective terms canbeoftenneglected in the
construction of amultiscale basis. Under certain assumptions, the relative permeability
λ(S) can in fact be interpreted as a pure enforcement by an additional advection
term.

4 Numerical experiments

In this section we present two different model problems. The first one involves a LOD
methods for the continuous Galerkin method. Here, we compare the results obtained
with the symmetric version of the method with the results obtained for the Petrov–
Galerkin version. In the second model problem, we use a PG DG-LOD for solving the
Buckley–Leverett system.

4.1 Continuous Galerkin PG-LOD for elliptic multiscale problems

In this section, we use the setting established in Sect. 3.3. All experiments
were performed with the G-LOD and PG-LOD for the continuous finite element
method.

In order to be more flexible in the choice of the localization patches U (T ), we
make subsequently use of “half” or “quarter coarse layers”, i.e. k ∈ Q≥0. This can be
easily accomplished by extending Definition 4 straightforwardly to fine grid layers,
i.e. for k ∈ Q≥0 and T ∈ TH we define the number of fine layers by � := � k H

h � ∈ N

and the corresponding (broken layer) patch by Uk(T ) := Uf,�(T ), where iteratively

123



Petrov–Galerkin formulation 665

Uf,�(T ) := ∪{t ∈ Th | t ∩ Uf,�−1(T ) �= ∅} and Uf,0(T ) := T . This allows us a more
careful investigation of the decay behavior.

Let uh be the solution of (2). In the following we denote by ‖ · ‖ rel
L2(�)

and ‖ · ‖ rel
H1(�)

the corresponding relative error norms defined by

‖uh − vh‖ rel
L2(�)

:= ‖uh − vh‖L2(�)

‖uh‖L2(�)

and

‖uh − vh‖ rel
H1(�)

:= ‖uh − vh‖H1(�)

‖uh‖H1(�)

for any vh ∈ Vh . The coarse part (‘the VH -part’) of an LOD approximation
u G-LOD (respectively uPG-LOD) is subsequently denoted by PL2(uG-LOD) [respectively
PL2(u PG-LOD)], where PL2 denotes the L2-projection on VH (see also Remark 5).

We consider the following model problem. Let � := ]0, 1[2 and ε := 0.05. Find
uε ∈ H1(�) with

−∇ · (Aε(x)∇uε(x)) = x1 − 1

2
in �

uε(x) = 0 on ∂�.

The scalar diffusion term Aε is shown in Fig. 2. It is given by

Aε(x) := (h ◦ cε)(x) with h(t) :=

⎧⎪⎨
⎪⎩

t4 for 1
2 < t < 1

t
3
2 for 1 < t < 3

2

t else

(19)

and where

Fig. 2 Sketch of heterogeneous diffusion coefficient Aε defined according to Eq. (19)
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Table 1 Results for the errors between LOD approximations and reference solutions

H k ‖eH ‖rel
L2(�)

‖eh‖ rel
L2(�)

‖eh‖ rel
H1(�)

∥∥∥e PG
H

∥∥∥ rel

L2(�)

∥∥∥e PG
h

∥∥∥ rel

L2(�)

∥∥∥e PG
h

∥∥∥ rel

H1(�)

2−2 0 0.3794 0.3772 0.6377 0.3778 0.3755 0.6375

2−2 1/2 0.2756 0.2381 0.5312 0.2588 0.2269 0.5628

2−2 1 0.2523 0.1445 0.3637 0.2544 0.1504 0.3642

2−2 3/2 0.2514 0.1355 0.3125 0.2518 0.1380 0.3162

2−3 0 0.2039 0.2037 0.5048 0.2037 0.2036 0.5048

2−3 1 0.1100 0.0526 0.2278 0.1139 0.0619 0.2345

2−3 2 0.1073 0.0423 0.1761 0.1078 0.0453 0.1807

2−3 3 0.1070 0.0366 0.1567 0.1077 0.0399 0.1600

2−4 0 0.0874 0.0873 0.3563 0.0874 0.0873 0.3563

2−4 2 0.0353 0.0105 0.0932 0.0357 0.0123 0.0994

2−4 4 0.0351 0.0082 0.0653 0.0353 0.0093 0.0680

2−4 6 0.0351 0.0080 0.0634 0.0353 0.0091 0.0662

We define eh := uh − uG-LOD and e PG
h := uh − u PG-LOD. Accordingly we define the errors between the

reference solution and the coarse parts of the LOD approximations by eH := uh − PL2 (u G-LOD) (for the

symmetric case) and e PG
H := uh − PL2 (u PG-LOD) (for the Petrov–Galerkin case). The reference solution

uh was obtained on a fine grid of mesh size h = 2−6 ≈ 0.0157 < ε which just resolves the micro structure
of the coefficient Aε . The number of ‘coarse grid layers’ is denoted by k and determines the patch size
Uk (T )

cε(x1, x2) := 1 + 1

10

4∑
j=0

j∑
i=0

(
2

j + 1
cos

(⌊
i x2 − x1

1+i

⌋ +
⌊

i x1
ε

⌋
+ ⌊ x2

ε

⌋))
.

The goal of the experiments is to investigate the accuracy of the PG-LOD, compared
to the classical symmetric LOD. Moreover, we investigate the accuracy of the coarse
part of the LOD approximation in terms of L2-approximation properties (see Sect. 3.3
for a corresponding discussion).

In Table 1 we can see the results for a fine grid Th with resolution h = 2−6 < ε

which just resolves the micro structure of the coefficient Aε. Comparing the relative
L2- and H1-errors for the G-LOD and the PG-LOD respectively (with the reference
solution uh), we observe that the errors are of similar size in each case. In general, we
obtain slightly worse results for the PG-LOD, however the difference is so small that
is does not justify the usage of the more memory-demanding (and more expensive)
symmetric LOD. For both methods we observe the same nice error decay (in terms
of the patch size) that was already predicted by the theoretical results. Comparing the
relative L2-errors between uh and the coarse parts of the LOD-approximations, we
observe that they already yield very good approximations. We also observe that they
seem to be much more dominated by H -error contribution than by the θk-error contri-
bution (i.e. the error coming from the decay). Using patches consisting of more than 8
fine element layers did not lead to any significant improvement, while there were still
clear improvements visible for the other errors for the full G-LOD approximations.
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Table 2 Results for the errors between LOD approximations and reference solutions

H k ‖eH ‖ rel
L2(�)

‖eh‖ rel
L2(�)

‖eh‖ rel
H1(�)

∥∥∥e PG
H

∥∥∥ rel

L2(�)

∥∥∥e PG
h

∥∥∥ rel

L2(�)

∥∥∥e PG
h

∥∥∥ rel

H1(�)

2−2 0 0.3840 0.3815 0.6434 0.3820 0.3796 0.6432

2−2 1/8 0.2985 0.2781 0.5486 0.2957 0.2753 0.5513

2−2 1/4 0.2852 0.2592 0.5578 0.2718 0.2472 0.5774

2−2 1/2 0.2769 0.2392 0.5386 0.2607 0.2291 0.5722

2−2 3/4 0.2676 0.2052 0.4784 0.2577 0.1972 0.4956

2−3 0 0.2106 0.2103 0.5190 0.2103 0.2100 0.5190

2−3 1/4 0.1480 0.1375 0.4510 0.1569 0.1469 0.4486

2−3 1/2 0.1372 0.1163 0.3957 0.1305 0.1089 0.4029

2−3 1 0.1138 0.0535 0.2308 0.1176 0.0628 0.2372

2−3 3/2 0.1117 0.0399 0.1710 0.1126 0.0437 0.1761

2−4 0 0.0988 0.0984 0.3854 0.0987 0.0983 0.3854

2−4 1/2 0.0637 0.0592 0.2896 0.0500 0.0442 0.2934

2−4 1 0.0406 0.0211 0.1613 0.0431 0.0263 0.1690

2−4 2 0.0381 0.0109 0.0957 0.0385 0.0130 0.1017

2−4 3 0.0380 0.0087 0.0726 0.0382 0.0099 0.0753

The errors are defined as in Table 1. The reference solution uh was obtained on a fine grid of mesh size
h = 2−8 ≈ 0.0039 � ε which fully resolves the micro structure of the coefficient Aε . Again, the number
of ‘coarse grid layers’ is denoted by k and determines the patch size Uk (T )

Furthermore, the linear convergence in H is clearly visible for ‖eH ‖ rel
L2(�)

(respectively

‖e PG
H ‖ rel

L2(�)
) showing that the obtained error estimates seem to be indeed optimal.

The same observations can be made for the errors depicted in Table 2 for a fine
grid Th with resolution h = 2−8 � ε. Again, the results for the (symmetric) G-LOD
are slightly better than the ones for the PG-LOD, but always of the same order. The
exponential convergence in k for both realization is visualized in Fig. 3. It is clearly
observable that there is no argument for using the G-LOD when dealing with patch
communication issues which are storage demanding.

These findings are confirmed in the Figs. 4 and 5. In Fig. 4 we can see a visual
comparison of the reference solution with the corresponding full LOD approxima-
tions (symmetric and Petrov–Galerkin). Both are almost not distinguishable for the
investigated setting with (h, H, k) = (2−8, 2−4, 2). Also the coarse parts of the LOD
approximations already capture all the essential behavior of the reference solution.
In Fig. 5 this is emphasized. Here, we compare the isolines between the reference
solution and PG-LOD approximation (respectively its coarse part) and we observe
that they are highly matching.

4.2 PG DG-LOD for the Buckley–Leverett equation

In this subsection we present the results of a two-phase flow simulation, based on solv-
ing the Buckley–Leverett equation as discussed in Sect. 3.6. Recall that, the Buckley–
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Fig. 3 The graphic visualizes the error decay in k. The results correspond to the results of Table 2 for
(h, H) = (2−8, 2−4). We include ‖eh‖ rel

L2(�)
, ‖eh‖ rel

H1(�)
, ‖e PG

h ‖ rel
L2(�)

and ‖e PG
h ‖ rel

H1(�)
. The x-axis

depicts the localization parameter k and the y-axis the error “‖e(k)‖ − ‖e(3)‖” on the log-scale, where
‖e(k)‖ denotes an error for k-layers (the error ‖e(3)‖ is hence the limit reference)

Fig. 4 The left picture shows the finite element reference solution uh for h = 2−8. The remaining pictures
show LOD approximations for the case (H, k) = (2−4, 2), where k denotes the (broken) number of coarse
layers. The two top row pictures show the full G-LOD approximation u G-LOD (left) and the coarse part of it,
i.e. PL2 (u G-LOD) (right). The bottom row shows the full Petrov–Galerkin LOD approximation u PG-LOD

(left) and the corresponding coarse part, i.e. PL2 (u PG-LOD) (right). The grid that is added to each of the
pictures shows the coarse grid TH
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Fig. 5 The pictures depict a comparison of isolines. The black lines belong to the reference solution uh
for h = 2−8. The colored isolines in the left picture belong to the PG-LOD approximation u PG-LOD and
match almost perfectly with the one from the reference solution. The right picture shows the coarse part of
u PG-LOD, i.e. PL2 (u PG-LOD). We observe that the isolines still match nicely (color figure online)

Leverett equation has two parts, a hyperbolic equation for the saturation and a elliptic
equation for the pressure. For that reason, we use the operator splitting technique
IMPES, that we stated in Sect. 3.6. The elliptic pressure equation is solved by the
PG DG-LOD for which a discontinuous linear finite element method is utilized that
allows for recovering an elemental locally conservative normal flux. We emphasize
that having a locally conservative flux is typically central for numerical schemes for
solving hyperbolic partial differential equations. In this experiment we use an upwind-
ing scheme.

Employing PG DG-LOD in this simulation proves to be a very efficient since the
local correctors for the generalized basis functions only have to be computed once
in a preprocessing step, this follows from the fact the saturation only influence the
permeability on the macroscopic scale. The time stepping in the IMPES scheme using
the PG DG-LOD for the is realized through Algorithm 2 below.

Set the end time Tend , number of update of the pressure n, number of explicit updates on each
implicit step update m.

Algorithm 2: solveBuckleyLeverett(TH , Th , Tend, n, m)

Set the initial values: S = S0 and i = 1
Preprocessing step: Compute local corrections QT

h for all T ∈ TH with λ(S) = 1
while t ≤ Tend do

Compute pressure p using PG DG-LOD at (t + Tend/(n))

Extract conservative flux v
while t ≤ iTend/n do

Compute saturation S at (t + Tend/(nm))

Update time: t + Tend/(nm) �→ t
end
i + 1 �→ i

end
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Fig. 6 The permeability structure of Ki in log scale with, β0/α0 ≈ 5 × 105 for i = 1 (left) and β0/α0 ≈
4 × 105 for i = 2 (right)

Table 3 The resulting error in relative L2-normbetween S and Sref , where S is obtained using PGDG-LOD
for the pressure computed on TH and Sref is the reference solution computed on Th

Data ‖e(T1)‖L2(�) ‖e(T2)‖L2(�) ‖e(T3)‖L2(�)

K1 0.088 0.073 0.070

K2 0.058 0.087 0.079

We have T1 = 0.05, T2 = 0.25 and T3 = 0.45

In the numerical experiment we consider the domain � to be the unit square.
The permeability Ki for i = 1, 2 is given by layer 21 and 31 of the Society of
Petroleum Engineering comparative permeability data (available on http://www.spe.
org/web/csp), projected on a uniformmesh with resolution 2−6 as illustrated in Fig. 6.

We consider a microscopic partition Th with mesh size size h = 2−8 and a macro-
scopic partition TH withmesh size H = 2−i for i = 3, 4, 5, 6. The patch size is chosen
such that the overall H convergence for the PG DG-LOD is not effected. A reference
solution to the Buckley–Leverett equation is obtained when both the pressure and
saturation equation are computed on Th , compared to using Algorithm 2 where both
the pressure and saturation equation are computed on TH . We consider the following
setup. For the pressure equation we use the boundary condition p = 1 for the left
boundary, p = 0 for the right boundary, Kλ(S)∇ p = 0 otherwise, and the source
terms qw = qn = 0. For the saturation the initial value is S = 1 on the left boundary
and 0 elsewhere. The error is defined by e(·, t) := S(·, t) − Srel(·, t), where S(·, t) is
the solution obtained by Algorithm 2 (at time t) and Srel(·, t) is the reference solution
(at time t). The errors are measured in the L2-norm. In Table 3 we fix the coarse mesh
size to be H = 2−5, and compute the error for the permeabilities K1 and K2 at the
times T1 := 0.05, T2 := 0.25 and T3 := 0.45. A graphical comparison is shown in
Figs. 7 and 8. The errors in the L2-norm is less than 0.1 for both permeabilities at
all times which is quite remarkable since the coarse mesh TH for H = 2−5 does not
resolve the data. In Table 4 we consider the test case involving permeability K1. We
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Fig. 7 The saturation profile using PG DG-LOD for the pressure equation on the grid TH (bottom) and
the reference solution on the grid Th (upper) at time T1 = 0.05 (left), T2 = 0.25 (middle), and T3 = 0.45
(right) using permeability K1

Fig. 8 The saturation profile using PG DG-LOD for the pressure equation on the grid TH (bottom) and
the reference solution on the grid Th (upper) at time T1 = 0.05 (left), T2 = 0.25 (middle), and T3 = 0.45
(right) using permeability K2

present the L2-errors at t = T2 for different values of H . We basically observe a linear
convergence rate in H/h (for fixed h) which is just what we would expect (since we
only use the coarse part of the LOD pressure approximation).
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Table 4 We consider the test case involving K1

H ‖e(T2)‖L2(�)

2−3 0.220

2−4 0.113

2−5 0.073

2−6 0.048

The table depicts relative L2-errors between S and Sref at T2 = 0.25 for different values of the coarse
mesh size H . Here, Sref denotes the reference solution computed on Th with h = 2−8 and S denotes the
numerical approximation obtained with the IMPES scheme, using the PGDG-LOD for solving the pressure
equation (with coarse mesh TH ). We pick k = �2| log(H)|�

5 Proofs of the main results

In this proof section we will frequently exploit the estimate

‖vh‖L2(�) � |||vh |||h for all vh ∈ Vh, (20)

which is a conclusion from assumption (A7). Let I −1
H := (IH |VH )−1, then (20) can

be verified as follows by using (A7).

‖vh‖L2(�) ≤ ‖vh − IH (vh)‖L2(�) + ‖IH (vh)‖L2(�)

� H |||vh |||h + ‖(IH ◦ I −1
H ◦ IH )(vh)‖L2(�)

� H |||vh |||h + |||(I −1
H ◦ IH )(vh)|||H � H |||vh |||h + |||IH (vh)|||H

� H |||vh |||h + |||vh |||h .

5.1 Proof of Theorem 1

The arguments for establishing the error estimate in ||| · |||h-norm is analogous to the
standard case, see for example [35] or [19]. We only recall the main arguments.

Proof (Proof of Theorem 1) Let uG-LOD
H = (u H + Qh(u H )) ∈ Vms be the Galerkin

LOD solution governed by (10). Utilizing the notation in (A8), we set u H,� ∈ VH to
satisfy

ah(u H,� + Q�
h (u H,�),
H + Q�

h (
H )) = ( f,
H + Q�
h (
H )) for all 
H ∈ VH

and define eh := u H,� + Q�
h (u H,�) − uh . Using Galerkin orthogonality, we obtain

ah(eh,
) = 0 for all 
 ∈ Vms
� and hence eh ∈ Wh (i.e. IH (eh) = 0). This implies

|||eh |||2h � ah(eh, eh) = ( f, eh) = ( f, eh − IH (eh)) � H‖ f ‖L2(�) |||eh |||h and
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consequently by energy minimization

|||u G-LOD
H − uh |||h = |||u H + Qh(u H ) − uh |||h � |||u H,� + Qh(u H,�) − uh |||h

≤ |||eh |||h + ∣∣∣∣∣∣Q�
h (u H,�) − Qh(u H,�)

∣∣∣∣∣∣
h

(A8)
� H‖ f ‖L2(�) + (1/H)pkd/2θk

∣∣∣∣∣∣u H,� + Q�
h (u H,�)

∣∣∣∣∣∣
h .

The bound |||u H,� + Q�
h (u H,�)|||h � ‖ f ‖L2(�) finishes the energy-norm estimate.

The estimate in the L2-norm is established in a similar fashion using (20). ��

5.2 Proof of Theorem 2

We begin with stating and proving a lemma that is required to establish the a priori
error estimate.

Lemma 3 For all vms ∈ Vms
� with vms = vH + v f , where vH ∈ VH and v f ∈ Wh,

we have

‖v f ‖L2(�) � H |||vms|||h . (21)

Proof Because of IH (v f ) = 0 and (I −1
H ◦ IH )(vH ) = vH ,

v f = v f − IH (v f ) + vH − (I −1
H ◦ IH )(vH + v f ) + IH (vH + v f ) − IH (vH ),

and therefore with IH = IH ◦ I −1
H ◦ IH and (A7),

‖v f ‖L2(�) ≤ ‖vms − IH (vms)‖L2(�) +
∥∥∥
(

I −1
H ◦ IH

)
(vms) − IH (vms)

∥∥∥
L2(�)

� H |||vms|||h +
∥∥∥
(

I −1
H ◦ IH

)
(vms) −

(
IH ◦ I −1

H ◦ IH

)
(vms)

∥∥∥
L2(�)

� H |||vms|||h + H
∣∣∣
∣∣∣
∣∣∣
(

I −1
H ◦ IH

)
(vms)

∣∣∣
∣∣∣
∣∣∣

H

� H |||vms|||h .

In the last step we used again the stability estimates for I −1
H and IH in (A7). ��

Proof (Proof of Theorem 2) Let u G-LOD
H,� and uPG-LOD

H,� be respectively the solution

of (10) and (12) for U (T ) = �. As in the statement of the theorem, u PG-LOD
H is the

solution of (12) for U (T ) = Uk(T ). By adding and subtracting appropriate terms and
applying triangle inequality, we arrive at

∣∣∣
∣∣∣
∣∣∣uh − u PG-LOD

H

∣∣∣
∣∣∣
∣∣∣
h

≤ I1 + I2 + I3,

where we set I1 = |||uh − u G-LOD
H,� |||h , I2 = |||u G-LOD

H,� − u PG-LOD
H,� |||h , and I3 =

|||u PG-LOD
H,� − u PG-LOD

H |||h . In the following, we estimate these three terms. Because
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e(1) := (uh − u G-LOD
H,� ) ∈ Wh (cf. proof of Theorem 1) and by applying the Galerkin

orthogonality, we get

I21 � ah(e(1), e(1)) = ah(uh, e(1))

= ( f, e(1) − IH (e(1))) � H‖ f ‖L2(�) |||e(1)|||h ≤ H‖ f ‖L2(�) I1,

(22)

i.e. I1 � H‖ f ‖. Furthermore, e(2) := (u PG-LOD
H,� − u G-LOD

H,� ) ∈ Vms
� and the splitting

e(2) = e(2)
H +e(2)

f with e(2)
H ∈ VH and e(2)

f ∈ Wh (i.e. IH (e(2)
f ) = 0) holds true. Because

ah(u PG-LOD
H,� , e(2)

f ) = 0, we obtain

I22 � ah(e(2), e(2))

= ah

(
u PG-LOD

H,� , e(2)
H

)
− ah

(
u G-LOD

H,� , e(2)
)

=
(

f, e(2)
H − e(2)

)
= −

(
f, e(2)

f

)
,

(23)

where ( f, e(2)
f ) ≤ ‖ f ‖L2(�) ‖e(2)

f ‖L2(�) � ‖ f ‖L2(�) H |||e(2)|||h = H‖ f ‖L2(�) I2
by Lemma 3. Again, we conclude that I2 � H‖ f ‖L2(�). It remains to estimate
I3 for which we define e(3) := u PG-LOD

H,� − u PG-LOD
H . To simplify the notation, we

subsequently denote (according to the definitions of Vms and Vms
� )

u PG-LOD
H = u H + Qh(u H ) and u PG-LOD

H,� = u�
H + Q�

h

(
u�

H

)
,

where u H ∈ VH and u�
H ∈ VH . By the definition of problem (12) we have

ah

(
u PG-LOD

H ,
H

)
= ( f,
H ) = ah

(
u PG-LOD

H,� ,
H

)
. (24)

On the other hand, by the definition of Q�
h = −Ph (see Remark 1) and since

Qh(
H ) ∈ Wh we get

ah

(
u PG-LOD

H,� , Qh(
H )
)

= 0. (25)

Combining (24) and (25) we get the equality

ah

(
u PG-LOD

H ,
H + Qh(
H )
)

= ah

(
u PG-LOD

H , Qh(
H )
)

+ah

(
u PG-LOD

H,� ,
H + Qh(
H )
)

.

We use this equality cast u H as a unique solution of a self-adjoint variational equation
expressed as

ah(u H + Qh(u H ),
H + Qh(
H )) = Fu H ,u�
H
(
H ) for all 
H ∈ VH ,
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where Fu H ,u�
H
is a given fixed data function written as

Fu H ,u�
H
(
H )=ah(u H +Qh(u H ), Qh(
H ))+ah

(
u�

H +Q�
h

(
u�

H

)
,
H +Qh(
H )

)
.

Since this problem is self-adjoint, we get that u H is equally the minimizer in VH of
the functional

J (
H ) := ah
(

H +Qh(
H )−u�

H −Q�
h

(
u�

H

)
,
H +Qh(
H )−u�

H − Q�
h

(
u�

H

))
−2ah(u H + Qh(u H ), Qh(
H )).

Hence we obtain

αI23 = α|||e(3)|||2h
≤ ah(e(3), e(3))

= J (u H ) + 2ah(u H + Qh(u H ), Qh(u H ))

≤ J
(
u�

H

) + 2ah(u H + Qh(u H ), Qh(u H ))

= ah
(
Qh

(
u�

H

) − Q�
h

(
u�

H

)
, Qh

(
u�

H

) − Q�
h

(
u�

H

))
− 2ah

(
u H + Qh(u H ), Qh(u H ) − Qh

(
u�

H

))
= I31 + I32, (26)

where

I31 = ah
(
Qh

(
u�

H

) − Q�
h

(
u�

H

)
, Qh

(
u�

H

) − Q�
h

(
u�

H

))
I32 = ah

(
Qh(u H ) − Q�

h (u H ), Qh(u H ) − Qh
(
u�

H

))
.

By the boundedness of ah(·, ·) and applying (9) we get

I31 �
∣∣∣∣∣∣Qh

(
u�

H

) − Q�
h

(
u�

H

)∣∣∣∣∣∣2
h � k pθ2k(1/H)2p

∣∣∣∣∣∣u�
H + Q�

h

(
u�

H

)∣∣∣∣∣∣2
h . (27)

We now need to estimate u PG-LOD
H,� = u�

H + Q�
h (u�

H ). By the inf-sup condition and
Lemma 3,

∣∣∣
∣∣∣
∣∣∣u PG-LOD

H,�

∣∣∣
∣∣∣
∣∣∣2
h

� ah

(
u PG-LOD

H,� , u PG-LOD
H,�

)

= a
(

u PG-LOD
H,� , u�

H

)

= (
f, u�

H

)
=

(
f, u PG-LOD

H,�

)
− (

f, Q�
h (u�

H )
)

� (1 + H)‖ f ‖L2(�)

∣∣∣
∣∣∣
∣∣∣u PG-LOD

H,�

∣∣∣
∣∣∣
∣∣∣
h
, (28)
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and thus combining it with (27) yields

I31 � kdθ2k(1/H)2p‖ f ‖2L2(�)
(29)

Furthermore, in a similar fashion we use the boundedness of ah(·, ·) and (9) to get

I32 �
∣∣∣∣∣∣Qh(u H ) − Q�

h (u H )
∣∣∣∣∣∣

h

∣∣∣∣∣∣Qh(u H ) − Qh
(
u�

H

)∣∣∣∣∣∣
h

� kd/2θk(1/H)p
∣∣∣
∣∣∣
∣∣∣u PG-LOD

H

∣∣∣
∣∣∣
∣∣∣
h

∣∣∣∣∣∣Qh(u H ) − Qh
(
u�

H

)∣∣∣∣∣∣
h (30)

By adding and subtracting appropriate terms and applying triangle inequality

∣∣∣∣∣∣Qh(u H ) − Qh
(
u�

H

)∣∣∣∣∣∣
h

≤ ∣∣∣∣∣∣(Qh − Q�
h

)
(u H )

∣∣∣∣∣∣
h + ∣∣∣∣∣∣Q�

h

(
u H − u�

H

)∣∣∣∣∣∣
h + ∣∣∣∣∣∣(Q�

h − Qh
) (

u�
H

)∣∣∣∣∣∣
h .

(31)

We use (9) to estimate the first and last terms in (31) to yield

∣∣∣∣∣∣(Qh − Q�
h

)
(u H )

∣∣∣∣∣∣
h + ∣∣∣∣∣∣(Q�

h − Qh
) (

u�
H

)∣∣∣∣∣∣
h

� kd/2θk(1/H)p
(∣∣∣

∣∣∣
∣∣∣u PG-LOD

H

∣∣∣
∣∣∣
∣∣∣
h

+
∣∣∣
∣∣∣
∣∣∣u PG-LOD

H,�

∣∣∣
∣∣∣
∣∣∣
h

)
. (32)

Moreover, by the ||| · |||h-stability of Q�
h [which holds true since Q�

h = −Ph with Ph

being the orthogonal projection defined in (4)], we have

∣∣∣∣∣∣Q�
h

(
u H − u�

H

)∣∣∣∣∣∣
h �

∣∣∣∣∣∣u H − u�
H

∣∣∣∣∣∣
h

=
∣∣∣
∣∣∣
∣∣∣
(
(IH |VH )−1 ◦ IH

)
(e(3))

∣∣∣
∣∣∣
∣∣∣
h

� CH,h |||e(3)|||h . (33)

Putting back (33) and (32) to (31) and place it in (30) gives

I32 � kdθ2k(1/H)2p
∣∣∣
∣∣∣
∣∣∣u PG-LOD

H

∣∣∣
∣∣∣
∣∣∣
h

(∣∣∣
∣∣∣
∣∣∣u PG-LOD

H

∣∣∣
∣∣∣
∣∣∣
h

+
∣∣∣
∣∣∣
∣∣∣u PG-LOD

H,�

∣∣∣
∣∣∣
∣∣∣
h

)

+ kd/2θk(1/H)p
∣∣∣
∣∣∣
∣∣∣u PG-LOD

H

∣∣∣
∣∣∣
∣∣∣
h

CH,h |||e(3)|||h

� kdθ2k(1/H)2p
(∣∣∣

∣∣∣
∣∣∣u PG-LOD

H

∣∣∣
∣∣∣
∣∣∣2
h

+
∣∣∣
∣∣∣
∣∣∣u PG-LOD

H,�

∣∣∣
∣∣∣
∣∣∣2
h

)

+ C2
H,h

δ
kdθ2k(1/H)2p

∣∣∣
∣∣∣
∣∣∣u PG-LOD

H

∣∣∣
∣∣∣
∣∣∣2
h

+ δ

4
|||e(3)|||2h, (34)

where in the last step we use the Young’s inequality for both terms, and in particular
for the second term, inserting a sufficiently small δ > 0 so that we can later on hide the
term δ

4 |||e(3)|||2h in the left hand side of (26). Note that the choice of δ is independent
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of H , h or k. Rearranging and collecting common terms in the last inequality gives

I32�kdθ2k(1/H)2p

((
1 + C2

H,h

δ

) ∣∣∣
∣∣∣
∣∣∣u PG-LOD

H

∣∣∣
∣∣∣
∣∣∣2+

∣∣∣
∣∣∣
∣∣∣u PG-LOD

H,�

∣∣∣
∣∣∣
∣∣∣2

)
+ δ

4
|||e(3)|||2h,

so that we need to estimate |||u PG-LOD
H |||h and |||u PG-LOD

H,� |||h , respectively. The sta-
bility of the second piece was established in (28), while the stability of the first piece
is achieved by employing (A9) and (A7) in

ᾱ

∣∣∣
∣∣∣
∣∣∣u PG-LOD

H

∣∣∣
∣∣∣
∣∣∣
h

|||u H |||H � ah

(
u PG-LOD

H , u H

)
= ( f, u H ) � ‖ f ‖L2(�) |||u H |||H .

From which we conclude that

I32 � kdθ2k(1/H)2p

((
1 + C2

H,h

δ

)
(1 + ᾱ−1)‖ f ‖2

)
+ δ

4
I23.

To summarize, putting this last inequality and (29)–(26) and choosing sufficiently
small δ gives

I3 � kd/2θk(1/H)p
((

1 + CH,h

δ

)
(1 + ᾱ−1)‖ f ‖

)
,

combining it with the existing estimates for I1 and I2 proves the error estimate in
||| · |||h . Moreover, the estimate in the L2-norm is established in a similar fashion. This
completes the proof of the theorem. ��

5.3 Proof of Lemmas 1 and 2

Next, we prove the inf-sup stability of the continuous Galerkin LOD in Petrov–
Galerkin formulation.

Proof (Proof of Lemma 1) Let 
ms ∈ Vms be an arbitrary element. To prove the
inf-sup condition, we aim to show that

ah(
ms,
H )

|||
H |||h ≥ α(k)|||
ms|||h for 
H =
(
(IH |VH )−1 ◦ IH

)
(
ms). (35)

Let therefore U (T ) = Uk(T ) for fixed k ∈ N. By the definitions of Vms and 
H , we
have 
ms = 
H + Qh(
H ), where Qh(
H ) denotes the corresponding corrector
given by (7). By Q�

h (
H ) we denote the corresponding global corrector for the case

U (T ) = � and the local correctors are denoted by Q�,T
h (
H ). First, we observe that

by ||| · |||h = ||| · |||H

|||
H |||h =
∣∣∣
∣∣∣
∣∣∣
(
(IH |VH )−1 ◦ IH

)
(
ms)

∣∣∣
∣∣∣
∣∣∣
h

� |||
ms|||h, (36)
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where we used the ||| · |||h-stability of IH and (IH |VH )−1 according to (A7). Conse-
quently, Eq. (36) implies

|||Qh(
H )|||h ≤ |||
ms|||h + |||
H |||h � |||
ms|||h, (37)

and thus

ah(
ms,
H ) = ah(
ms,
ms) − ah
(

ms, Qh(
H )

)
≥ α|||
ms|||2h − ah

(

ms, Qh(
H )

)
≥ Cα|||
H |||h |||
ms|||h − ah

(

ms, Qh(
H )

)
, (38)

where we have used (36) again to bound |||
ms|||h from below. Note here that C
denotes a generic constant. It remains to bound ah(
ms, Qh(
H )). By the orthogo-
nality of Vms

� and Wh we have

ah
(

H + Q�

h (
H ), Qh(
H )
) = 0, (39)

and since ah(·, ·) is such that ah(vh, wh) = 0 for all vh, wh ∈ Vh with the property
supp(vh)∩supp(wh) = ∅ we get by the definition of Qh(
H ) for every wT

h ∈ Wh(T )

ah

(

H + Qh(
H ), wT

h

)
=

∑
K∈TH

(
aK

h

(

H , wT

h

)
+ ah

(
Qh(
H ), wT

h

))

=
⎛
⎝ ∑

K∈TH

aK
h

(

H , wT

h

)⎞
⎠ + ah

(
QT

h (
H ), wT
h

)

= ah

(

H + QT

h (
H ), wT
h

)

= 0. (40)

Using both equalities above and by the boundedness of ah(·, ·) and applying (37)
yields

ah
(

ms, Qh(
H )

)
= ah

(

H + Q�

h (
H ), Qh(
H )
) + ah

(
Qh(
H ) − Q�

h (
H ), Qh(
H )
)

= ah
(
Qh(
H ) − Q�

h (
H ), Qh(
H ) − wh
)

≤ ∣∣∣∣∣∣Qh(
H ) − Q�
h (
H )

∣∣∣∣∣∣
h

|||Qh(
H ) − wh |||h
|||Qh(
H )|||h |||
ms|||h . (41)

We next estimate |||Qh(
H ) − Q�
h (
H )|||h by applying (14) and establishing an

analog of (15) for Q�,T
h (
H ) expressed as

∣∣∣
∣∣∣
∣∣∣Q�,T

h (
H )

∣∣∣
∣∣∣
∣∣∣2
h

� |||
H |||h,T

∣∣∣
∣∣∣
∣∣∣Q�,T

h (
H )

∣∣∣
∣∣∣
∣∣∣
h
, (42)
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giving (for k > 0)

∣∣∣∣∣∣Qh(
H ) − Q�
h (
H )

∣∣∣∣∣∣
h � kd/2θk

⎛
⎝ ∑

T ∈TH

∣∣∣
∣∣∣
∣∣∣Q�,T

h (
H )

∣∣∣
∣∣∣
∣∣∣2
h

⎞
⎠

1/2

� kd/2θk

⎛
⎝ ∑

T ∈TH

|||
H |||2h,T

⎞
⎠

1/2

� kd/2θk |||
H |||h . (43)

Thus we end up with

ah(
ms, Qh(
H )) �
( |||Qh(
H ) − wh |||h

|||Qh(
H )|||h
)

kd/2θk |||
H |||h |||
ms|||h, (44)

which when combined with (38) implies that there exist positive generic constants
C1, C2 (independent of H and k) such that

ah(
ms,
H )

|||
H |||h |||
ms|||h ≥ C1α − C2kd/2θk inf
wh∈W T

h

|||Qh(
H ) − wh |||h
|||Qh(
H )|||h . (45)

Since infwh∈W T
h

|||Qh(
H )−wh |||h|||Qh(
H )|||h = 0 for k = 0, estimate (45) holds for all k ∈ N and

the condition k > 0 is not required. The relation Qh(
H ) = 
ms − ((IH |VH )−1 ◦
IH )(
ms) finishes the proof. ��

Finally, we prove the inf-sup stability of the discontinuous Galerkin LOD in Petrov–
Galerkin formulation.

Proof (Proof of Lemma 2) The main arguments are similar as in the proof of Lemma
1. Set n := (m + 3)/2. Let 
ms = 
H + Qh(
H ) ∈ Vms be an arbitrary element
and let U (T ) = Uk(T ) for fixed k � n| log(H)|. By the assumptions on TH and Th

and by the definitions of ||| · |||h and ||| · |||H it is easy to see that

|||
H |||h � H (1−m)/2|||
H |||H and |||
H |||H � |||
ms|||h .

Consequently we get

|||Qh(
H )|||h ≤ |||
ms|||h + |||
H |||h � (1 + H (1−m)/2)|||
ms|||h . (46)
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Thus

ah
(

ms,
H

) = ah(
ms,
ms) − ah
(

ms, Qh(
H )

)
≥ α|||
ms|||2h − ah

(

ms, Qh(
H )

)
= α|||
ms|||2h − ah

(
Qh(
H ) − Q�

h (
H ), Qh(
H )
)

≥ α|||
ms|||2h − ∣∣∣∣∣∣Qh(
H ) − Q�
h (
H )

∣∣∣∣∣∣
h |||Qh(
H )|||h

(28)≥ α|||
ms|||2h − ∣∣∣∣∣∣Qh(
H ) − Q�
h (
H )

∣∣∣∣∣∣
h (1 + H (1−m)/2)|||
ms|||h .

(47)

Using

∣∣∣∣∣∣Qh(
H ) − Q�
h (
H )

∣∣∣∣∣∣
h ≤ C(1/H)kd/2θk

∣∣∣∣∣∣
H + Q�
h (
H )

∣∣∣∣∣∣
h

≤ C(1/H)kd/2θk (|||
ms|||h +∣∣∣∣∣∣Qh(
H )−Q�
h (
H )

∣∣∣∣∣∣
h

)
≤ C Hn−1 (|||
ms|||h + ∣∣∣∣∣∣Qh(
H ) − Q�

h (
H )
∣∣∣∣∣∣

h

)

we obtain that we have for small enough H

∣∣∣∣∣∣Qh(
H ) − Q�
h (
H )

∣∣∣∣∣∣
h � Hn−1|||
ms|||h .

Inserting this into (47) gives us

ah
(

ms,
H

) ≥ α|||
ms|||2h − (1 + H (1−m)/2)Hn−1|||
ms|||2h
≥ C1(α − C2H)|||
ms|||2h .

If H is small enough so that (α − C2H) is positive, the stability estimate |||
H |||H �
|||
ms|||h concludes the inf-sup estimate. ��
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