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We describe the asymptotic behaviour and the dependence on the regularization of loga-

rithmically divergent integrals of products of meromorphic and antimeromorphic forms

on complexmanifolds. Our formula is expressed in terms of residues of Dolbeault forms,

a notion introduced in this paper. The proof is based on a result on the asymptotic

behaviour of Riemann mappings of small domains.

1 Introduction

Let X be a compact complex manifold of dimension n and D ⊂ X a smooth hypersurface.

We are interested in regularizations of divergent integrals of the form

1

2πi

∫
X
α ∧ β̄, α ∈ �(X ,�n

X (mD)), β ∈ �(X ,�n
X (D)).

Here �(X ,�p
X (mD)) denotes the space of meromorphic p-forms on X whose poles are on

D and are of order at mostm. Integrals of this type arise in perturbative superstring the-

ory, see [6], particularly Section 7.6: the terms in the perturbation series for superstring

amplitudes are conditionally convergent improper integrals of products of holomorphic

times antiholomorphic differential forms on moduli spaces of supercurves. They thus
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depends on the way one takes the limit and it is important to understand this depen-

dence. We consider here the basic case of an integral of this kind, with only one divisor

component.

Theway tomake sense of integrals of the form above is to introduce a regulariza-

tion and study the asymptotic behaviour as the regularization is removed. Specifically

the regularization consists of replacing the integral over X by the integral over the com-

plement of a suitable family of tubular neighbourhoods Nε(D) of D shrinking to zero

size as the regularization parameter ε > 0 tends to zero. It turns out that the integral

behaves as I0 log ε + I1 + O(ε) as ε → 0, with I0 independent of the choice of family of

neighbourhoods. In applications to superstring theory the integral is “finite” in the sense

that I0 actually vanishes, so that one can define the integral as I1. However I1 depends

on the choice of regularization and it is important to understand this dependence. The

aim of this article is to describe the divergent term and dependence on the choice of

regularization, generalizing calculations of [6], where the casem = 1 is discussed. More

precisely, we consider regularizations defined by a cut-off function λ, a smooth positive

function on X � D such that λ/|f | locally extends smoothly to a positive function on X

for any local equation f = 0 of D such that df |D �= 0. For example, one can take λ around

D to be the geodesic distance to D for some Hermitian metric on X and extend it to a

positive smooth function on X � D. Then for small ε > 0, Nε(D) = {x ∈ X : λ(x) < ε} is a

tubular neighbourhood of D and we define the regularized integral as the integral over

its complement.

The first result is that the divergent part can be written in terms of residues:

1

2πi

∫
λ≥ε
α ∧ β̄ = 2(−1)n−1 log ε

∫
D
Resα ∧ Resβ + I1(λ)+ O(ε), (ε → 0). (1)

Here Res is the Leray residue, sending de Rham cohomology classes on X�D to de Rham

cohomology classes onD. Formeromorphic closed formswith first order poles onD, such

as β, it reduces to the Poincaré residue, which is defined as a holomorphic differential

form on D, not just a cohomology class. It follows in particular that the coefficient of

log ε only depends on the de Rham cohomology classes of the closed forms α and β.

To describe the dependence of the finite part I1(λ) on the choice of λwenotice that

any two cut-off functions differ by multiplication by expϕ for some smooth real-valued

function ϕ. We find:

I1(e
ϕλ) = I1(λ)− 2(−1)n−1

∫
D
Res∂ (ϕα) ∧ Resβ, (2)
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see Theorem 3.2. Here Res∂ is the residue of a Dolbeault form, a notion we introduce in

this article. It maps smooth forms ω of type (n, 0) on X � D with poles on D to classes

of forms on D of type (n− 1, 0) on Dmodulo the image of ∂ (it is more convenient in this

setting to consider ∂ as the Dolbeault differential; it is related to the usual convention

by complex conjugation).

A remarkable feature of (2) is that the variation of the integral is linear in ϕ and

is independent of λ.

Our formulas are a special case of amore general formulawhere one takes α to be

a not necessarily closed C∞ form of type (n, 0) on X �D and whose support has compact

closure in X (we don’t need X to be compact in this case). The formulas (1) and (2) hold

except that one has to replace Resα in (1) by Res∂α. This more general formula can be

checked locally via a partition of unity and the formula for meromorphic α follows as a

corollary.

The proof of these statements is based on a result on the asymptotic behaviour

of Riemann mappings for small domains, which might be of independent interest. Let

X = C and D = {0} and let λ be a cut-off function such that λ2 is real analytic. Then,

for small ε > 0, λ(z) < ε defines a simply connected domain containing the origin, so,

by the Riemann mapping theorem, there is a unique biholomorphic map z 
→ w = fε(z)

on to the disk |w| < ε sending 0 to 0 and such that f ′ε (0) > 0. We show (see Theorem

4.1) that the family of maps fε(z) converges as ε → 0 to a univalent map defined in a

neighbourhood of the origin and is in fact the restriction of a holomorphic function of

two variables ε, z defined on a polydisk around (0, 0). In Theorem 4.2 we give an explicit

formula for the limiting map.

This construction is used to prove (1), (2) by first reducing to a local calculation

and then reducing to the case where λ = | f | for a local equation f = 0 of D.

The article is organized as follows. In Section 2 we introduce a notion of residue

for C∞ differential forms of type (p, 0) on a complex manifold with poles on a smooth

hypersurface. The divergent part of the integral and the dependence on the cut-off of the

finite part are expressed in terms of this residue in Section 3. Our result on the asymptotic

behaviour of Riemann mappings for small domains is proved in Section 4. Section 5

contains the proof of the formulas for divergent integrals presented in Section 3.

2 Residues of Dolbeault Forms

Let X be an n-dimensional complex manifold with sheaf OX of germs of holomorphic

functions and let D ⊂ X be a smooth hypersurface. Thus every point of D has an open
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neighbourhood U so that the ideal of OX of functions vanishing on D ∩ U is generated

by a function f ∈ OX (U). We call f a local equation for D. Any two local equations differ

by multiplication by a nowhere vanishing holomorphic function.

2.1 Residues of smooth differential forms

A C∞ differential form α on X � D is said to have a pole of order ≤m if around every

point of D, f mα extends smoothly to X for a local equation f for D. If α is closed and has

a pole of order ≤ 1 then locally α = df /f ∧ σ + τ for some smooth forms σ , τ . Then σ |D is

closed, globally defined, and independent of choices; it is called Poincaré residue Resα,

see [5, p. 83]. If α is a holomorphic closed form then Resα is also holomorphic. The

Leray residue of a closed differential form α on X �D is a de Rham cohomology class on

D. It is defined to be the Poincaré residue for forms with first order pole and in general

it is the residue of any form with first order pole in the de Rham cohomology class of α,

[5, Theorem 1]. These notions were further developed in [1, 2]. In this article we develop

part of the theory for the (conjugate) Dolbeault complex replacing the de Rham complex.

2.2 Dolbeault forms

Let C∞X be the sheaf of germs of smooth functions on X . Let Ar
X = ⊕p+q=rAp,q

X be the

decomposition of the C∞X -module of smooth differential r-forms into forms of type (p,q).

The de Rham differential on A•X = ⊕2n
r=0Ar

X decomposes as d = ∂ + ∂̄ with

∂(Ap,q
X ) ⊂ Ap+1,q

X , ∂̄(Ap,q
X ) ⊂ Ap,q+1

X .

Let Ap,q
X (∗D) be the sheaf of smooth (p,q)-forms α on X �D so that f mα extends to X for

some m and local equation f for D.

Similarly, let Ap,q
X 〈D〉 be the sheaf of smooth logarithmic forms. By definition,

sections ofAp,q
X 〈D〉 on an open setU ⊂ X are smooth (p,q) forms α onU�(U∩D) such that

for any local equation f , both f α and df ∧α are regular onU . BothAp,q
X (∗D) andAp,q

X 〈D〉 are
double complexes with differentials ∂, ∂̄. The de Rham sheaves of meromorphic forms

�•X (∗D), �•X 〈D〉 are subcomplexes of (A•,0X (∗D), ∂), (A•,0X 〈D〉, ∂), respectively.

Proposition 2.1. The inclusion map

(A•,0X 〈D〉, ∂)→ (A•,0X (∗D), ∂)

is a quasi-isomorphism. The same holds if we take sections with compact support. �
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Proof. Let F •j be the subsheaf of A•,0X (∗D) consisting of sections α such that f j+1α and

f jdf ∧ α extend smoothly to D for any local equation f . These subsheaves form an

increasing filtration

A•,0X 〈D〉 = F •0 ⊂ F •1 ⊂ · · · ⊂ A•,0X (∗D) = ∪jFj.

of subcomplexes of ŌX -modules. Locally, the associated graded Fj/Fj−1 consists of

classes of sections of the form

α = df

f j+1
∧ σ + 1

f j
τ ,

where σ and τ are definedmodulo the ideal generated by f and df . The differential sends

(σ , τ) to (−∂σ − jτ , ∂τ). For j ≥ 1, this implies that if α is a closed form then τ ≡ −∂σ/j
mod f , df and thus

α = ∂
(
− 1

jf j
σ

)

in Fj/Fj−1. Thus the cohomology of the associated graded is trivial except for j = 0, where

F0/F−1 = F0 is the subcomplex of logarithmic forms. The same argument works for the

subcomplex of sections with compact support. �

Proposition 2.2. The Poincaré residue map on (n, 0) forms uniquely extends to a C∞X -

linear map of complexes of ŌX -modules

Res: (A•,0X 〈D〉/A•,0X , ∂)→ (i∗A•,0D [−1], ∂)

It restricts to a C∞X -linear map of complexes of ŌX -modules

Res: (cA•,0X 〈D〉/cA•,0X , ∂)→ (i∗cA•,0D [−1], ∂)

on the subcomplex of forms with compact support. �

Proof. Logarithmic forms are locally of the form α = df /f ∧σ mod A•,0X where σ ∈ A•,0X
and f is a holomorphic function generating the ideal of D. We define the residue as

Resα = σ |D. As in the classical case the residue is independent of the choice of f and

σ . By construction it is a map of C∞X -modules and, since ∂α = −df /f ∧ ∂σ , it commutes

with the differential (taking into account that the shift functor [−1] involves a change

of sign of the differential). It is clear that A•,0X lies in the kernel of the residue map. This
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proves existence. As for uniqueness, let z1, . . . , zn be local coordinates on an open set U

such that D ∩ U is defined by z1 = 0. A•,0X 〈D〉(U) is an algebra over C∞X (U) generated by

dz1/z1, dz2, . . .dzn for which the residue is the classical Poincaré residue and uniqueness

follows from C∞X -linearity. It is clear that the residue maps forms with compact support

to forms with compact support. �

Combining Propositions 2.1 with 2.2 we get maps of complexes (with differen-

tial ∂)

A•,0X (∗D)←− A•,0X 〈D〉 Res−→ i∗A•,0D [−1],

where the first arrow is a quasi-isomorphism.

Since these sheaves are fine and thus acyclic for the global section functor, we

obtain morphisms of complexes

�(X ,A•,0X (∗D))←− �(X ,A•,0X 〈D〉) Res−→ �(D,A•,0D [−1]),

and the first arrow is still a quasi-isomorphism. Passing to cohomology we obtain amap

Res∂ : H
•(�(X ,A•,0X (∗D)), ∂)→ H •(�(D,A•,0D ), ∂)[−1]

Note that since (A•,0D , ∂) is, by Dolbeault’s theorem, a resolution of the sheaf ŌD of

antiholomorphic functions and is acyclic for the functor of global sections, we have:

H •(�(D,A•,0D ), ∂) ∼= H •(D, ŌD).

We are mostly concerned with the case of top forms An,0
X (∗D), which are automatically

∂-closed.

Definition 2.3. The residue of top Dolbeault forms Res∂ is the composition

Res∂ : �(X ,An,0
X (∗D))→ �(D,An−1,0

D )/Im(∂) ∼= Hn−1(D, ŌD) �

By construction the residue has the following properties:

Proposition 2.4.

(i) Res∂ (∂γ ) = 0 for all γ ∈ �(X ,An−1,0
X (∗D)).

(ii) Res∂ vanishes on forms extending to smooth forms on X .
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(iii) The support of Res∂ (α) is contained in D ∩ supp(α).
(iv) Res∂ coincides with the Poincaré residue on (n, 0)-forms with simple pole

on D. �

Example 2.5. Let n = 1, D = {p} a point, z = x + iy a coordinate vanishing at p and

m ≥ 1. Then a local section α ∈ A1,0
X (mD) has the form g(x,y)dz/zm for some smooth

function g defined in a neighbourhood of (0, 0). Then

Res∂ α = 1

(m− 1)! ∂
m−1
z g(0, 0), ∂z = 1

2
(∂x − i∂y).

Indeed, this holds by definition for m = 1. The general case follows by induction from

g
dz

zj+1
= ∂zgdzjzj − ∂z

(
g

jzj

)
dz ≡ ∂zgdzjzj mod Im ∂, j ≥ 1. �

2.3 Comparison with the Leray residue

There is a canonical map

ψ : Hp(D,C)→ Hp(�(D,A•,0D ), ∂)

from the de Rham cohomology: it sends the class of a closed p-form α with Hodge

decomposition

α = αp,0 + αp−1,1 + · · · + α0,p

to the class of its top component αp,0.

Proposition 2.6. Res∂ (α) = ψ(Resα) for all α ∈ �(X ,�n
X (∗D)). �

Proof. If α is a differential form on X �D then its de Rham cohomology class contains

a form α̃ with first order pole and the residue is the residue of α̃. Now suppose that α is

of type (n, 0) with pole on D. Then

α = α̃ + dγ = α̃ + ∂γ + ∂̄γ ≡ α̃ + ∂γ mod F̄1A•(∗D),

where F̄1Ap(∗D) = ⊕q≥1Ap−q,q(∗D). Then Resα = σ |D, where α̃ = df /f ∧σ +τ . On the other

hand if we denote by αp the (p, 0) part of a p-form α,

α = α̃n + ∂γn−1.

Then αn = df /f ∧ σn−1 and by definition Res∂α = σn−1|D = (Resα)n−1. �



5904 G. Felder and D. Kazhdan

3 Divergent Integrals

The divergent integrals we are interested in are regularizations of integrals of the form∫
X α∧ β̄ where α, β are meromorphic differential n-forms on X with poles on D and β has

a simple pole. The regularization consists on integrating on the complement of a small

tubular neighbourhood of radius ε of D and subtracting the divergent term as ε → 0.

The result depends on the regularization and we want to describe this dependence.

Definition 3.1. A cut-off function is a continuous function on X with values in [0,∞)
so that

(i) λ is smooth and positive on X � D.

(ii) For any local equation f : U → C for D, λ/|f | extends to a smooth positive

function on U . �

By a local equation for D we mean a holomorphic function f defined on an open subset

U of X such that U ∩ D = f −1(0) and df �= 0 on U ∩ D. Cut-off functions exist as they

can be constructed by patching local functions λ(x) = |f (x)| using a partition of unity.

They form a torsor over positive functions, since the ratio of two cut-off functions is a

smooth positive function on X .

Another interpretation, indicated by the referee, is that cut-off functions are the

same as Hermitian metrics on the line bundle O(D) associated with D: if ‖ ‖ is such a

metric and sD is the canonical section of O(D) (it vanishes exactly on D), then λ = ‖sD‖ is
a cut-off function.

Theorem 3.2. Let D ⊂ X be a smooth hypersurface in a compact complex manifold.

Let λ ∈ C∞(X) be a cut-off function andm ∈ {0, 1, 2, . . . }. Then for any α ∈ �(X ,�X (mD)),

β ∈ �(X ,�X (D)),

1

2πi

∫
λ≥ε
α ∧ β̄ = I0 log ε + I1(λ)+ O(ε)

where

I0 = 2(−1)n−1
∫
D
Resα ∧ Resβ,

and for ϕ ∈ C∞(X ,R),

I1(e
ϕλ) = I1(λ)− 2(−1)n−1

∫
D
Res∂ (ϕα) ∧ Resβ. �



Divergent Integrals and Residues 5905

The integrals over D in this theorem are understood as integrals of representa-

tives in the equivalence classes of the residues: in I0 the Leray residues are de Rham

cohomology classes (while Resβ is defined as a closed form) and the integral is indepen-

dent of choices by Stokes’s theorem. In the second integral over D, Res∂ is defined up to

addition of a ∂-exact form. Since Resβ is a closed form of type (0,n− 1), we have

∫
D
∂γ ∧ Resβ =

∫
D
dγ ∧ Resβ =

∫
D
d(γ ∧ Resβ) = 0,

and the integral is well-defined.

The proof of Theorem 3.2 is done by reducing it to a local calculation via a

partition of unity. It follows from a local version of the theorem, which we now state,

in which we take α to be smooth with compact support.

Let X be a not necessarily compact complex manifold and D ⊂ X a smooth

hypersurface. Let �c(X ,Ap,q
X (∗D)) be the vector space of sections ofAp,q

X (∗D)with compact

support. For a cut-off function λ and ε > 0 we consider the sesquilinear pairing

〈 , 〉λ,ε : �c(X ,An,0
X (∗D))× �(X ,�n

X (D))→ C.

defined by the integral

〈α,β〉λ,ε = (−1)n−1
2πi

∫
λ≥ε
α ∧ β̄.

Theorem 3.3. Let D ⊂ X be a smooth hypersurface in an arbitrary complex manifold

X and m ∈ {0, 1, 2, . . . }.

(i) Let α ∈ �c(X ,An,0
X (mD)). Then, as ε → 0,

〈α,β〉λ,ε = 2 log ε
∫
D
Res∂ α ∧ Resβ + I1(λ)+ O(ε)

for some function I1(λ) of the cut-off function.

(ii) Let ϕ ∈ C∞(X ,R). Then

I1(e
ϕλ) = I1(λ)− 2

∫
D
Res∂ (ϕα) ∧ Resβ, �

Theorem 3.2 follows from Theorem 3.3 via the embedding �n
X (∗D) ↪→ An,0(∗D).

We can replace Res∂ by the Leray residue Res in the coefficient of log ε thanks to Propo-

sition 2.6. We prove Theorem 3.3 in Section 5 by a local calculation involving applying

the Riemann Mapping Theorem to relate the region λ < ε to the region |f | < ε for a local
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equation f = 0 ofD. To do this we study the asymptotic behaviour of Riemannmappings

in the next section.

Remark 3.4. The integrals
∫
D Res∂α ∧ Resβ appearing in Theorems 3.2 and 3.3 can

be understood in terms of principal value currents, see [4], as suggested to us by the

referee. Let L = O(D) be the sheaf of meromorphic sections with at most simple pole on

D. Then D is given by sD = 0 for the canonical section sD of L and s−ND canonically defines

a principal value de Rham current with values in L−N , also denoted s−ND : its value on a

test form ω of degree (n,n) is limε→0

∫
‖sD‖>ε s

−N
D ω for any choice of Hermitian form ‖ ‖.

Its ∂̄ derivative ∂̄(s−ND ) is supported on D and h̄∂̄(s−ND ), dh̄ ∧ ∂̄(s−ND ) vanish for any local

holomorphic function h vanishing on D. Thus for any antiholomorphic (0,n − 1)-form

ρ̄ on D, such as Resβ, we can define a de Rham current ρ̄ ∧ ∂̄(s−ND ) by locally extending

ρ̄ to an antiholomorphic form on X . Since the result is independent of the choice of

extension, we get a globally well-defined de Rham current of degree (0,n)with values in

L−N . Suppose that α is a smooth (n, 0) on X �D such that α̃ = sNDα is a smooth (n, 0)-form

on X with values in LN and compact support. Then it can be checked that

∫
D
Res∂α ∧ ρ̄ = 1

2πi
〈∂̄(s−ND ) ∧ ρ̄, α̃〉

the value of the current on the test form α̃. �

4 Asymptotic Riemann Mapping

Let μ(z) = k(z)|z|2 where k(z) > 0 is a positive real analytic function in a neighbourhood

of 0 ∈ C. For small ε the level setsμ−1(ε2)bound a simply connected domainEε containing

0 and by Riemann’s mapping theorem there exists a univalent holomorphic map h from

Eε on to the disk |w| < ε. The map is unique if we require it to be normalized, namely

that h(0) = 0 and h′(0) > 0. The following results give a description of the behaviour of

h as ε → 0.

Theorem 4.1. Let μ(z) = k(z)|z|2 where k(z) > 0 is a positive real analytic function in

a neighbourhood of 0 ∈ C. Then there exist positive constants R1 = R1(μ),R2 = R2(μ)

and a holomorphic function h(ε, z) defined for |ε| < R1, |z| < R2 such that for 0 < ε < R1,

z 
→ h(ε, z) is the normalized univalent map sending the domain μ(z) < ε2 on to the disk

|w| < ε. Moreover h is an even function of ε. �
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Theorem 4.2. The limiting Riemann mapping h(0, z) has the following description. Let

μ(z) =∑
r,s cr,sz

r+1z̄s+1 be the Taylor expansion of μ. Then

h(0, z) =
∞∑
r=0

cr,0√
c0,0

zr+1 �

Example 4.3. Suppose that μ(z) = |h(z)|2 for some holomorphic function h(z) such

that h(0) = 0 and h′(0) > 0. Then h(ε, z) = h(z) is the normalized univalent map and is

independent of ε. If h(z) = z(c0 + c1z + · · · ) with c0 > 0, then the Taylor coefficients of

μ(z) are cr,s = crc̄s. In particular cr,0 = crc0 and c0,0 = c20 . �

Example 4.4. Let μ(z) = ψ(|z|2) for some real analytic function ψ such that ψ(0) =
0,ψ ′(0) > 0. Then h(ε, z) = C(ε)z where

C(ε) = ε√
ψ−1(ε2)

.

In this case c0,0 = ψ ′(0) and cr,0 = 0 for r > 0, and indeed h(0, z) = C(0)z = √ψ ′(0)z. �

Example 4.5. This is rather a counterexample, showing that regularity assumptions

on μ are necessary. Consider the family of maps

w = h(ε, z) = 2εz

2ε + z
with parameter ε > 0. Then z 
→ h(ε, z) is the univalent map sending μ(z) < ε2 to |w| < ε,

where μ : C→ R≥0 is defined by the condition that μ(0) = 0 and μ(z) = ε2 on the circle

|z− 2ε/3| = 4ε/3 (these circles enclose the origin and foliate C � 0). It can be shown that

μ(z) is smooth except at z = 0 where it is continuous and obeys μ(z) ≤ const |z|2. The
functions of the family h(ε, z) does not have a common domain of definition and do not

have a reasonable limit as ε → 0. �

Example 4.6. Another counterexample, showing that Theorem 4.1 can fail if μ(z) is not

of the form k(z)|z|2. Let

μ(x + iy) = x2

a2
+ y2

b2
, with a �= b.

Since μ is homogeneous the normalized Riemann mapping h(ε, z) sending μ(z) < ε2 to

|w| < ε obeys

h(ε, z) = εh(1, z/ε),
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Since the Riemann mapping h(1, z) of the ellipse is non-linear, h(ε, z) does not have a

limit as ε → 0. �

Remark 4.7. The assumption of real analyticity of μ seems to be essential. It implies

that the boundary of the level sets for small level are real analytic so that—by the

Schwarz reflection principle—the Riemann mappings have an analytic continuation to

a neighbourhood of the boundary, a necessary condition for the existence of the limiting

map, which is not fulfilled for general smooth μ. As Example 4.5 shows, even the real

analyticity of the level sets is not sufficient for the existence of a limiting Riemann

mapping. �

Remark 4.8. Let μ be as in Theorem 4.1. Let ψ be a real analytic local diffeomorphism

on a neighbourhood of 0 ∈ R such that ψ(0) = 0, f a local biholomorphic map such

that f (0) = 0. Then μ̃ = ψ ◦ μ ◦ f also obeys the assumptions of Theorem 4.1 and the

corresponding normalized Riemann mappings are related by

f ′(0)
|f ′(0)| h̃(ε̃, z) = h(ε, f (z)), ε̃2 = ψ(ε2). �

To prove Theorems 4.1 and 4.2 it is convenient to consider, instead of the Rie-

mann mapping, the inverse Riemann mapping, the univalent map w 
→ z = fε(w) =
w(a0(ε) + a1(ε)w + · · · ) with a0(ε) > 0, sending |w|2 < ε2 on to μ(z) < ε2. Also, by

rescaling ε we may assume that μ(z) = k(z)|z|2 with k(0) = 1.

The proof is based on the contraction principle: we write the equation for the

coefficients of the inverse Riemann mapping as a fixed point equation for a map that is

a contraction in a suitable metric space and depends smoothly on ε including at ε = 0.

Lemma 4.9. Let μ(z) = ∑∞
r,s=0 cr,sz

r+1z̄s+1 be the Taylor expansion of μ. Let ε > 0 be

small. Then z =∑∞
n=0 an(ε)w

n+1 is the normalized univalent map sending Dε = {w ∈ C :

|w| < ε} on to Eε = {z ∈ C : μ(z) < ε2} if and only if the series converges to a univalent

function on Dε with a0(ε) > 0 and the sequence a(ε) = (an(ε))∞n=0 obeys

an(ε) = Fn(ε;a(ε)), n = 0, 1, 2, . . . ,

where for n ≥ 1,

Fn(ε;a) =−
∑
r+s>0

cr,s
∑

r+|p|−s−|q|=n
ε2s+2|q|ap1 · · ·apr+1 āq1 · · · āqs+1

− an(ā0 − 1)−
∑
k≥1

an+kākε2k,
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with |p| =∑r
i=1 pi and |q| =

∑s
i=1 qi, and for n = 0,

F0(ε;a) = 1− 1

2

∑
r+s>0

cr,s
∑

r+|p|−s−|q|=0
ε2s+2|q|ap1 · · ·apr+1 āq1 · · · āqs+1

− 1

2
|a0 − 1|2 − 1

2

∑
k≥1

akākε
2k. �

Proof. Since the curve μ(z) = ε2 is smooth if ε is small enough, the Riemann mapping

and its inverse extend to smooth maps on the closure (in fact to holomorphic maps on

a neighbourhood of the closure with our assumption of real analyticity of μ). Thus the

restriction to the boundary of the inverse Riemann mapping fε(w) has a convergent

Fourier series and sends the circle |w| = ε to the curve μ(z) = ε2.
We write this condition as a fixed point equation. Write fε(w) = w(1 + gε(w)),

k(z) = 1+m(z), so that

m(z) =
∑
r+s>0

cr,sz
rz̄s. (3)

Then the equation for gε(w) = a0 − 1+∑∞
n=1 anw

n is

(1+m(fε(εu)))|1+ gε(εu)|2 = 1, |u| = 1.

We can write this equation in the form

gε(εu)+ ḡε(εu−1) = −m(fε(εu))|1+ gε(εu)|2 − |gε(εu)|2, |u| = 1. (4)

Being an identity of real-valued Fourier series, (4) holds if and only if the coefficients of

un for n ≥ 0 coincide on both sides. Let [ϕ(u)]n denote the nth Fourier coefficient of a

smooth function ϕ(u) on the unit circle |u| = 1. Together with the condition that a0 is

real and positive, we get the equivalent condition

a0 = 1− 1

2

[
m(fε(εu))|1+ gε(εu)|2 + |gε(εu)|2

]
0
,

an = − 1

εn

[
m(fε(εu))|1+ gε(εu)|2 + |gε(εu)|2

]
n
, n ≥ 1.

This equation has the form an = Fn(ε;a0,a1,a2, . . . ), with

Fn(ε;a) =−
∑
r+s>0

cr,s
∑

r+|p|−s−|q|=n
εr+s+|p|+|q|−nap1 · · ·apr+1 āq1 · · · āqs+1

− an(ā0 − 1)−
∑
k≥1

an+kākε2k
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=−
∑
r+s>0

cr,s
∑

r+|p|−s−|q|=n
ε2s+2|q|ap1 · · ·apr+1 āq1 · · · āqs+1

− an(ā0 − 1)−
∑
k≥1

an+kākε2k,

for n ≥ 1. For n = 0 the calculation is similar. �

We notice that F(ε;a) = (Fn(ε;a)∞n=0) is defined (a priori only as a formal power

series in the aj) also for ε = 0. In this case we can find the answer explicitly.

Lemma 4.10. Let μ(z) =∑∞
r,s=0 cr,sz

r+1z̄s+1 with c0,0 = 1. Let

h(z) =
∞∑
r=0

cr,0z
r+1,

and h−1(w) = w(a0 + a1w + · · · ) its inverse. Then a = (an)∞n=0 is a solution of a =
F(0;a). �

Proof. By Example 4.3, if μ(z) = |h(z)|2 for some holomorphic function h such that

h(0) = 0,h′(0) = 1 then fε = h−1 is the univalent map of Lemma 4.9 and is independent of

ε. In this case the Taylor coefficients cr,0 are precisely the Taylor coefficients of h. Thus

the equation a = F(0;a), which only involves cr,s with s = 0, is the same for a function

μ with arbitrary Taylor coefficients cr,s as for μ = |h(z)|2 with h(z) =∑
cr,0zr+1. �

Let �1R(C) be the Banach space of sequences a = (an)∞n=0 of complex numbers with

finite weighted �1-norm ‖a‖R =∑∞
n=0 |an|Rn.

Lemma 4.11. Let 0 < δ < 1. With the same notations and assumptions as in Lemma

4.9, there exists an R > 0 depending on μ and δ, such that the power series F defines a

holomorphic map

{ε ∈ C : |ε| < R} × Bδ(a◦)→ Bδ(a
◦),

where

Bδ(a
◦) = Bδ(a

◦; ‖ ‖R) = {a ∈ �1R(C) : ‖a− a◦‖R < δ}

is the open ball of radius δ centred at a◦ = (1, 0, 0, . . . ) in �1R(C). �
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Proof. We show that F(ε,a) − a◦ is given by a power series in ε,a0 − 1,an, ān which

converges for |ε| < R, ‖a− a◦‖R < δ, namely that the series

‖F(ε;a)− a◦‖R = |F0(ε;a)− 1| +
∞∑
n=1
|Fn(ε;a)|Rn.

converges absolutely in the specified domain.

Let F(ε;a)− a◦ = A+ B where A is the part involving cr,s and B is the quadratic,

cr,s-independent part. In |F0(ε;a)− 1| we use that 1/2 ≤ 1 to obtain a single summation

for A:

‖A‖R ≤
∑
r+s>0
|cr,s|

∑
p,q

|ε|2s+2|q|Rr+|p|−s−|q||ap1 · · ·apr+1 āq1 · · · āqs+1 |

≤
∑
r+s>0
|cr,s|Rr(|ε|2/R)s‖a‖r+1R ‖a‖s+1ε2/R

≤
∑
r+s>0
|cr,s|Rr+s‖a‖r+s+2R .

In the last inequality we use |ε| ≤ R so that ‖ ‖ε2/R ≤ ‖ ‖R. To estimate Bwe set a = a◦ +b:

‖B‖R ≤12
∞∑
k=0
|bk|2|ε|2k +

∞∑
n=1

∞∑
k=0
|bn+k| |bk|Rn|ε|2k

≤1
2

∞∑
k=0
|bk|2R2k +

∞∑
n=1

∞∑
k=0
|bn+k|Rn+k |bk|Rk

=1

2

∞∑
k=0
|bk|2R2k + 1

2

∑
k �=n
|bn|Rn |bk|Rk

≤1
2
‖b‖2R

Therefore, we have the estimate

‖F(ε;a)− a◦‖ ≤
∑
r+s>0
|cr,s|Rr+s‖a‖r+s+2R + 1

2
‖a− a◦‖2R.

Assume that ‖a− a◦‖R < δ. Then ‖a‖R ≤ ‖a◦‖R + δ = 1+ δ and

‖F(ε;a)− a◦‖ <
∑
r+s>0
|cr,s|Rr+s(1+ δ)r+s+2 + δ2/2.

Now choose R so small that

∑
r+s>0
|cr,s|Rr+s(1+ δ)r+s+2 ≤ δ − δ2/2.

Then ‖F(a)− a◦‖R < δ. �
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Lemma 4.12. With the notation of the previous lemma, R can be chosen so that a 
→
F(ε;a) is a contraction of Bδ(a◦) ⊂ �1R(C) for all ε ∈ C such that |ε| < R. �

Proof. It is sufficient to show that the differential has norm<1. Since F is holomorphic

we can compute the differential term by term. The result is that the differential

daF(ε;a)(h) = lim
t→0

1

t
(F(ε;a+ th)− F(ε;a))

is obtained by replacing in each monomial of the power series defining F one occurrence

of ap or āp by hp or h̄p and multiplying by the degree. We can then estimate the norm in

the same way as in the previous lemma. For h ∈ �1R(C),

‖daFn(ε;a)(h)‖R ≤
∑
r+s>0

(r + s+ 2)|cr,s|Rr+s‖a‖r+s+1R ‖h‖R

+ ‖h‖R‖a− a◦‖R
≤

∑
r+s>0

(r + s+ 2)|cr,s|Rr+s(1+ δ)r+s+1‖h‖R

+ δ‖h‖R

Since μ is real analytic, for any given δ ∈ (0, 1) it is possible to choose R > 0 such that

∑
r+s>0

(r + s+ 2)|cr,s|Rr+s(1+ δ)r+s+1 ≤ θ − δ,

with δ < θ < 1. With this choice of R, ‖daF(ε;a)‖R ≤ θ . �

Proof of Theorems 4.1 and 4.2. By the Banach contraction principle there is a unique

sequence a(ε) ∈ Bδ(a◦) obeying the fixed point equation a(ε) = F(ε;a(ε)). Since∑∞
n=0 |an(ε)|Rn < ∞ and |a0(ε) − 1| ≤ ‖a(ε) − a◦‖R < δ < 1, the power series fε(w) =

w(a0(ε) + a1(ε)w + · · · ) is absolutely convergent for |w| < R and defines a univalent

map for |ε| < R1 for sufficiently small R1 (R1 = R/2 will do). Also a0(ε) is real for real

ε since F0 is real; because |a0(ε) − 1| < 1, it is positive and thus fε is normalized. By

Lemma 4.9 fε(w) is the required univalent map. By Lemma 4.11 F is holomorphic, and

by Lemma 4.12 the differential Id − daF(ε;a(ε)) at a(ε) of the map a 
→ a− F(ε;a) is an

automorphism of the Banach space �1R(C). By the implicit function theorem for analytic

maps in Banach spaces, see [3, Chapter 1, Theorem 174] a(ε) is an analytic function of ε

and thus fε(w) is analytic as a function of ε andw. It follows that the Riemann mapping

h(ε, z) = f −1ε (z) is also holomorphic. The fact that h is an even function of ε follows most
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simply from the invariance of the fixed point equation in Lemma 4.9 under ε →−ε. This
proves Theorem 4.1. Theorem 4.2 then follows from Lemma 4.10. �

5 Proof of Theorem 3.3

By using a partition of unity we may assume that X is an open neighbourhood of 0 ∈ Cn

and that D is defined by the equation z1 = 0 where z1 is the first coordinate function on

Cn. The main technical step is to settle the case where α = ∂γ is exact:

Lemma 5.1. Let m ∈ {0, 1, 2, . . . }. If α = ∂γ with γ ∈ �c(X ,An−1,0
X (mD)) then, as ε → 0,

〈α,β〉λ,ε = 2
∫
D
Res∂ (∂ log λ ∧ γ ) ∧ Resβ + O(ε) �

Proof. We first reduce the general case to the case where λ2 is real analytic, and in fact

a polynomial. Let λ be a cut-off function and λN be the cut-off function such that λ2N is

the degree N Taylor polynomial in the variable z1 at z1 = 0. We show that for fixed α,β,

and N large enough,

〈α,β〉λ,ε = 〈α,β〉λN ,ε + O(ε)

For small ε, Uε = λ−1([0, ε))∩ suppα is contained in the region |z1| < C1ε for some C1 > 0

and thus |λN(z) − λ(z)| < C2ε
N+1 for all z ∈ Uε and some C2 > 0. It follows that the level

set λ−1N (ε) is contained in λ−1([ε − CεN+1, ε + CεN+1]. The difference between the integrals

over λ(z) > ε and λN(z) > 0 is then estimated by the volume of the region, which is less

than const εN times the maximum of the integrand, which is less than const ε−m−1 if α

has a pole of order m. For N >m− 1 the difference vanishes in the limit ε → 0.

So we assume from now on that λ2 is a real analytic function of z.

By Stokes’ theorem,

〈∂γ ,β〉λ,ε = (−1)n
2π i

∫
λ=ε
γ ∧ β̄

We prove the identity in several steps.

(a) The one-dimensional case with λ(z) = |z|.

Suppose n = 1 and write z1 = z. Then γ (z) = z−mσ(z) for some smooth function σ and

β̄ = b̄(z̄)dz̄/z̄ for some holomorphic function b̄ defined around 0. Let us first assume that
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λ(z) = |z| and let σ(z) ∼∑∞
r,s=0 σrsz

rz̄s be the Taylor series of σ . Then

∫
|z|=ε

γ ∧ β̄ = −
∑
r+s≤N

σr,sε
r+s−m

∫
|u|=1

ur−s−mb̄(εu−1)
du

u
+ O(ε),

for N sufficiently large, say N ≥m+ 1. Thus we have to evaluate

εr+s−m
∫
|u|=1

ur−s−m(εu−1)l
du

u
= 2π iδr,s+m+lε2s+2l,

for r, s,m, l ≥ 0. Thus only one term in the sum and only the leading term b̄(0) survive

the limit ε → 0. Therefore

∫
|z|=ε

γ ∧ β̄ = −2π i σm,0 b̄(0)+ O(ε).

On the other hand, b(0) = Resβ and

Res∂ (∂ log λ γ ) = Res∂
dz

z
γ (z) = σm,0,

as computed in Example 2.5. The proof is complete.

(b) The one-dimensional case with general λ.

Let again n = 1, but with a general cut-off function λ. By Theorem 4.1, for sufficiently

small ε, the normalized biholomorphic Riemann map z = gε(w) sending the disk |w| < ε

to the domain λ(z) < ε extends to a smooth parametrization of the boundary and has

an analytic continuation to a holomorphic function of ε, z defined on a polydisk around

zero. We change variables to reduce to case (a):

∫
λ(z)=ε

γ ∧ β̄ =
∫
|w|=ε

g∗εγ ∧ g∗εβ.

In this formula we may replace gε by its limit for ε = 0, since the difference is ε times

an integral of the form considered in (a) which has a finite limit as ε → 0. The required

identity

−1
2πi

∫
λ(z)=ε

γ ∧ β̄ = Res∂ (∂ log λ γ ) ∧ Resβ + O(ε)

thus holds in the coordinate w = g0(z) and thus in any coordinate system.
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(c) The case of arbitrary dimension I

Now let n be arbitrary and suppose that

γ = fdz2 ∧ · · · ∧ dzn

for some function f . Then the integration over each fibre of the projection z→ (z2, . . . , zn)

is of the form considered in (b). The claim then follows from (b), (the sign comes from

permuting dz̄1 through dz2 ∧ · · · ∧ dzn.)

(d) The case of arbitrary dimension II

Now we assume that

γ = dz1
z1
∧ σ

for some smooth (n− 2)-form σ . On the cycle λ = ε we have the identity

∂ log λ+ ∂̄ log λ = 0.

Let us again introduce coordinates z1, z2, . . . , zn and decompose the differential as ∂ =
dz1∂z1 + ∂ ′. The identity becomes

dz1 ∂z1 log λ+ ∂ ′ log λ ≡ 0 mod 〈dz1, . . . , dz̄n〉

modulo the submodule generated by dz̄i, which doesn’t contribute when we multiply by

the (0,n)-form β̄. Thus
∫
λ=ε
γ ∧ β̄ = −

∫
λ=ε

∂ ′ log λ
z1 ∂z1 log λ

∧ σ ∧ β̄.

The denominator z1∂z1 log λ is actually smooth and non-zero on D, since it can be written

as 1+ z1∂z1 logh, where λ = h|z1| with smooth non-zero h.

Now the integral is of the form considered in (c) for which we have proved the

claim. Thus

(−1)n
2π i

∫
λ=ε
γ ∧ β̄ = −

∫
D
Res∂

(
∂ log λ ∧ ∂ ′ log λ

z1∂z1 log λ
∧ σ

)
∧ Resβ + O(ε).

Since ∂ ′ log λ ∧ σ is an (n − 1, 0)-form not involving dz1, we may replace ∂ log λ by

dz1∂z1 log λ on the right-hand side and we obtain

(−1)n
2π i

∫
λ=ε
γ ∧ β̄ = −

∫
D
Res∂

(
dz1
z1
∧ ∂ ′ log λ ∧ σ

)
∧ Resβ + O(ε)
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= −
∫
D
Res∂

(
dz1
z1
∧ ∂ log λ ∧ σ

)
∧ Resβ + O(ε)

=
∫
D
Res∂ (∂ log λ ∧ γ ) ∧ Resβ + O(ε),

so that the claim also holds in this case.

(e) The case of arbitrary dimension III

We finally deal with the most general case. The form γ may be written as

γ = fdz2 ∧ · · · ∧ dzn + dz1 ∧ σ

for some function f and an (n − 2)-form σ such that zm1 f and zm1 σ are smooth. Since

we can add a ∂-closed form to γ without changing either side of the claim, we may by

Proposition 2.1 assume that σ has a first order pole. Indeed if σ has a pole of order

p + 1 > 1, say σ = z−p−11 τ , then dz1 ∧ σ = 1
pz
−p
1 ∂τ − ∂( 1pz−p1 τ). Thus we can lower the

order of the pole by adding exact forms until σ has a pole of first order. In this way, the

general case is reduced to the cases (c) and (d). �

Proof of Theorem 3.3. (i) By Lemma 5.1 and Proposition 2.1, it is sufficient to consider

the case where α has a simple pole. Write

α = f
dz1
z1
∧ dz2 ∧ · · · ∧ dzn, β = g

dz1
z1
∧ dz2 ∧ · · · ∧ dzn,

where f is a function with compact support and g is holomorphic. We may assume that

the support of f is contained in the region |z1| < 1. In the integral of α∧ β̄ wemay replace

f and ḡ by their values at z1 = 0, as the difference is a regularized absolutely convergent

integral, whose limit as ε → 0 is independent of the choice of λ. We obtain

∫
|z1|≤1,λ≥ε

α ∧ β̄ = (−1)n−1
∫
D

∫
|z1|≤1,λ≥ε

dz1 ∧ dz̄1
z1z̄1

∧ Resα ∧ Resβ + · · · ,

where the dots denote a term whose limit as ε → 0 exists and is independent of λ. We

are left with a two-dimensional integral over z1 which we evaluate in polar coordinates:

let r = rε(θ) = ε/h(0)(1 + O(ε)) the polar parametrization of the curve λ(z1) = ε with

λ(z1) = |z1|h(z1). Then
∫
|z1|≤1,λ≥ε

dz1 ∧ dz̄1
z1z̄1

= −2i
∫ 2π

0

∫ 1

rε (θ)

dr

r
dθ
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= 2i
∫ 2π

0
log rε(θ)dθ

= 4π i log(ε/h(0))+ O(ε).

It follows that

〈α,β〉λ,ε = 2
∫
D
log

(
ε

h|D
)
Resα ∧ Resβ + · · · , λ = h|z1|, (5)

up to a finite term whose limit as ε → 0 is independent of λ. Since Res coincides with

Res∂ for (n, 0)-forms with simple pole, the proof is complete.

(ii) If α has a first order pole, the claim follows from (5): if we multiply λ by expϕ,

then log h|D changes by ϕ|D, and ϕ Res∂ α = Res∂ (ϕα) in the case of first order pole. By

Proposition 2.1, a general form α is the sum of a ∂-exact form and a logarithmic form.

It is thus sufficient to check the claim when α = ∂γ is ∂-exact, for which we use Lemma

5.1. Since Res∂ vanishes on Im ∂, we have

〈∂γ ,β〉eϕλ,ε − 〈∂γ ,β〉λ,ε = 2
∫
D
Res∂ (∂ϕ ∧ γ ) ∧ Resβ + O(ε)

= −2
∫
D
Res∂ (ϕ ∂γ ) ∧ Resβ + O(ε).

Thus the claim also holds for ∂-exact α, completing the proof. �
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