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the method can be used for multi-component, multi-phase 
systems of which several applications are given. A good 
fit to natural observations in multi-phase, multi-compo-
nent systems demonstrates the possibility to explain phase 
assemblages and zoning by spatial pressure variations at 
equilibrium as an alternative to pressure variation in time 
due to disequilibrium.
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Introduction

The existence of grain-scale pressure heterogeneity during 
metamorphism has been established over the last decades 
(see review in Moulas et  al. 2013). In petrology, a well-
studied example is the preservation of coesite or diamond 
inclusions in a host mineral such as garnet (Chopin 1984), 
omphacite (Smith 1984) or zircon (Carswell et  al. 2003). 
The host mineral prevents the coesite from transforming 
into the lower-density quartz structure (Gillet et  al. 1984; 
van der Molen and van Roermund 1986; Zhang 1998a; 
Ye et al. 2001; Barron 2005; O’Brien and Ziemann 2008). 
The coesite inclusion then can be transformed only par-
tially to quartz. The kinetics of the transformation from 
coesite to quartz was experimentally studied (Mosenfelder 
and Bohlen 1997; Perrillat et  al. 2003), and these experi-
ments show that at temperatures above 450 °C the coesite 
to quartz reaction will proceed to completion within a few 
hours. Therefore, the P–T conditions of the inclusion stay 
on the coesite–quartz equilibrium line which is the only 
place where quartz and coesite coexist and do not follow 
the P–T path of the host mineral or matrix assemblage. 
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idating the inferred pressure gradient. The thermodynamic 
consistency of the calculation is supported by the similar 
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Such a mechanism is also known as the pressure vessel 
effect (Chopin 2003). As a result, we know that host miner-
als such as garnet, clinopyroxene, zircon and diamond can 
sustain significant pressure variations of up to several GPa 
difference.

Elastic models provided a solution to the inclusion–host 
problem where the inclusion remained at its high pres-
sure while pressure in the host adapted to the matrix pres-
sure (Gillet et al. 1984; van der Molen and van Roermund 
1986). Later, mechanical models adopted viscoelastic solu-
tions in which pressure gradually decreased from the inclu-
sion into the host (Zhang 1998a). Recently, Tajčmanová 
et al. (2014) used an elastic–plastic solution to expand the 
mechanical feasibility of maintaining pressure variations to 
polycrystalline materials or radially cracked inclusions.

Theoretically predicted and inferred large pressure vari-
ations were also proved by in situ measurements in coesite 
inclusions using Raman spectroscopy (Parkinson and 
Katayama 1999; Parkinson 2000). The use of Raman meth-
ods has revolutionized consideration of the overpressures 
developed in inclusions (Guiraud and Powell 2006). These 
methods allowed present-day overpressures to be deduced 
via the experimentally determined shift of peaks in Raman 
spectra. With recent developments of Raman spectroscopy 
and calibration for pressure with Raman shift (Schmidt and 
Ziemann 2000), it has become accurate and precise enough 
to be used in geobarometry (Enami et  al. 2007; Kohn 
2014).

Non-homogeneous pressure is documented for inclu-
sion–host systems under stress due to difference in viscos-
ity. In geological literature, this is known from analytical 
and numerical studies where pressure and stress distribu-
tion for different inclusion shapes, orientation and viscos-
ity contrasts were investigated (Kenkmann and Dresen 
1998; Tenczer et al. 2001; Schmid and Podladchikov 2003; 
Schmid 2005). Recently, Moulas et al. (2014) used 2D ana-
lytical solutions for the incompressible viscous flow prob-
lem in and around elliptical inclusions. They found that the 
viscosity contrast and aspect ratio of elliptical inclusions 
control the magnitude of the pressure difference inside and 
outside inclusions. In addition, the inclination of the inclu-
sion with respect to the bulk compression direction controls 
the spatial distribution of pressure. They conclude that both 
weak and strong inclusions can develop large pressure vari-
ations depending on geometrical and rheological factors.

In multi-grain aggregates where grain shapes are gener-
ally more irregular than ellipses and viscosity may vary, the 
resulting stress and pressure distribution becomes complex 
(e.g., see Fig.  1 in Llana-Funez et  al. 2012 and Fig.  4 in 
Tajčmanová et  al. 2015). Studies of stress perturbations 
around inclusions involving also plastic deformation inves-
tigate the importance of non-homogeneous stress (and 
pressure) distribution on the formation of shear zones in 

polymineralic rocks (Misra and Mandal 2007). Whereas 
viscous stresses relax over time, elastic stresses will always 
be there as long as there is an applied load. Burnley (2013) 
calculated the stress patterns resulting from purely elastic 
deformation, including plastic yielding, and discussed the 
implications of these patterns for metamorphic banding. 
Schrank et  al. (2012) investigate both experimentally and 
numerically the effects of thermal elasticity on stress dis-
tribution during heating of a granite. Other geological situ-
ations such as folding and fracturing bring along pressure 
variations as reviewed by Mancktelow (2008).

Non-homogeneous pressure in rocks due to viscos-
ity contrasts, geometry and orientation has been shown to 
influence metamorphic reactions. Simpson and Wintsch 
(1989) describe myrmekite associated with K-feldspar 
“augen.” Ruling out a magmatic origin of the myrmekite, 
they conclude that it formed during local stress differ-
ences on K-feldspar grain boundaries. Hwang et al. (2007) 
showed the interplay of crack formation due to stress con-
centrators around inclusions and the GRAIL reaction (gar-
net + rutile = kyanite + ilmenite + qtz), known for its bar-
ometric purposes (e.g., Bohlen et al. 1983). These studies 
suggest that pressure variations have not dissipated during 
metamorphic reactions and therefore do not occur indepen-
dently from reactions.

Schmid et  al. (2009) investigated the reaction rate 
of enstatite rim growth in a coupled kinetic–mechani-
cal model based on rim growth experiments (Milke et  al. 
2009). They showed that reaction rate was slowed down 
by the rheology of the matrix, manifested as different rim 
thickness grown around an inclusion. Furthermore, stress 
can have a direct effect on the phase equilibria. In particu-
lar, Robin (1974) documented that coherency of exsolution 
lamellae in feldspar causes elastic strains in the individual 
lamellae affecting the lattice parameters. For a very small 
proportion of pure coherent albite lamellae within an ortho-
clase grain, the values for stress correspond to 0.6 GPa 
parallel to the b-axis and 2.3 GPa orthogonal to the b-axis 
(Robin 1974). Values of 0.9 and 2.0 GPa were obtained for 
a coherent albite precipitate in microcline (Pryer and Robin 
1996). As a result, the position of the solvus in an equilib-
rium diagram is changed in case of coherency stress and 
is referred to as coherent solvus. If the pressure variations 
occur within a solid solution, such as plagioclase, chemi-
cal equilibrium will result in chemical zoning. Tajčmanová 
et al. (2014) developed an alternative geobarometer to infer 
pressure variations from chemical zoning by use of homo-
geneity of chemical potentials in which pressure was spa-
tially varied.

The above-mentioned progress in research brings up 
several key questions. If there is a sufficient amount of 
arguments and models documenting the existence of pres-
sure variations, why are isobaric models of metamorphic 
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assemblages generally so successful? Are the pressure var-
iations too small to have a significant effect on the main 
phase assemblages and textures? Or do we not recognize 
the evidence? For example, is the preservation of a pro-
grade microstructure a result of sluggish kinetics or is it 
because some minerals are at a different pressure?

Here, we present a method based on Gibbs minimization 
that can be used to predict stable mineral assemblage and 
composition for systems in which pressure is not homo-
geneous. The main goal is to provide a method by which 
the above problems can be addressed in the future, rather 
than entirely solving them for specific observations. The 
presented method is a forward modeling technique to cal-
culate equilibrium under spatial pressure variations that can 
be compared with observations. As current development in 
research shows that pressure variations can be maintained 
on the grain scale during metamorphism, the main motiva-
tion behind the development of an equilibrium method is 
to fit phase assemblages and chemical zoning as a result of 
pressure variation in space rather than in time. The method 
is first tested against results from a previously derived 
barometry method that was based on equal chemical poten-
tials, followed by applications based on natural observa-
tions to explore the effect of heterogeneous pressure on 
phase equilibria and composition.

Method

Thermodynamic equilibrium under external forces (e.g., 
a fluid under gravity; Gibbs 1906; Landau and Lifshitz 
1987) is characterized by gradients of thermodynamic state 
variables (e.g., pressure) while keeping zero macroscopic 
fluxes (Landau and Lifshitz 1987, p.236). An equilibrium 
formulation is used for several applications in chemical 
engineering and deep oil reservoirs for calculating compo-
sitional gradients under an external force such as gravity 
or an osmotic pressure difference across a semipermeable 
membrane (Gibbs 1906; Young et  al. 1954; Miller 1956; 
Landau and Lifshitz 1987; Esposito et  al. 2000; Wensink 
and Lekkerkerker 2004; Savenko and Dijkstra 2004; Mar-
tins et al. 2005; Mueller and Weiss 2012). For such applica-
tions, the chemical potential may be modified to account 
for the externally imposed force. Another chemical poten-
tial-based equilibrium approach was used by Tajčmanová 
et al. (2014) in a geologically relevant application to obtain 
pressure gradients from chemically zoned minerals in a 
binary system.

Alternatively, a constrained minimization approach can 
be used in which the conventional equal pressure formu-
lation of Gibbs energy remains unmodified. Typically, the 
constraints in the minimization are the amounts of chemi-
cal components of the system. Koukkari and Pajarre (2011) 

demonstrate that the minimization procedure can include 
system or external potential variables with their conjugate 
coefficients as well as non-equilibrium affinities.

The method presented here extends the conventional 
Gibbs minimization approach for geological materials to 
systems with externally imposed pressure variations. The 
method is generalized for multi-component multi-phase 
systems formulated as a forward modeling technique. It 
provides a way of extending the chemical potential-based 
unconventional barometry method from single-phase 
binary to multi-component multi-phase systems.

Gibbs energy calculation

Gibbs energy of pure phases is calculated using the equa-
tions outlined in “Appendix 1” (“Pure phases” section) 
with the most recent version of the end-member dataset of 
Holland and Powell (1998) (with updated version in 2004). 
As we use a mass-based approach (see Tajčmanová et  al. 
2014, 2015), phase compositions and energy are converted 
to weight fraction and J/kg, respectively, by dividing over 
molecular mass of the phase. Solid solutions are generated 
as discrete phases systematically varying the composition 
following an approach similar to Connolly (2005). “Solid 
solutions” section of “Appendix 1” lists the utilized proce-
dure to calculate of Gibbs energy of these solution phases. 
Worked examples in “Appendix 2” and the supplementary 
material demonstrate the site speciation calculation proce-
dure for a selection of the programmed solution models.

Constrained Gibbs energy minimization

Constrained Gibbs energy minimization is performed using 
the LIPSOL linear optimization algorithm implemented in 
the function “linprog” in MATLAB (Zhang 1998b). The 
weight proportion of the ith stable phase αi is found such as 
to minimize system Gibbs energy:

Subject to the constraint:

and the constraint for the jth system component:

Multiple P–T pseudo-sections have been calculated to 
ensure reproducibility of phase diagrams generated with 

(1)gsys =
n∑

i=1

αi · gi

(2)

n∑

i=1

αi = 1

(3)

n∑

i=1

x
j
i · αi = xjsys
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the widely used and extensively tested thermodynamic 
software package Perple_X (Connolly 2005).

Gibbs minimization with pressure constraints

In case of pressure heterogeneity Gibbs minimization is 
subject to an additional set of constraints by analogy to 
mass balance above:

where π j
sys is the weight fraction of the system having pres-

sure Pj and αi
j is the weight fraction of a ith phase having 

pressure Pj. Equations  1, 2 and 3 have to be adjusted as 
follows:

where k is the index for system component.
Input pressure constraints are assumed to satisfy:

“Appendix 3” illustrates the generation of the equal-
ity constraint matrix using the above Eqs. 4–7. “Appendix 
4” includes MATLAB scripts implementing Eqs.  1–3 for 
a standard calculation and a script for its generalization 
(Eqs. 4–7) to account for pressure variation. Examples of 
MATLAB scripts for the visualization of the results can be 
found in the supplementary material. In all example calcu-
lations documented in the result section below, the weight 
fraction of the system being at a specified pressure is set at 
1/m, where m is the number of pressure constraints. For a 
calculation in which only two different input pressures are 
defined, the weight fraction of the system having pressure 
Pj is 0.5, whereas ten input pressure constraints ensure each 
pressure Pj to occupy one-tenth of the system.

It is possible to think of dividing the system in compart-
ments each of which can have a distinct pressure. The sta-
ble phase assemblage and composition are then found for 
which the Gibbs energy of the entire system is lowest while 
conserving total mass of the system.

(4)

n∑

i=1

α
j

i = π j
sys

(5)gsys =

m∑

j

n∑

i=1

α
j

i · gi

(

Pj, T
)

(6)

m∑

j

n∑

i=1

α
j

i = 1

(7)

m∑

j

n∑

i=1

α
j
i · x

k
i = xsys

(8)

m∑

j=1

π j
sys = 1

Figure  1 illustrates a conceptual example in a G–X 
diagram for a binary solution phase in which two differ-
ent pressures exist. The compositions of the phase are 
discretized (white circles in Fig.  1) for both pressures 
(P1 and P2). System composition is constrained at Xsys, 
and fraction of the system at P1 is set to 0.5. Conse-
quently, the global minimum of energy is reached with 
a phase assemblage that consists of two (discretized) 
phases each at a different pressure such that Xsys is satis-
fied (black circles in Fig. 1). The slope of the g–x curves 
being equivalent to the driving force for diffusion (Δμ, 
see review in Tajčmanová et al. 2015) is equal for both 
points (ΔμP1 – Δμ P2 = 0). Hence, the system is in ther-
modynamic equilibrium, and the global minimization 
approach is equivalent to the chemical potential-based 
approach.

Xsys

P2

P1

∆µP1

∆µP2

g

x
0 10.2 0.6 0.80.4

Fig. 1   Diagram showing the concept of constrained Gibbs minimiza-
tion for a closed binary system under a pressure gradient. Two curves 
(thick solid lines) display the partial Gibbs energy (g) of the solid 
solution, each at different pressure (P1 and P2). Open circles on the 
curve symbolize the discretized phases of the solutions that are input 
into the minimizer. For a system composition fixed at Xsys (dashed 
straight line), the minimum Gibbs energy of the system is given by 
a mixture of two of the discretized phases each lying on a different 
Gibbs energy curve to fulfill the pressure constraint. With the weight 
fraction of the system at each pressure constrained at 1/nP, half will 
be at the P1 curve and the other half at P2. Horizontal arrows indicate 
the deviation of the stable phase composition from Xsys. Two straight 
lines (thin solid lines) show the difference in chemical potentials of 
the two end-members for each pressure (ΔμP1 and ΔμP2). From the-
oretical predictions, these two lines are parallel in equilibrium (as in 
that case gradients in chemical potential difference have vanished and 
there are no macroscopic fluxes in the system). As can be seen from 
the diagram, this is equivalent to the result of the Gibbs energy mini-
mization
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Applications and results

The method is applied to two binary single-phase geo-
logical examples (plagioclase and orthopyroxene). For 
these two examples, the input pressure is obtained from 
the unconventional barometry method using chemical 
potentials. Therefore, it also provides a benchmark of the 
two methods. Then, these two examples are extended to 
a binary multi-phase system. The effect of systematically 
varying the input pressure gradient on stable phase assem-
blage in a multi-phase, multi-component system is explored 
in a third geological example followed by two examples for 
a specific micro-texture in a complex multi-phase system. 
Finally, equilibrium is calculated for a multi-phase, multi-
component system using pressure obtained from a 2D 
mechanical model inspired by natural observations.

Plagioclase rims

Plagioclase formed as rims around kyanite during decom-
pression in rocks from the Bohemian massif and is 
described in detail in earlier work (Tajčmanová et al. 2011). 
The anorthite component in plagioclase (Xan) decreases 
from the kyanite toward the matrix. This zoning can be 
interpreted as being in thermodynamic equilibrium with a 
mechanically feasible model in which pressure decreases 
from the kyanite toward the matrix (Tajčmanová et  al. 
2014). The presented minimization method is used to pre-
dict the compositional zoning from the derived pressure 
gradient. First, a P–T pseudo-section is generated with the 
Gibbs energy calculated according to “Appendix 1” and 
the minimization as outlined above. Figure  2 shows the 
phase diagram for a plagioclase consisting of 50 % anor-
thite and 50  % albite (see Table  1 for bulk compositions 
in all figures). The calculated phase assemblages, propor-
tions and compositions are benchmarked to calculations 
with Perple_X 6.6.8 (see Suppl. Fig.  1) to rule out errors 
in the Gibbs energy of phases and the minimization algo-
rithm. Then, for a temperature fixed at 800 °C, the system 
composition is set to the average composition of the plagio-
clase rim, and the pressure gradient derived from the zon-
ing is added to a matrix pressure of 1.0 GPa to use as addi-
tional constraints. All possible phases for this composition 
are considered in the calculation to avoid prescribing the 
stability of feldspar as a result. Figure 3 shows that the two 
different employed solution models predict the observed 
zoning within error of measurement. The fit is better for the 
solution model of Holland and Powell (2003) as the pres-
sure gradient was derived using this model (Tajčmanová 
et al. 2014). With the matrix pressure set to 1.0 GPa as esti-
mated by Tajcmanová et al. (2011), the stable phase assem-
blage consists of just plagioclase. When the matrix pressure 
is set at 2.0 GPa, kyanite, jadeite, quartz and grossular are 

predicted on the high-pressure side within the rim which is 
not observed. Hence, the Gibbs minimization method con-
strains also the absolute pressure in addition to benchmark-
ing the two methods for the compositional zoning under 
pressure variations in plagioclase.

Orthopyroxene zoning

Primary orthopyroxene (Opx) from the diamond-grade 
ultra-high-pressure (UHP) spinel–garnet peridotite body 
at Svartberget in the Western Gneiss Region (WGR), Nor-
way, was metamorphosed during the Caledonian Orogeny. 
It occurs in an assemblage with spinel, olivine, clinopyrox-
ene, garnet and Fe–Ti oxides (mainly magnetite, ilmenite). 
The locality and rocks containing the Opx are described 
in detail by Vrijmoed et al. (2006; 2013). The Opx shows 
typically bowl-shaped zoning of Al2O3, where Al2O3 con-
tent increases from core to rim. In equilibrium with gar-
net, the Al2O3 content in Opx is pressure dependent and 
used as geobarometer in Opx-eclogites and garnet-perido-
tites (Macgregor 1974; Brey and Köhler 1990; Carswell 
and Harley 1990; Ravna-Krogh and Paquin 2003; Nimis 
and Grutter 2010). Assuming the core of the Opx was in 
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Fig. 2   P–T diagram in NCAS for a plagioclase (50 % An) bulk com-
position. Isopleths of mole fraction An in plagioclase are indicated 
with rectangular labels. The P–T range over which the GASP reac-
tion takes place is enclosed by thick solid lines. Variance is indicated 
with gray shading conform pseudo-section diagrams in Perple_X. 
The resultant diagram here produced with our MATLAB formulation 
of Perple_X (see “Appendix 1”) is identical to the one created with 
Perple_X 6_6_8 (see Suppl. Fig. 1). The diagram shows that anorthite 
content decreases with pressure, which remains true for the more 
complex composition of the sample from the Bohemian Massif (e.g., 
Tajčmanová et al. 2011)
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equilibrium with garnet at peak conditions, the pressure 
can be estimated and the zoning interpreted as retrograde 
diffusion effect. Recent investigations show the Opx zon-
ing is more complex and does not fit diffusional profiles 
but is possibly linked to metasomatic processes (Fig.  11d 
in Vrijmoed et al. 2013). Diffusion of Al in Opx is usually 
assumed slow, mostly based on Al diffusion experiments 
in Cpx (Smith and Barron 1991; McFarlane et  al. 2003). 
Wood (1974) experimentally calibrated Al diffusion in 
Opx in equilibrium with garnet resulting in orders of mag-
nitude faster diffusion coefficients. Additionally, the UHP 
domains in the WGR remained at high temperature for 
14–20 Ma (Krogh et al. 2011). Thus, the question whether 
diffusion was sufficiently fast to homogenize Al2O3 in Opx 
at the Svartberget locality is still open. If Al diffusion in 
Opx was indeed too slow, the zoning may be preserved as 
disequilibrium features produced during metasomatism. 
Alternatively, the possibility that the zoning is a result of 
equilibrium under pressure variations can be investigated.

The two equilibrium methods (chemical potential and 
Gibbs minimization) are used to investigate how Al zoning 
in these Opx crystals is distributed at equilibrium under a 
pressure gradient. Using both approaches allows to bench-
mark the two methods on a different chemical system in a 
different mineral. The dominant pressure dependence of Al 
in Opx is captured by the reaction between enstatite, Mg-
Tschermak’s molecule and pyrope (e.g., Wood 1974). For 
simplicity, the Opx solution is treated as binary between 

the Mg end-member (enstatite) and the Al end-member 
(Mg-Tschermak’s). The Opx solution model of Holland 
and Powell (1996) is used. Figure 4 shows a P–T section 
for a system consisting of enstatite, diluted with 5 mol per-
cent pyrope (benchmarked with Perple_X calculation in 
Suppl. Fig.  2). Isopleths of Al2O3 weight percent in Opx 
show the essential behavior of the Al-in-Opx geobarome-
ter. Figure 5 shows a possible pressure gradient (P needed 
to homogenize Δμ) for the zoning in Opx 8-4 (Fig. 4b in 
Vrijmoed et  al. 2006). As the chemical potential method 
delivers only the pressure gradient, an absolute value of 
pressure at a point in the profile is chosen. With a value of 
2.6 GPa at the rim on the left side, the pressure decreases 
toward the core to around 0.15 GPa. The resultant pressure 
gradient is used as pressure constraints for the Gibbs mini-
mization method in addition to the average composition of 
Opx as system composition. From all possible phases in 
the HP dataset, only Opx is stable at the input pressures 
and system composition. A higher pressure at the rim will 
predict garnet in addition to Opx, which therefore con-
strains the absolute pressure along the profile. Figure  6 
shows how the measured Al2O3 content is reproduced with 
the pressure profile obtained using the chemical potential 
approach, thereby again confirming the reliability of both 
methods. Similar to the case of plagioclase, the zoning is 
opposite to what is expected from a conventional P–T dia-
gram (Fig. 4) where Al2O3 content decreases with increas-
ing pressure. It is consistent with the Mg-Tschermak’s 

Fig. 3   Results of constrained 
Gibbs minimization for aver-
age composition (0.26 Xan) 
of plagioclase rim under the 
pressure gradient. The blue and 
green curves are the predicted 
phase compositions using, 
respectively, the Holland and 
Powell (2003) ternary feldspar 
model (“Fsp(C1)” in Perple_X) 
and the Fuhrman and Lindsley 
(1988) model (“feldspar” in 
Perple_X). Red circles indicate 
the measured compositions. The 
bottom figure shows the input 
pressure gradient as derived by 
Tajčmanová et al. (2014)
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end-member having a higher density than the enstatite 
end-member.

Multi‑phase predictions

The formulation shown above treats also multi-phase sys-
tems. The single-phase example above already included all 
possible phases in the dataset in the minimization. There-
fore, only system composition needs modification. As an 
example, the calculations were repeated for the two cases 
treated above. For the plagioclase rim, the system composi-
tion was modified to include part of the kyanite inclusion. 
The result is shown in Fig.  7 and demonstrates the abil-
ity of the method to also predict the observed kyanite on 
the high-pressure side of the inclusion. Hence, this phase 
assemblage can be in equilibrium under the given input 
pressure gradient. For the Opx example, a small amount 
of garnet (pyrope) was mixed with the average composi-
tion of the Opx to define the system composition input (see 
Table 1). The result in Fig. 8 shows that garnet is stable at 
highest pressures at the rims of the Opx, consistent with 
observations of garnet adjacent to Opx. It is noted here that 
the conventional Al-in-Opx barometry still applies at the 
contact between garnet and Opx. This means that higher 
pressure at the garnet–Opx interface will decrease Al2O3 
concentration in Opx at the rim.

650 700 750 800 8500.5

1

1.5

2

2.5

3

3.5

4

4.5

5

T (°C)

P 
(G

Pa
)

Opx

Opx
Gt

0.2

0.3

0.4

0.5

1.0

1.5
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section diagrams in Perple_X. Identical results are obtained with 
Perple_X (see Suppl. Fig 2)

Fig. 5   Results of unconven-
tional barometry for Opx in 
Svartberget peridotite at 800 °C. 
a. Contour diagram of Δμ 
(μen − μmgts) for variable pres-
sure and measured composi-
tion along the profile (distance 
between analyses ~ 35 μm). 
The equilibrium state follows 
contours (i.e., where Δμ is 
constant). White line shows 
the pressure profile for a rim 
pressure set to ~ 2.6 GPa. b 
Measured Al2O3 wt% across the 
Opx grain. c Pressure profile 
corresponding to the chosen 
isopleth of Δμ from figure a. 
d Calculated density (kg/m3) 
across the Opx grain corre-
sponding to the pressure profile 
of a, b. Density increases with 
pressure as the concentration of 
the densest end-member (MgTs) 
increases
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Fig. 6   Results of constrained 
Gibbs minimization for average 
composition of Opx grain 8-4a 
(from Vrijmoed et al. 2006) 
under the pressure gradient 
obtained from Fig. 5. a The blue 
solid line shows predicted Al2O3 
wt% content in Opx using the 
Gibbs minimization approach. 
System composition was 
constrained at average Al2O3 
wt% in the grain. Red circles 
are compositions measured with 
microprobe and are predicted 
by the model within error of 
measurement. b Pressure profile 
used as constraints in the Gibbs 
minimization. Solution model 
based on Holland and Powell 
(1996) (equivalent to Opx(HP) 
in Perple_X)
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centage of stable phases as cumulative plot. The model predicts 
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dicted Xan in the plagioclase rim similar to the prediction in Fig. 3. c 
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Sensitivity of phase assemblage to pressure gradient

To show the sensitivity of phase assemblage on pressure 
gradient, a series of calculations was done for a relatively 
simple multi-phase, multi-component system consisting 
of olivine–plagioclase, an assemblage that is, for example, 
encountered in anorthosites of the Jotun nappe (e.g., Grif-
fin 1971). Stable phase assemblage but also spatial distribu-
tion of the phases strongly depends on the pressure gradient 
(Fig.  9). The input composition consisted of 20  wt% oli-
vine of composition given in Table 1 of Griffin (1971) and 
80  wt% plagioclase (An42 from Table  1 in Griffin 1971). 
Pressure decays gradually from the left toward a constant 
pressure value on the right (Fig. 10). As a first observation, 
it is noted that in a corona-type structure there is clear sepa-
ration of mineral zones as a result of varying pressure in 
space, while the entire system is in thermodynamic equi-
librium (as opposed to corona structures being the result 
of disequilibrium). On the right, plagioclase is stable sepa-
rated from garnet (and minor amount of spinel) by a corona 
of olivine and clinopyroxene. Changing the pressure distri-
bution to a more gently decaying profile results in thicken-
ing of some of the rims and thinning of others, occasion-
ally changing mineralogy (i.e., Opx appearance in second 

profile). The maximum pressure variation is only 0.4 GPa, 
implying that small changes in pressure gradient can have 
noticeable effect on mineral modes.

Complex multi‑phase systems

The example above was motivated by observations on 
corona structures described by Griffin (1971). Although 
distinct mineralogical zones are observed, the simple 
Gaussian pressure distribution does not lead to the observed 
sequence of mineralogical zones in the corona structures. 
The most common coronas have a core of orthopyroxene 
surrounded by successive shells of clinopyroxene and gar-
net. Some of the more complex coronas have a core of oli-
vine within the orthopyroxene (Griffin 1971). We show in 
Fig. 10a that it is possible to match the observations more 
closely with a more complex pressure gradient and multi-
mineral mixture. The system composition consisted of a 
mixture composed of 5  % olivine, 20  % orthopyroxene, 
10 % clinopyroxene I, 10 % clinopyroxene II, 10 % garnet 
I, 2 % spinel II and the remaining 43 % plagioclase using 
the observed mineral compositions from Table  1 in Grif-
fin (1971). With a pressure gradient composed of pressure 
jumps and gradients, it is possible to obtain the observed 
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Fig. 9   Cumulative phase mode 
diagrams along a 1D section 
showing the effect of varying 
pressure gradients on phase 
assemblage in multi-component, 
multi-phase system (NCFMAS) 
consisting of 20 % olivine and 
80 % plagioclase. Pressure 
(GPa) input gradient (black 
dotted line; scale on right axis) 
is computed as 8+ 4 · e−x2

/

� 
where λ is varied as indicated 
on each profile. Solution models 
used in the calculation with 
the corresponding name of the 
solution model in Perple_X (see 
solution_model.dat available 
for download from http://www.
perplex.ethz.ch/); clinopyrox-
ene: Omph(HP); ternary feld-
spar: feldspar; garnet: Gt(HP); 
spinel: Sp(HP); olivine: O(HP); 
orthopyroxene: Opx(HP). See 
Table 2
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sequence of the more complex coronas. In addition, asym-
metry in the profile leads to asymmetry in thickness of the 
mineralogical zones in the coronas which is often observed 
but hard to explain with purely diffusion-controlled corona 
growth. Note that these calculations only show the potential 
of exploring the possibility that such corona structures may 
be explained with a pressure gradient at chemical equilib-
rium, rather than solving a fully inverse coupled thermo-
mechanical–reactive model.

For a more complex multi-component, multi-phase 
system, the case of plagioclase rims around kyanite is 
extended to include the matrix in which the texture occurs. 
Computations were done in the system SiO2, TiO2 Al2O3, 
MgO, FeO, CaO, Na2O, K2O H2O for the same bulk rock 
composition and solution models as in Tajčmanová et  al. 
(2011). A benchmark for equal pressure and temperature 
with Perple_X is provided in the Suppl. Material. Over part 

of the 1D section the pressure gradient similar to the one 
derived by Tajčmanová et al. (2014) is used as input for the 
constrained Gibbs minimization (Fig.  10b). The remain-
ing part of the cross section is set to the matrix pressure 
(1.0 GPa). On the high-pressure side, the predicted phases 
are garnet, kyanite and rutile separated by a zoned plagio-
clase rim from a low-pressure assemblage consisting of 
quartz, K-feldspar and melt. The zone of plagioclase that 
separates the low- and high-pressure phases is chemically 
zoned from high to low anorthite content going toward 
low pressure as obtained above for single plagioclase rim, 
consistent with results from Tajčmanová et  al. (2014). In 
addition to kyanite being stable at the high-pressure side 
as obtained for the multi-phase example above, there is 
also garnet, which is due to the FeO and MgO content of 
the bulk rock composition. Thus, garnet is expected to be 
stable at local high-pressure domains in the rocks, just as 
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Fig. 10   a Results of constrained Gibbs minimization for bulk 
rock composition consisting of a mixture of minerals from Grif-
fin (1971). The stable phase assemblage is shown in a cumulative 
plot of the phase modes (wt%). White dotted line shows input pres-
sure gradient (axis on the right). Note that varying thickness of Opx 
zones around olivine can be due to asymmetry in the pressure pro-
file, while purely diffusion-controlled growth should result in equal 
thickness of zones. b Results of constrained Gibbs minimization for 
bulk rock composition in NCKFMASHT (from Fig. 5 in Tajčmanová 
et al. 2011). Upper panel shows a cumulative plot of the phase modes 
(wt%). White dotted line shows input pressure gradient (axis on the 

right). Lower panel shows composition of feldspar in terms of anor-
thite (left axis; blue curve) and orthoclase component (right axis; 
green curve). Garnet, kyanite and rutile are predicted on the high-
pressure side, separated by a rim of zoned plagioclase from quartz, 
K-feldspar (± melt). Solution models used in the calculation with the 
corresponding name of the solution model in Perple_X (see Table 2) 
are biotite: Bio(TCC); clinopyroxene: Omph(HP); ternary feldspar: 
feldspar; garnet: Gt(HP); white mica: Mica(CHA); orthopyroxene: 
Opx(HP); melt: melt(HP). Abbreviations: liq melt, Fsp feldspar, 
Gt garnet, Ol olivine, Opx orthopyroxene, Cpx clinopyroxene, ky 
kyanite, q quartz; ru rutile



Contrib Mineral Petrol (2015) 170:10	

1 3

Page 13 of 27  10

2.28

2.30

2.32

2.34

2.36

2.38

2.40

2.42

2.44

2.46

2.48

FspFsp

Ky+Qtz

Ky+Qtz

100 µm100 µm

Gt

Gt

(a) (b)

(c) (d)

(e) (f)

Pressure (GPa)
Pressure

Qtz

Ky

Fsp

Gt

Gt

(d)

Stable phases

Fsp

Gt
Ky

Qtz

Stable phases

BSE image

(b)

Fig. 11   Results of Gibbs minimization under constrained pressure in 
a 2D domain. a Dimensionless pressure variations (local mean stress) 
calculated with a FEM model for two high-pressure inclusions in a 
shear zone (shear sense indicated with black arrows) (model bound-
aries are further outside the figure). Rectangle shows zoom in b. b 
Pressure map used as constraints in the minimization. The pressure 
was obtained by normalizing to the maximum pressure in the domain 

indicated in a, multiplied by a factor used as fitting parameter and 
added to a background pressure. c Stable phase assemblage obtained 
from the minimization with enlargement in d, fitting the main obser-
vations shown with petrographic image e and BSE image in f. Note 
that aside from pressure distribution and variation, absolute pressure 
was also important in fitting the phase assemblage. This gives con-
straints on the regional pressure
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kyanite. Observations of garnet in close relation to kyanite, 
surrounded by a plagioclase rim, are found in Tajčmanová 
et al. (2011), as well as garnet crystals in the matrix, iso-
lated from kyanite domains. Similar textures are observed 
in granulite from the Snowbird tectonic zone (Baldwin 
et al. 2007) in which garnet crystals have been found with 
rims of plagioclase.

Two‑dimensional multi‑component multi‑phase systems

To conclude the applications of the herein described con-
strained Gibbs minimization method, a two-dimensional 
pressure map is used as input in the program. One system 
composition is specified and the pressure computed in a 
2D mechanical model. As an example, we have performed 
a calculation for a texture from the border of a shear zone 
in granulite from the Bergen Arcs, Norway (Mukai et  al. 
2014). The first-order observation is a texture that consists 
of two garnet grains in a matrix of feldspar both capped 
by an aggregate of kyanite–quartz. We set up a calcula-
tion using the finite element method (FEM) for a shear 
zone with two rigid inclusions (Fig. 11). The analytical and 
numerical solution for a rigid circular inclusion in simple 
shear is well known to have high-pressure and low-pressure 

lobes in the matrix around the inclusion (e.g., Schmid and 
Podladchikov 2003). If the shape of inclusion is not cir-
cular, and depending on the orientation of the inclusion, 
the pressure can be high in the inclusions with respect to 
the matrix (Moulas et  al. 2014). Additionally, the inclu-
sion may have a positive volume increase relative to the 
matrix due to reaction which would increase the pressure in 
the inclusion (Vrijmoed et al. 2009). The result of a FEM 
calculation for such a system is shown in Fig. 11a, b, and 
the resulting stable phase assemblage is shown in Fig. 11c 
and enlarged in Fig.  11d. Comparison to the natural data 
in Fig.  11e, f shows that the first-order observations are 
reproduced.

Although the GASP reaction is essentially captured with 
pure phases and a binary feldspar solution, modeling garnet 
as a pure end-member is not adequate for natural systems. 
A related problem is that the absolute pressures in the map 
are significantly higher than what is expected from other 
pressure estimates in the area (e.g., Austrheim and Griffin 
1985; Andersen et  al. 1991). To investigate this, an addi-
tional series of calculation was done in the system MnNCF-
MASH. Clinopyroxene, orthopyroxene, garnet, olivine, 
spinel, feldspar and amphibole were considered as solution 
(see caption Fig.  12; Table  2). As system composition, a 

Fig. 12   Results of Gibbs 
minimization under constrained 
pressure in a 2D domain in 
the system MnNCMASH. a 
Same as in Fig. 11a at higher 
resolution and full model 
size. Rectangle shows zoom 
in b. b Zoom into a. Absolute 
pressure obtained with the 
same procedure as Fig. 11b. 
A lower background pressure 
was used to be consistent with 
the amphibolite facies P–T 
conditions estimated in the area 
(Andersen et al. 1991). White 
rectangle shows area used in the 
Gibbs minimization. c Stable 
phase assemblage estimated for 
the domain outlined in the white 
rectangle of b. The fraction of 
the system at each pressure is 
approximated using the pressure 
and corresponding area in d. 
d Input pressure map obtained 
from figure b using average 
pressures over the contoured 
domains. Thus, five different 
input pressure constraints were 
used in this calculation. This 
averaging procedure allowed 
calculating equilibrium under 
pressure constraints in a signifi-
cantly more complex chemical 
system
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mixture was made from 9.5 % garnet (composition of sam-
ple 11A2 from Austrheim and Griffin 1985) and 90.5  % 
feldspar with a composition consisting of 50 % anorthite-
rich and 50 % anorthite-poor complex feldspar from Mukai 
et  al. (2014). One weight percent H2O was added to the 
system composition as the sample shows also signs of fluid 
infiltration (Mukai et al. 2014). Due to computational limi-
tations, it was not possible to perform the calculations at 
the same resolution as Fig.  11. To capture the essentials 
of the pressure distribution obtained from the mechanical 
model, the pressure map was divided in average pressure 
domains. The area of the domains was used to approximate 
the weight percent of system constrained at each pressure. 
This means that instead of using all elements from the FEM 
model only five different pressures were set as input con-
straints (see Fig. 12d for the discretized pressure map). It is 
then possible to have garnet stable at the pressure and tem-
perature estimated for the amphibolite facies conditions of 
the shear zone (Andersen et al. 1991). Also, a kyanite zone 
in the high-pressure caps around the rigid garnet grains 
is predicted, although fine quartz–kyanite mixture is not 
resolved. Instead, there is a prediction of kyanite–zoisite 
with successive zones of zoisite–amphibole, plagioclase 
and plagioclase–quartz–water.

Another possibility is that the rigid garnet inclusions 
are not in equilibrium but are instead fractionated from 
the matrix. For this case, garnet (and its pressure) was sub-
tracted from the system, and an equilibrium prediction for 
only the matrix between the rigid inclusions is obtained 
(Fig. 13). The mechanical model is this case has only rigid 
non-reacting inclusions. Again the main characteristics are 
reproduced with a kyanite mixture (with zoisite and some 
garnet) at the high-pressure caps around the rigid inclu-
sion, and successive zones at lower pressure away from the 
inclusion containing zoisite, zoisite–plagioclase, plagio-
clase and plagioclase–quartz–water where pressure varia-
tions have nearly vanished. Amphibole is not predicted 

in contrast to Fig. 12, which is most likely due to the fact 
that Mg–Fe in rigid garnet inclusions were fractionated 
from the system. These calculations show the difference in 
global equilibrium and partial disequilibrium (fractionated) 
under a pressure gradient. To determine which of the mod-
els fits the observations better, a detailed microstructural 
and mineral–chemical study of target areas of thin sections 
in these rocks is needed.

Another interesting observation is the occurrence of 
kyanite–quartz or kyanite–zoisite aggregates in cracks 
(e.g., upper right corner of BSE image in Fig.  11f). To 
investigate this, we modified the aspect ratio of one weak 
inclusion in the mechanical model to obtain a strongly 
elliptical inclusion that captures the essential features of a 
crack (i.e., a weak zone with an infinite aspect ratio). Under 
certain orientations with respect to the shear deformation, 
the pressure in the crack is higher than the matrix (e.g., 
Moulas et  al. 2014). As system composition, plagioclase 
with composition of An50 is used with 1 weight percent 
water. The prediction of the thermodynamic equilibrium 
shows the stability of kyanite–zoisite in the crack, whereas 
plagioclase, quartz and water are stable in the matrix. Thus, 
a crack with a certain orientation with respect to the shear 
deformation can fit the kyanite–zoisite aggregates observed 
by Mukai et  al. (2014) in some cracks in an equilibrium 
sense.

Discussion

The presented Gibbs minimization approach provides a 
tool to predict the equilibrium phase assemblage and con-
centration in geological systems under a pressure gradient. 
It is a forward modeling tool that can be used to investigate 
the potential of explaining observations with pressure vari-
ations in space while in thermodynamic equilibrium. This 
is complementary to already existing techniques to find the 
pressure (and temperature) variations of rock in time. For 
example, mineral zoning is commonly used to derive the 
P–T path; but also phase assemblages are useful by study-
ing inclusions and interpreting phase assemblages and tex-
tures in terms of P–T evolution in time (Spear and Selver-
stone 1983; Gaidies et al. 2008; Caddick et al. 2010; Lanari 
et al. 2014; Vrijmoed and Hacker 2014).

Confidence in the method is gained by generating con-
ventional phase diagrams (i.e., phases at equal pressure) 
and comparing them to output from existing software 
(Perple_X, THERMOCALC). By obtaining similar Gibbs 
energies and identical phase diagrams, errors resulting 
from input Gibbs energy of phases or the minimization 
algorithm are excluded. Tajčmanová et al. (2014) deduced 
the pressure gradient from measured concentration along 
a profile across a plagioclase rim surrounding kyanite. To 

Table 2   Solution models used in the calculations

Mineral Solution model References

Ternary feldspar feldspar Fuhrman and Lindsley (1988)

Ternary feldspar Fsp(C1) Holland and Powell (2003)

Orthopyroxene Opx(HP) Holland and Powell (1996)

Garnet Gt(HP) Holland and Powell (1998)

Olivine O(HP) Holland and Powell (1998)

Spinel Sp(HP) Holland and Powell (1998)

Clinopyroxene Omph(HP) Holland and Powell (1996)

White mica Mica(CHA) Coggon and Holland (2002)

Amphibole Amph(DPW) Dale et al. (2005)

Biotite Bio(TCC) Tajčmanová et al. (2009)

Melt Melt(HP) White et al. (2007)
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this end, they developed a geobarometer based on chemical 
potentials. From the thermodynamic point of view, perhaps 
the most striking result is the opposite trend compared to 
what is expected from a phase diagram. In a conventional 
P–T section for the relevant rock composition, the Ab 
content increases with pressure. However, in Tajčmanová 
et al. (2014), An content is highest at the contact with the 
high-pressure kyanite inclusion and decreases toward the 
low-pressure matrix. The currently presented Gibbs energy 
method delivers the same result, thereby increasing the con-
fidence in the geobarometer of Tajčmanová et al. (2014).

Both equilibrium methods (barometry and Gibbs mini-
mization) are used to deduce pressure variations in Opx 
of the Svartberget UHP garnet-peridotite from the WGR, 
Norway (Vrijmoed et  al. 2006, 2013). Again, both meth-
ods consistently predict opposite results compared to what 
is expected from a conventional phase diagram or garnet–
orthopyroxene barometry. Bowl-shaped Al zoning (low 
concentration in the core) is predicted to result from high-
est pressure along rims and cracks of the Opx grains while 
the core composition corresponds to low pressure. On a 
larger scale, this is observed in the pyroxenite and garnetite 
veins crosscutting the Svartberget body. The mineralogy 

and geothermobarometric results indicate higher pressures 
than the wall rock peridotite (Vrijmoed et al. 2006, 2008). 
Vrijmoed et  al. (2009) proposed a conceptual model to 
account for these pressure variations on the outcrop scale; 
however, the model would also fit the smaller-scale pres-
sure variations with highest pressure along rims and cracks 
inferred from the Al zoning in Opx.

Separation of discrete mono- or bi-mineralic zones can 
be a result of disequilibrium processes such as infiltra-
tion or diffusion metasomatic zoning (Korzhinskii 1970), 
as well as disequilibrium diffusion-controlled rim growth 
leading to corona structures (Ashworth et al. 1992). How-
ever, it is shown here that pressure gradients also have the 
potential to result in such discrete mineralogical zoning and 
complete separation into single-phase regions. Figure  10 
shows that when pressure is homogeneous multi-phase 
regions are predicted, similar to conventional phase dia-
gram calculations assuming equal pressure in all phases. It 
must be noted that spatial information does not enter the 
Gibbs minimization method; therefore, plotting of phases 
is independent from the prediction of stable phase assem-
blage and composition. When combined with models 
predicting spatial distribution of pressure and assuming 

Fig. 13   Results of Gibbs 
minimization under constrained 
pressure in a 2D domain in 
the system NCMASH with 
garnet composition in the rigid 
inclusions subtracted from the 
system. This represents a situ-
ation in which the rigid garnet 
inclusions are not in equilib-
rium with the matrix. The main 
difference is the absence of 
amphibole in this calculation 
compared to including garnet 
in the equilibrium in Fig. 12. a 
Dimensionless pressure vari-
ations (ΔP*) from the FEM 
model with rigid non-reactive 
circular inclusions. b Zoom in 
of a. c Stable phase assemblage 
for averaged pressure distribu-
tion in d. d Averaged pressure 
distribution in the domain 
outlined in figure b. See also 
caption of Fig. 12

zo
Pl
zo

Pl
Qtz
H2O

Pl

∆P* P (GPa)

P (GPa)stable phases

0.5

0.4

0.3

0.2

0.1

-0.1

0

-0.2

-0.3

-0.4

1.4

1.3

1.2

1.1

1.0

0.9

0.8

0.7

0.6

0.5

0.4

1.2

1.1

1.0

0.9

0.8

0.7

0.6

0.5

Gt
ky
zo

(a) (b)

(c) (d)



Contrib Mineral Petrol (2015) 170:10	

1 3

Page 17 of 27  10

equilibrium, the thermodynamic prediction can be plotted 
in space. The uniqueness of chemical equilibrium is guar-
anteed by the global minimization for the input pressure 
and system composition constraints, because the algorithm 
only converges when it found the global minimum under 
the constraints. The phase distribution for a given pressure 
distribution in space may be a function of initial conditions 
or perhaps processes such as nucleation. As nucleation may 
also depend on pressure, perhaps where phases nucleate 
may be partially controlled by small variations in pressure.

The work presented here raises new questions and is 
intended to promote new directions in research that may 
answer them. The presented equilibrium methods have 
some limits of applicability:

1.	 Results become unreliable when temperature becomes 
significantly low and/or time scale becomes too short 
to reach equilibrium by diffusion. Predictions from 
experimental values for diffusion coefficients in com-
bination with geochronology may be used to evalu-
ate whether significant diffusion is expected to have 
occurred.

2.	 Pressure variations need to be sustained on the time 
scale of the diffusion. Residual pressure has been 

measured in a number of cases, and thus, there seem to 
be situations that pressure variations outlast any reac-
tion or diffusion process.

Inferring spatial pressure variation from phase 
assemblage and chemical zoning as an inverse problem

The method presented here is incomplete since the pressure 
“fractionation” is an input rather than a model prediction. 
The method is formulated as a forward method. Therefore, 
there is formally no difference between assuming equal 
pressure as input as is commonly done in petrology, and 
input of multiple pressures. That pressure in metamorphic 
rocks can be heterogeneous is supported by theory and 
observations reviewed in the introduction. Pressure “frac-
tionation” is arbitrary specified using mass fractions. Once 
the stable phase assemblage and density are computed, the 
mass constraints can be post-processed into volumetric 
constraints and arbitrarily and non-uniquely distributed in 
space. An inverse method that would predict pressure from 
measured concentration and phase distribution in a micro-
structure would have to consider a fully coupled (thermo-) 
mechanical–reactive model by which pressure obtained 
from a mechanical model is consistent with material and 

Fig. 14   Results of Gibbs 
minimization under constrained 
pressure in a weak strongly 
elliptical inclusion approximat-
ing a fracture for a system com-
position consisting of feldspar 
(An50) and one weight percent 
water. High-pressure phases 
are predicted in the fracture 
reflecting the pressure increase 
due to decrease in differential 
stress with respect to the matrix. 
See Moulas et al. (2014) for full 
analysis of pressure in elliptical 
inclusions. See caption Fig. 12
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rheological properties of the predicted phases in thermody-
namic equilibrium. However, a correct computation method 
of thermodynamic equilibrium under a pressure gradient is 
a prerequisite to build such an inverse method.

Geodynamic implications

Current progress in research on pressure variations in meta-
morphic rocks indicates the maintenance of these pressures 
on the geological time scale. It becomes therefore challeng-
ing to decide which pressure corresponds to the regional 
pressure (i.e., should we always take the highest pressure 
found in single inclusions). The presented method can be 
used to find the pressure distribution that fits geological 
observations, but also the absolute pressures are impor-
tant in this fit, and hence, this can provide insights into the 
regional pressure value that fits the observations.

The case of plagioclase zoning around kyanite is prob-
lematic because phase diagram calculations indicate for-
mation of plagioclase around kyanite during decompres-
sion, consistent with geodynamic reconstructions of the 
area, but zoning in these plagioclase rims points to the 
opposite P–T path. It can thus be explained either as dise-
quilibrium features (i.e., with chemical potential gradients, 
Stipska et  al. 2010) or with equilibrium under a pressure 
gradient (Tajčmanová et al. 2014) in which case it is con-
sistent with experimentally determined diffusion coeffi-
cients in addition to fitting the geodynamic history of the 
region.

Conclusion

The following conclusions can be drawn:

1.	 Chemical zoning and phase assemblages indicating 
variation in pressure may reflect spatial pressure vari-
ations at equilibrium rather than recording pressure 
evolution in time due to disequilibrium. The method 
presented here can be used complementary to existing 
inverse P–T path modeling techniques for cases where 
equilibrium is expected to be reached.

2.	 Considering pressure variations in equilibrium ther-
modynamic calculations may lead to opposite zoning 
trends to what is expected from a conventional phase 
diagram. It is concluded that when pressure variation 
is known to exist (e.g., by direct measurements), con-
ventional phase diagrams are inappropriate to use in 
assessing equilibrium.

3.	 The chemical potential-based barometry and Gibbs 
minimization approach deliver the same results and 
strengthen the confidence in the reliability of both the 
barometry and the minimization technique.

4.	 Gibbs minimization extends the chemical potential-
based equilibrium under pressure variations in single-
phase binary (Tajčmanová et al. 2014) to multi-phase, 
multi-component systems. It may be used to develop 
barometric methods for multi-component, multi-phase 
systems.

5.	 Equilibrium under pressure gradients may result in 
separation into single-phase regions.

Acknowledgments  The work presented here profited from discus-
sions with various people starting at Physics of Geological Processes 
(PGP) in 2005 and from discussions with L. Tajčmanová and E. Mou-
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Appendix 1: Gibbs energy calculation

Pure phases

Partial molar Gibbs energy (g0) for mineral and liquid end-
members is generalized as a linear combination of the inde-
pendent (idp) set of end-members in the internally consistent 
thermodynamic data set of Holland and Powell (1998), here-
after referred to as HP98 data set. Enthalpy of formation of 
ordered end-members (Holland and Powell  1996) and ener-
gies for fictive end-members following from application of 
Darken’s Quadratic Formalism (Powell 1987; Holland and 
Powell 1992; Will and Powell 1992) are generalized by a sin-
gle DQF parameter:

For the independent end-members in the HP98 data set, 
the stoichiometric coefficient and the DQF parameter are 1 
and 0, respectively. Partial molar Gibbs energy of these end-
members is calculated following standard formulation (Spear 
1993), with the addition of two excess Gibbs energy terms for 
phases treated to a Landau model (Holland and Powell 1998):

Heat capacity is given by the polynomial in the caption 
of Table 5 in Holland and Powell (1998):

(9)g0 =
nidp
∑

idp=1

vidp·�G0
idp + DQF

(10)

�G0 = �f Href +
T�

Tref

Cp · dT +
P�

Pref

V · dP

� �� �

H

−T ·




Sref +

T�

Tref

Cp

T
· dT






� �� �

S

+�Gexc +�Glandau

(11)Cp = a+ b · T + c · T2 + d · T−1/2
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Volume at reference pressure (1 bar) and elevated tem-
peratures is given by Holland and Powell (1998):

Volume at elevated pressure is modeled with the Murna-
ghan equation of state rearranged for volume:

The bulk modulus is given by Holland and Powell 
(1998):

Landau model excess energy

Phases undergoing order–disorder or lambda heat capacity 
anomalies are treated with a Landau model (Holland and 
Powell 1990, 1998). The excess Gibbs energy term related 
to this model is calculated from:

With the enthalpy and entropy at reference conditions 
given in Eqs. (16) and (17):

The volume integral is evaluated again with the Murna-
ghan equation of state using the volume at reference pres-
sure and elevated temperature from:

The Landau excess energy is then obtained with:

This term is added only at temperatures below the criti-
cal temperature Tc:

The order parameter Q (and Qref evaluated at reference 
conditions) is calculated as:

(12)
V1,T = Vref ·

[

1+ a0 · (T − Tref)− 20 · a0 ·
(√

T −
√

Tref

)]

(13)
V =

V1,T
(

4·P
kT+1

)1/4

(14)kT = kref ·
(

1− 1.5 · 10−4 · (T − Tref)

)

(15)�Gexc = h
′
ref − T · s

′
ref +

P∫

Pref

v
′
T · dP

(16)h
′
ref = SmaxT

0
c ·

(

Q2
ref −

1

3
· Q6

ref

)

(17)s
′
ref = Smax · Q2

ref

(18)v
′
T =

Vmax · Q2
ref

Vref

· V1,T

(19)�GLand = Smax

(

(T − Tc) · Q2 +
1

3
· Tc · Q6

)

(20)Tc = T0
c +

Vmax

Smax
· (P − Pref)

Parameters needed in Eqs. (10)–(21) are: ΔfHref, Sref, a, 
b, c, d, Vref, a

0, kref, Tc0, Smax and Vmax. Most updated values 
of these parameters are found in the tc-ds55 file bundled 
with the most recent version of THERMOCALC (http://
www.metamorph.geo.uni-mainz.de/thermocalc). Reference 
conditions are 298.15°K at 1 bar. See Table 3 for a com-
plete list of symbols and parameters used in “Appendix 1”.

Ordered and fictive end‑members

Stoichiometric coefficients (vidp) and name of independent 
end-members in Eq.  9 are found in activity–composition 
(a–x) files bundled with THERMOCALC or individually 
downloadable from http://www.metamorph.geo.uni-mainz.
de/thermocalc. The DQF parameter capturing both the 
DQF energy of fictive end-members and the enthalpy of 
reactions forming ordered end-members is given as:

Parameters aDQF, bDQF and cDQF are found in the lines 
below the stoichiometric coefficients in the same a–x files.

Solid solutions

The partial molar Gibbs energy of mixing in solid solutions 
and melts consist of a mechanical (mech), ideal (id), and a 
non-ideal (nid) part:

Mechanical mixing Gibbs energy consists of a linear 
combination of the total number (np) of end-member Gibbs 
energies in the solution, obtained from Eq. (9) above, mul-
tiplied by its proportion p.

Ideal mixing Gibbs energy, or configurational energy, is 
obtained from the sum of crystallographic site fractions fol-
lowing Stirling’s approximation (see also the Appendix in 
Tajčmanová et al. 2009).

Definition of certain solution models results in nonzero 
site fractions for some end-members leading to nonzero 
configurational entropy for the pure end-member. This 
is corrected for by the last sum in Eq. (25), because in 

(21)Q =
(

1−
T

Tc

)1/4

(22)DQF = aDQF + bDQF · T + cDQF · P

(23)g = gmech + gid + gnid

(24)gmech =
np
∑

ip=1

g0ip · pip

(25)gid = T ·



R ·
nz�

iz=1

miz · ziz · ln (ziz)−
np
�

ip=1

s0ip · pip





http://www.metamorph.geo.uni-mainz.de/thermocalc
http://www.metamorph.geo.uni-mainz.de/thermocalc
http://www.metamorph.geo.uni-mainz.de/thermocalc
http://www.metamorph.geo.uni-mainz.de/thermocalc
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Table 3   Description of 
symbols and parameters used in 
the presented equations in the 
Appendix 1

Symbol Description Source

R Universal gas constant

Tref Temperature at reference conditions 298.15 K

Pref Pressure at reference conditions 1 bar

Pure phases (end-members, partial molar quantities)

 ΔfHref Enthalpy of formation from the elements tc-ds55

 Sref Entropy tc-ds55

 a, b, c, d Heat capacity parameters tc-ds55

 Vref Volume at reference conditions tc-ds55

 a0 Thermal expansion coefficient at reference conditions tc-ds55

 kref Compressibility at reference conditions tc-ds55

 Smax Entropy at reference conditions for use in Landau formulation tc-ds55

 Tc
0 Critical Landau transition temperature at reference pressure tc-ds55

 Vmax Volume at reference conditions for use in Landau formulation tc-ds55

 V1,T Partial molar volume at reference pressure calc

 g0 Partial molar Gibbs energy calc

 V Volume calc

 Cp Heat capacity calc

 kT Compressibility at reference pressure calc

 ΔGexc Excess Gibbs energy for Landau formulation calc

 ΔGlandau Landau Gibbs energy calc

 h’ref Enthalpy at reference conditions treated with Landau formulation calc

 s’ref Entropy at reference conditions treated with Landau formulation calc

 v’T Molar volume at reference pressure treated with Landau calc

 Qref Landau order–disorder parameter at reference conditions calc

 Tc Critical Landau transition temperature calc

Q Landau order–disorder parameter calc

 DQF Darken’s Quadratic Formalism parameter or ΔH of ordering reaction calc

 aDQF, bDQF, cDQF DQF parameters ax

Solid solutions

 ε Valance

 m Site multiplicity ax

 W0, WT, WP Margules parameter ax

 α0, αT, αP van Laar size parameter (for asymmetric formalism) ax

 nO Number of oxygens for charge balance in solution model ax

 viQ,iz Coefficient in front of site fraction in iQth equation of order variable ax

 vic,iz Coefficient in front of site fraction in icth equation of compositional variable ax

 viex,iz Coefficient in front of site fraction in iexth equation of extra constraints ax

 v
p
ind,ip

Coefficient in front of proportion in indth equation of site fractions ax

 vidp Coefficient for independent end-member energy for ordered and fictive ax

 gmech Partial molar Gibbs energy of mechanical mixing calc

 gid Partial molar Gibbs energy of ideal mixing calc

 gnid Partial molar Gibbs energy of non-ideal mixing calc

 gi Partial molar Gibbs energy of phase i calc

 np Number of end-members calc

 nz Number of site fractions calc

 p Proportion of end-member in solution calc

 neis Number of elements for the isth site calc

 z Site fraction calc

 s0 Mixing entropy for pure end-members in solution calc

 z0 Site fraction of pure end-member in solution calc

 W* Asymmetric Margules parameter calc

 φ Asymmetric proportion of end-member in solution calc

tc-ds55 = THERMOCALC dataset 5.5; calc = calculated; ax = THERMOCALC a–x model file
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principle pure phases do not contribute to ideal mixing 
energy. The configurational entropy for the pure end-mem-
bers in the solution is calculated from site fractions of pure 
end-member (z0):

For example, the anorthite end-member in ternary feld-
spar is defined as having the tetrahedral site filled half with 
Al and the other half with Si, so that both site fractions 
(Si and Al on the tetrahedral site) are half. An equivalent 
approach for chemical potentials is described in Powell and 
Holland (1993).

Non-ideal mixing Gibbs energy is generalized to account 
for ternary interaction parameters and asymmetric Van Laar 
formulation (Holland and Powell 2003):

The Margules parameters W∗
iw are multiplied by the 

product of proportions ϕ corresponding to the iwth interac-
tion parameter. The indices of ϕ for each iwth interaction 
parameter are stored in a matrix “wi.” This matrix has nw 
number of Margules parameters and ni number of end-
member indices. The number of multiplied proportions (ni) 
is depending on the solution model. Usually the Margules 
parameters are binary interaction, but for feldspar they are 
ternary interaction parameters. This corrected Margules 
parameter W∗

iw is obtained from Margules parameters Wiw 
fitted in experiments (e.g., found in literature) multiplied by 
proportions of interacting end-members and corrected by a 
size parameter (α):

The asymmetric proportion ϕ of the ith end-member is 
found from:

Both the Margules and α parameters are in principle 
pressure and temperature dependent and parameterized as:

Values for α0, αΤ, αP and W0, WT, WP are found in lit-
erature describing solution models, from a–x files bundled 
with THERMOCALC or from the solution_model.dat file 
packaged with Perple_X.

(26)s0ip = R ·
nz∑

iz=1

miz · z0ip,iz · ln
(

z0ip,iz

)

(27)gnid =
nw∑

iw=1

W∗
iw ·

ni∏

ip=1

ϕwiip,iw

(28)W∗
iw = Wiw ·

ni ·
(∑np

k=1 αk · pk
)

∑ni
ip=1 αwiip,iw

(29)ϕi =
pi · αi

∑np
j=1 pj · αj

(30)W = W0 +WT · T +WP · P

(31)α = α0 + αT · T + αP · P

Site speciation

Finding the site fractions as function of mineral com-
positions is done by setting up a linear system of equa-
tions. The first set of equations is found by the definition 
that site fractions on each site sum up to 1. This gives ns 
(number of sites) equations. For each isth site, the equa-
tion is:

The second set of equations is given by the definition of 
compositional variables:

In case of order–disorder in a mineral, for each ordered 
end-member, an extra equation is required that defines the 
order parameter.

Then, any extra assumptions form additional equations 
(e.g., equal distribution of an element over different sites):

If the system of equations is not closed, a charge balance 
equation can be added to ensure electro-neutrality:

After the site fractions have been found as func-
tion of compositional variables, the proportions of end-
members as function of site fractions can be solved from 
the obtained matrix of site fractions and proportions of 
end-members.

The first equation is always the constraint that propor-
tions sum up to 1:

For the remaining equations, the independent set of equa-
tions of site fraction as function of proportion is chosen:

(32)

nz∑

i=1

zis,iz · vis,iz = 1

(33)

nz∑

iz=1

ziz · vic,iz = Cic

(34)

nz∑

iz=1

ziz · viQ,iz = QiQ

(35)

nz∑

iz=1

ziz · viex,iz = 0

(36)

nz∑

iz=1

ziz · miz · εiz = 2 · nO

(37)

np
∑

ip=1

pip = 1

(38)zind =
np
∑

ip=1

pip · ν
p
ind,ip
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Appendix 2: Site speciation and proportion 
calculation example

Clinoamphibole

For clinoamphibole from Diener et  al. (2007) (closely 
resembling orthoamphibole from the same authors), identi-
cal to cAmph(DP) or cAmph(DP2) in Perple_X, the crys-
tallography can be tabulated as:

Site 1 Site 2 Site 3 Site 4 Site 5

Crystallography A M13 M2 M4 T1

Multiplicity 1 3 2 2 4 (1)

Site fraction z1 z2 z3 z4 z5 z6 z7 z8 z9 z10 z11 z12 z13 z14

Charge 0 1 2 2 2 2 3 3 2 2 2 1 4 3

Element V Na Mg Fe Mg Fe Al Fe3 Ca Mg Fe Na Si Al

The brackets indicate a multiplicity which is employed 
by Diener et  al. (2007) to calculate ideal mixing energy 
rather than using the actual site multiplicity (see also com-
ments in solution_model.dat file from the current version of 
Perple_X software package). For charge balance in equa-
tions below, the correct multiplicity (4) is used.

From this the set of equations, to find site fraction can 
be written:

(39)
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The last two equations to close the system are unknown 
site fractions that need to be varied independently. They 
function like an order–disorder parameter such as Q’s used 
in THERMOCALC formulations (Eq. 34).

Solving this for site fraction z gives:

Substituting the compositional variables (Al, Fe, Mg, Ca, 
Na and Fe3+) for each end-member (found in the tc-ds55 
database file) and the site fractions for the ordered end-
members (a and b) gives the site fractions in the table below:

(40)

z1 =
9

2
−

3

4
Na−

1

2
Mg−

1

2
Ca−

1

2
Fe−

1

4
Fe3+ −

1

4
Al

z2 =
3

4
Na−

7

2
+

1

2
Mg+

1

2
Ca+

1

2
Fe+

1

4
Fe3+ +

1

4
Al

z3 = 1− z
M13
Fe

z4 = z
M13
Fe

z5 = −
3

4
+

1

4
Mg+

1

4
Ca+

1

4
Fe−

1

8
Fe3+ −

1

8
Al+

1

8
Na− z

M2
Fe

z6 = z
M2
Fe

z7 =
7

4
−

1

4
Mg−

1

4
Ca−

1

4
Fe−

3

8
Fe3+ +

1

8
Al−

1

8
Na

z8 =
1

2
Fe3+

z9 =
1

2
Ca

z10 = −
3

4
+

3

2
z
M13
Fe + z

M2
Fe −

1

4
Fe−

1

8
Na+

1

4
Mg−

1

4
Ca

+
1

8
Fe3+ +

1

8
Al

z11 = −
3

2
z
M13
Fe − z

M2
Fe +

1

2
Fe

z12 =
7

4
+

1

8
Na−

1

4
Mg -

1

4
Ca−

1

4
Fe−

1

8
Fe3+ −

1

8
Al

z13 =
15

8
−

1

8
Mg−

1

8
Ca−

1

8
Fe−

3

16
Fe3+ −

3

16
Al−

1

16
Na

z14 = −
7

8
+

1

8
Mg+

1

8
Ca+

1

8
Fe+

3

16
Fe3+ +

3

16
Al+

1

16
Na

z1 z2 z3 z4 z5 z6 z7 z8 z9 z10 z11 z12 z13 z14

tr p1 1 0 1 0 1 0 0 0 1 0 0 0 1 0

ts p2 1 0 1 0 0 0 1 0 1 0 0 0 ½ ½

parg p3 0 1 1 0 ½ 0 ½ 0 1 0 0 0 ½ ½

gl p4 1 0 1 0 0 0 1 0 0 0 0 1 1 0

cumm p5 1 0 1 0 1 0 0 0 0 1 0 0 1 0

grun p6 1 0 0 1 0 1 0 0 0 0 1 0 1 0

a p7 1 0 1 0 0 1 0 0 0 0 1 0 1 0

b p8 1 0 0 1 1 0 0 0 0 0 1 0 1 0

mrb p9 1 0 1 0 0 0 0 1 0 0 0 1 1 0

Choosing the independent equations from the columns 
in the table above along with the requirement that the end-
members sum up to one gives:

Solving for p gives:

Appendix 3: Pressure constraints example

As an example, here the equations for the pressure con-
straints in a system with three different pressures, three 
phases and three compositions are spelled out.

The pressure constraints:

(41)

1 = p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9

z1 = p1 + p2 + p4 + p5 + p6 + p7 + p8 + p9

z3 = p1 + p2 + p3 + p4 + p5 + p7 + p9

z5 = p1 +
1

2
p3 + p5 + p8

z6 = p6 + p7

z7 = p2 +
1

2
p3 + p4

z9 = p1 + p2 + p3

z10 = p5

z11 = p6 + p7 + p8

(42)

p1 =
1

2
z1 + z5 + z6 − z10 − z11 −

1

2

p2 =
1

2
z1 − z5 − z6 + z9 + z10 + z11 −

1

2

p3 = 1− z1

p4 = z5 + z6 + z7 − z9 − z10 − z11

p5 = z10

p6 = 1− z3 + z6 − z11

p7 = z3 + z11 − 1

p8 = −z6 + z11

p9 = 1− z5 − z6 − z7

(43)

α1
1 + α1

2 + α1
3 = π1

sys

α2
1 + α2

2 + α2
3 = π2

sys

α3
1 + α3

2 + α3
3 = π3

sys



	 Contrib Mineral Petrol (2015) 170:10

1 3

10  Page 24 of 27

The Gibbs energy function is to be minimized:

The system composition constraints look similar to 
Eq. 44, for example, in case of having a component xCaO:

(44)

gsys = α1
1 g1|P1 + α1

2 g2|P1 + α1
3 g3|P1 + α2

1 g1|P2 + α2
2 g2|P2

+ α2
3 g3|P2 + α3

1 g1|P3 + α3
2 g2|P3 + α3

3 g3|P3

For MATLAB, the constraint equations are written in 
matrix form resulting in:

(45)

xCaOsys = α1
1x

CaO
1 + α1

2x
CaO
2 + α1

3x
CaO
3 + α2

1x
CaO
1

+ α2
2x

CaO
2 + α2

3x
CaO
3 + α3

1x
CaO
1 + α3

2x
CaO
2 + α3

3x
CaO
3

(46)













x
SiO2
1 x

SiO2
2 x

SiO2
3 x

SiO2
1 x

SiO2
2 x

SiO2
3 x

SiO2
1 x

SiO2
2 x

SiO2
3

xCaO1 xCaO2 xCaO3 xCaO1 xCaO2 xCaO3 xCaO1 xCaO2 xCaO3

x
Al2O3

1 x
Al2O3

2 x
Al2O3

3 x
Al2O3

1 x
Al2O3

2 x
Al2O3

3 x
Al2O3

1 x
Al2O3

2 x
Al2O3

3

1 1 1 0 0 0 0 0 0

0 0 0 1 1 1 0 0 0

0 0 0 0 0 0 1 1 1

1 1 1 1 1 1 1 1 1





























α1
1

α1
2

α1
3

α2
1

α2
2

α2
3

α3
1

α3
2

α3
3

















=














x
SiO2
sys

xCaOsys

x
Al2O3
sys

π1
sys

π2
sys

π3
sys

1














The optimization algorithm (function linprog in MAT-
LAB) then searches for the alpha’s between 0 and 1 that 
gives the minimum of Eq. 44 satisfying the equality matrix 
in Eq. 46. See Appendix 4 for code examples.

Appendix 4: Code examples

Code for standard P–T diagram calculation:
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An example code to do minimization in presence of a pressure gradient:
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