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Abstract

Motivation: Only a few large systematic studies have evaluated the impact of copy number vari-

ants (CNVs) on common diseases. Several million individuals have been genotyped on single nu-

cleotide variation arrays, which could be used for genome-wide CNVs association studies.

However, CNV calls remain prone to false positives and only empirical filtering strategies exist in

the literature. To overcome this issue, we defined a new quality score (QS) estimating the probabil-

ity of a CNV called by PennCNV to be confirmed by other software.

Results: Out-of-sample comparison showed that the correlation between the consensus CNV status

and the QS is twice as high as it is for any previously proposed CNV filters. ROC curves displayed

an AUC higher than 0.8 and simulations showed an increase up to 20% in statistical power when

using QS in comparison to other filtering strategies. Superior performance was confirmed also for

alternative consensus CNV definition and through improving known CNV-trait associations.

Availability and Implementation: http://goo.gl/T6yuFM

Contact: zoltan.kutalik@unil.ch or aurelien@mace@unil.ch

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Genetic variations range from single nucleotide variations (SNPs) to

large chromosomal rearrangement (aneuploidy). Within this spec-

trum deleted, inserted and duplicated stretches of nucleotides longer

than 1 kb (sometimes 500 bp with the use of deep coverage Next-

Generation Sequencing) are referred to as copy number variants

(CNVs) (Feuk et al., 2006; Valsesia et al., 2013). CNVs have been

found genome-wide in both disease and healthy populations

(Craddock et al., 2010; Grozeva et al., 2010; Iafrate et al., 2004;

Itsara et al., 2009; Jacquemont et al., 2011; Mannik et al., 2015;

Redon et al., 2006; Walters et al., 2010; Zhang et al., 2009). Their

function has been widely studied, in the context of the rare

diseases—rare variant paradigm (Jacquemont et al., 2011; Walters

et al., 2010; Zarrei et al., 2015; Zufferey et al., 2012) or as motor of

evolution (Feuk et al., 2006; Nguyen et al., 2008; Sudmant et al.,

2015). Association with complex traits such as BMI has been shown

in the case of the 16p11.2 rearrangement (Jacquemont et al., 2011;

Walters et al., 2010; Zufferey et al., 2012), but also with cognitive

functions in several general population cohorts [Decode (Stefansson

et al., 2014) and Estonia (Mannik et al., 2015)]. Most successful

CNV association studies are based on candidate gene approaches

(Brasch-Andersen et al., 2004; Fanciulli et al., 2007; Gonzalez et al.,

2005; McKinney et al., 2008; Yang et al., 2007) and—unlike

SNPs—their genome-wide impact has not yet been fully elucidated.
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Consequently, large genome-wide CNV studies would be instrumen-

tal to decipher the impact of genetic rearrangements underlying

complex traits and disease susceptibility.

Initially, extremely large copy number alterations (>3–5 mega-

bases) were detected using karyotyping (Dowjat and Wlodarska,

1981; Nister et al., 1987; Pepler et al., 1968). Then, fluorescence in

situ hybridization increased the resolution enabling the detection of

sub-microscopic events (Feuk et al., 2005, 2006; Ravnan et al., 2006).

Nowadays, CNVs can be detected using different molecular technolo-

gies and methods. NGS technologies allow sequencing millions of

reads in parallel and new methods for structural variants analysis

have been developed, including paired-end mapping, read-depth ana-

lysis, split-read strategies and sequence assembly comparisons (Tan

et al., 2014; Valsesia et al., 2013; Zhao et al., 2013). The other main

methods to detect CNVs are based on micro-array technologies, either

Comparative Genome Hybridization (CGH) arrays (Carter, 2007;

Kallioniemi et al., 1992; Redon et al., 2009; Ylstra et al., 2006) or

SNP genotyping arrays (Conrad et al., 2006; McCarroll et al., 2006).

We focused on CNV detection based on SNP genotyping arrays,

as millions of individuals have already been genotyped on SNP

arrays and many of these samples were used in meta-analysis of

Genome-Wide Association Studies (GWAS) (Locke et al., 2015;

Wood et al., 2014). Thus, a wealth of unexploited information re-

mains available in these cohorts and could be re-analyzed for

genome-wide CNVs association. The flip side of using genotyping

arrays is the lower reliability of the CNV detection, as these plat-

forms were not initially designed to detect such genomic events.

However, more recent ones can contain CNV probes.

Despite this limitation, several algorithms have been developed

for CNV detection. At each probe, a relative copy number ratio can

be obtained by combining the intensities of the two alleles and nor-

malizing this quantity with respect to a reference (log R ratio—

LRR). Deviation from the copy number ratio baseline will corres-

pond to either a loss or gain. Several publicly available software

(Valsesia et al., 2013) improve copy number calls by exploiting the

ratio of allelic intensities (normalized measure of the signal intensity

ratio of the B and A alleles—B Allele Frequency—BAF). In this art-

icle, we focus on the PennCNV software (Wang et al., 2007), cur-

rently the most widely used software for Illumina chips (PennCNV:

955 citations—QuantiSNP: 432 citations). This software, based on

a Hidden Markov Model (HMM), is extensively used for CNV de-

tection on SNP. Its speed is a key advantage as number of available

samples increase at an unprecedented scale.

Nevertheless, CNV detection remains prone to false positives,

which adds noise when such calls are used for trait association.

There is a need to develop a new quality score (QS) for CNVs de-

tected by PennCNV, prior to performing CNV-based association

studies. Our contribution can be viewed as a post-processing step of

PennCNV calls, whereby various CNV metrics are combined to esti-

mate the probability of a called CNV to be a likely consensus call.

This probability could then be used as copy number dosage for trait

associations. We chose to improve CNV detection in a way that is

directly applicable for large meta-analytic GWAS, where analysts

preferably want to run only a single and fast CNV calling pipeline

and provide association summary statistics from various platforms.

2 Methods

2.1 Cohorts
HYPERGENES is a case/control cohort of 4206 individuals, where

controls were selected based on the absence of hypertension while

cases were hypertensive (Salvi et al., 2012). Genotyping was done

on Illumina 1M-Duo BeadChips capturing 1 199 187 SNPs and was

performed in two different centers, one in Geneva and one in

Milano; leading to two sub cohorts: HYPERGENES Geneva with

1995 individuals and HYPERGENES Milano with 2,211 individ-

uals. The GenomeStudio software produced final reports with LRR

and BAF values.

The Swiss Hepatitis C Cohort Study (SCCS) is a prospective mul-

ticentre study carried out in Switzerland and recruiting HCV-

positive patients (Prasad et al., 2007). A total of 1152 patients were

genotyped on the same Illumina platform as HYPERGENES indi-

viduals. The GenomeStudio software produced final reports with

LRR and BAF values.

The Swiss Kidney Project on Genes Hypertension (SKIPOGH) is

a population-based cross-sectional family study that examines the

genetic determinants of blood pressure. The study population

included 1128 participants from 271 nuclear families. In our project

we used genetic data from 169 trios genotyped on Illumina 2.5.

(Ponte et al., 2014; Pruijm et al., 2013).

The UK BioBank is a study of 500 000 individuals from the UK

aged between 37 and 73 years and genotyped on Affymetrix Axiom

(http://www.ukbiobank.ac.uk/). Data from 119 873 individuals,

with genetics and BMI information, were used in the scope of this

project.

2.2 CNV calling
CNVs were called using three different software: PennCNV (Wang

et al., 2007), QuantiSNP (Colella et al., 2007) and CNVpartition

(http://www.illumina.com/documents/products/technotes/technote_

cnv_algorithms.pdf). PennCNV is a HMM based software de-

veloped to call CNVs using LRR and BAF values for each sample

genotyped on Illumina platform. A ‘population BAF’ (PFB) file was

created for each cohort based on 200 randomly selected final re-

ports. The clean_cnv.pl script was called with default parameters to

merge adjacent CNVs with small gaps. Samples with more than 200

CNVs were excluded from further analysis. QuantiSNP is also a

HMM-based software developed to call CNVs using LRR and BAF

values. CNVpartition, developed by Illumina, defines 14 different

copy number states and for each of them, jointly models the LRRs

and BAFs as a bivariate Gaussian distribution. Based on these distri-

butions, it calculates the likelihood of each of the 14 states for a

given LRR and BAF. For all three software, CNVs were called using

default parameters.

2.3 Consensus CNV
For each CNV detected by PennCNV, we looked at the fraction de-

tected by the two other software, a percentage of agreement for each

CNV is then calculated. Zero percent agreement means that none of

the CNV probes called by PennCNV is detected by the two other

software, 50% means that half of the CNV probes are detected by

all the other software and 100% means that all the probes within

the CNV are retrieved by both CNVpartition and QuantiSNP. We

considered a CNV to be a consensus call if its percentage of agree-

ment is above 70%, meaning that the two other software detect at

least 70% of it. We used this working definition of a consensus

CNV. Other definitions could be imagined (see Section 4), but we

chose this mainly due to data availability in large samples.

2.4 Modeling consensus calls
For each CNV detected by PennCNV we would like to predict

whether the two other software would confirm it, i.e. whether it is a
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consensus call. To this end, we modeled the dichotomized overlap

percentage, as a function of various PennCNV parameters using a

logistic model (see Equation 1). Ten available parameters were con-

sidered: confidence score, CNV length, number of probes, LRR

mean, LRR standard deviation, BAF mean, BAF standard deviation,

waviness factor (WF) and the total number of CNVs per individual.

For more information regarding the definition of the quality metrics,

please refer to the Supplementary Table S1, to the PennCNV de-

scription (Wang et al., 2007) and the associated website (http://

penncnv.openbioinformatics.org/en/latest/). The first three param-

eters characterize each CNV in a specific sample, while the others

correspond to the global signal quality for each individual.

PrðY ¼ 1jV1;V2; . . . ;V10Þ ¼ logit b0 þ
X10

i¼1
biVi

� �
(1)

Variable Y was defined as 1 if the CNV was confirmed by the two

other software and zero otherwise. It is the collection of values for

all probes and all samples. Variables Vi represent the various CNV/

sample parameters provided by the PennCNV software. Step-wise

logistic regression using the R function step was performed separ-

ately for deletions and duplications. Coefficients bi with a corres-

ponding P-value below 10�5 were considered as significant and

were set to zero otherwise. Coefficients were estimated separately

for each test cohort and used for cross-validation purposes. In the

future, the mean of these coefficients can be used for new cohorts.

Furthermore, as the coefficients are correlated, we are less interested

in their actual values but rather in their combination.

2.5 QS calculation
The coefficients from the logistic model obtained from one/some co-

hort(s) can be used to estimate the probability of a CNV being a

consensus call in other cohorts. We termed this quantity as QS,

hence its value indicates the probability of a CNV called by

PennCNV parameters being a consensus call.

QScnv ¼
1

1þ expð�ðb0 þ
Xn

i¼1
biViÞÞ

(2)

These values are multiplied by �1 in case of deletions to retain

both quality and copy number information. Note that the variables

used in the formula are only the ones retained after stepwise selec-

tion (in the independent data set).

2.6 Previous measures of CNV quality
As PennCNV calls admittedly contain many false positives, popu-

lar filtering criteria have been recommended and applied in many

studies (Chettier et al., 2014; Glessner et al., 2013; Palta et al.,

2015; Pinto et al., 2011; Wang et al., 2007). We tested different

quality metrics filtering combinations to compare with our QS

(Table 1).

2.7 Quality metric comparison through correlation
To evaluate the performance of our newly proposed CNV QS and

previously applied metrics, we compared how well the different

CNV quality metrics agree with the consensus calls defined by soft-

ware overlap. First, for each cohort, Spearman correlation between

the consensus CNV status and CNV quality metrics were calculated.

We compared the confidence score, the different filters and the QS.

The QS coefficients were based on the average coefficients leaving

out the test cohort.

2.8 Quality metric comparison through receiver

operating characteristic curve
To evaluate the discriminatory power of the proposed QS, we

computed the receiver operating characteristic (ROC) curve and

estimated the area under the curve (AUC). The QS (based on the

leave-one (cohort)-out cross-validation) was used as the predictor

and the consensus CNV status as the response. Two different defin-

itions of the consensus CNV status were used. The first one con-

siders all the CNVs and defines a consensus CNV as one detected by

the three software and false CNV all the others. The second defin-

ition was the same as the first, but ignored all CNVs that were called

by two software only.

2.9 Quality metric comparison through simulated

CNV-phenotype association
Simulations were done at the probe level. When two probes have the

same profile across all samples, we kept only one representative.

Then, for each cohort, we assessed the performance of the QS. We

first converted the CNVs metrics into (no. of probes � no. of sam-

ples) tables in order to overcome the problem of different CNVs

boundaries across samples. We then simulated association between

an in silico phenotype and: (i) PennCNV raw CNV calls, (ii)

PennCNV confidence score, (iii) the different filters, (iv) the QS

based on the average coefficients leaving out one cohort. Then simu-

lations were done for each probe separately. For a specific probe, an

in silico phenotype is simulated based on the consensus CNV status

(defined as the overlap between the three software), an effect size

and noise (Equation 3). The effect sizes (b) ranged from 0 to 3 by a

step of 0.05 and the noise (e) was set to follow a standard Gaussian

distribution (mean¼0, variance¼1):

y ¼ CNVconsensus � bþ e (3)

Linear regressions were then performed to derive association be-

tween this in silico phenotype and the estimated CNV status (based

on filtered CNVs, confidence score or QS). We ran thousand simula-

tions for each effect size, and we estimated the statistical power to

detect an association at a¼10�3. Simulations were done separately

for deletions and duplications. Within each cohort, we calculated,

for each probe, the CNV frequency (Equation 4) and the precision

(Prec) (Equation 5).

CNVFreq ¼
#calledCNVS

#samples
(4)

Table 1. Quality metrics used in different articles to filter CNVs

Filter

A

Filter

B

Filter

C

Filter

D

Filter

E

LRR sd �0.25 <0.3 <0.24 <0.3 �0.27

BAF drift �0.002 <0.01

BAF sd �0.05 �0.13

jWFj �0.04 <0.05 <0.05 <0.05

No. CNVs <100 <100

Call rate >0.99 >0.98 �0.98

Confidence �5

No. Probes �10 �5

Length �1 kb �1 kb

These filters were used to evaluate the performance of our QS in compari-

son to what is usually used in the literature: filters A (Palta et al., 2015), B

(Wang et al., 2007), C (Chettier et al., 2014), D (Glessner et al., 2013) and E

(Pinto et al., 2011).
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CNVPrec ¼
#consensusCNVS

#calledCNVS
(5)

CNVs probes were classified according to their precision and fre-

quency. Power computations are presented for 30 (¼5 � 6) different

bins of frequency (5 bins) and precision (6 bins) combinations. CNV

frequency bins boundaries were set at 0, 1, 5, 10, 15, 20 and 100%.

Precision bins boundaries were set at 0, 10, 20, 30, 40, 50 and

100%.

2.10 QS validation for other consensus definition
We used pennCNV to call CNV on the 169 trios from the

SKIPOGH study. We defined consensus CNVs as those called by

pennCNV both for the proband and at least one of its parents. For

all CNVs called for the probands we calculated the QS and also

applied the different filters. To assess the agreement between con-

sensus CNV status and the different measures we used logistic re-

gression with consensus status as outcome and (i) QS value, (ii)

confidence score, (iii) the different filters as predictors.

2.11 Recovering the known 16p11.2

CNV-BMI association
We called CNVs in the 16p11.2 region in 119 873 UK BioBank par-

ticipants using pennCNV. For each CNV a QS was estimated and

the different filters were applied. Then for the entire cohort, we cal-

culated the association between the inverse quantile normalized

BMI and (i) QS, (ii) the confidence score, (iii) the raw copy number

state and (iv) the different filters.

3 Results

3.1 Percentage of agreement
The percentage of CNVs detected by PennCNV and confirmed by

the two other software is between 20 and 30% (Supplementary

Table S2, Supplementary Figs. S1–S3). The results are consistent

across the three cohorts with a slightly better percentage of agree-

ment for the duplications than for the deletions. These results mean

that three quarters of the PennCNV calls may be false positives, add-

ing noise to downstream analyses. It confirms the necessity to de-

velop a new quality measure that estimates the probability of a

CNV call to be a consensus call, in order to increase detection power

and avoid spurious associations due to systematic artifacts.

3.2 QS coefficients
For each CNV (called by PennCNV), its QS is computed to estimate

the probability of being a consensus call (see Section 2). The QS is

derived from a logistic model, whose coefficients (for each CNV and

sample characteristic) were estimated separately for deletions and

duplications using three cohorts. Coefficients with significant

P-value (<10�5) were kept for the final model (Supplementary

Tables S3–S5). As expected, the confidence score provided by

PennCNV is the parameter with the strongest contribution (coeffi-

cient ranging from 2.21 to 4.77, P < 10�300). It confirms that CNVs

with high confidence scores are more likely to be consensus calls.

The number of CNVs per individual has a negative coefficient (rang-

ing from �0.57 to �0.17), which means that CNVs called from

sample with few CNVs are most probably consensus calls.

Interestingly, the coefficients of the mean LRR have opposite values

between deletions and duplications. This behavior is consistent

across the three cohorts and is unlikely by chance. This is due to the

fact that, for a deletion, it is easier to detect a drop in the intensity

signal if the global LRR mean value is high. The contrary applies for

duplications. The negative coefficients for the number of probes

might appear counterintuitive. But in the case of multivariate regres-

sion, the estimates of correlated variables (e.g. the correlation be-

tween PennCNV confidence score and the number of probes was 0.

56) are difficult to interpret. Furthermore, in a univariate model, the

number of probes has a significant positive estimate for the duplica-

tions in all the three cohorts. Regarding the deletions, estimates are

either positive or not significant.

3.3 QS distribution
QS values have been computed separately for deletions and duplica-

tions on the three samples groups coming from two cohorts. The dis-

tribution of the QSs (Panels A and B Supplementary Figs. S4–S6)

shows a bimodal distribution: most of the CNVs are either of bad or

good quality, and only few stand in between. As seen for the per-

centage of agreement, the majority of CNVs are most likely false

positive. If one prefers to work with dichotomized CNV calls, we

recommend to declare CNVs with QS > 0.5 as consensus CNVs

(Mannik et al., 2015).

The CNV frequency distribution (Panels C–D Supplementary

Figs. S4–S6) reveals that the majority of deletions with low fre-

quency (�3%) are of bad quality (QS < 0.5). On the contrary, most

of the duplications with a frequency lower than 0.4% have a high-

QS (QS � 0.9). A large part of the deletions with frequency�3%

have intermediate (0.5 � QS < 0.9) or high (QS � 0.9) QS, likewise

for duplications with frequency � 10%. Since CNVs are called per

sample, frequency might be a predictor. These results show that

using our QS to filter CNVs may be particularly useful in the case of

rare deletions. In the case of duplications, the advantage is less ap-

parent and would be more relevant for intermediate frequencies (be-

tween 0.4 and 10%).

Regarding the length (Panels E and F Supplementary Figs. S4–

S6), almost all the CNVs with high QS are longer than 10 kb. It con-

firms the difficulty to detect small CNVs on SNP array platforms.

When applied to CNV-phenotype associations, our QS has the po-

tential to reduce the noise created by false calls especially for CNVs

with length <75 kb. It would increase the power to detect associ-

ations with short CNVs, which have not yet been implicated with

any complex traits.

3.4 Quality metric comparison through correlation
The correlation of the consensus CNV status (defined by the overlap

between the three software) with the QS (based on the leave-one (co-

hort)-out cross-validation) is twice as high as with the classical fil-

ters for all types of CNVs and all cohorts (e.g. 0.53 versus 0.26 for

Hypergenes GVA and all CNV types; 0.45 versus 0.22 for SCCS and

all CNV types; see Table 2 and Supplementary Tables S6–S7). This

score has also a �20% higher correlation than the confidence score

for the deletions and has similar performance for the duplications.

The correlations are consistent over the three cohorts and are

slightly higher for deletions than for duplications. Table 2 points out

the unexpectedly low performance of the classical filters, which per-

form much worse than the confidence score provided by PennCNV.

To summarize, in case of deletions, our QS is a better proxy for the

consensus calls than the classical filtering or the PennCNV confi-

dence score.

Although the above table reports only average performance for

the whole genome, we give a graphical overview of the distribution

of correlations according to CNV frequency and detectability (preci-

sion). The box plots (Fig. 1) show detailed performance for CNVs

New CNV quality measure for SNP array 3301

http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw477/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw477/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw477/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw477/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw477/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw477/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw477/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw477/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw477/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw477/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw477/-/DC1


with frequency 1–5% and detectability 10–20% in the Hypergenes

Geneva samples. Results were comparable for other frequency

ranges and other cohorts (Supplementary Figs. S7–S9). In summary,

classical filters perform worse than our QS and the confidence score

from PennCNV. In general, our QS performs discernably better than

the confidence score mainly for low frequency CNVs (�5%) and

poor detectability (�30%). When the frequency and detectability in-

crease, the performances of these two quality metrics become more

and more similar. These results are concordant with the frequency

distribution figure (Supplementary Figs. S4–S6) and correlation

table (Table 2).

3.5 Quality metric comparison through ROC curve
To estimate the discrimination power of our QS to retrieve consen-

sus calls, we computed the ROC curves for all the CNVs, only

deletions and only duplications for the Hypergenes Geneva samples

(Fig. 2—results for the other cohorts are presented in the

Supplementary Figs. S13–S14). AUC are respectively equal to 0.845,

0.871 and 0.774 confirming that the QS recovers well the consensus

calls. A threshold of 0.8 will give a specificity of �99% with sensi-

tivity between 25 and 30%, while a threshold of 0.5 will have speci-

ficity around 96% for sensitivity between 40 and 50%. Based on

these results, we recommend using a QS threshold between 0.5 and

0.8 to filter CNVs, if necessary. As comparison, the others filters

stand all below the ROC curves (Fig. 2), showing that our QS offers

better sensitivity and specificity.

3.6 Quality metric comparison through simulated

CNV-phenotype association
The previously reported comparisons only reflect how different fil-

ters compare to each other, but do not reveal how much power im-

provement they could offer in association studies relative to each

other or to no filtering. To this end, we performed simulation studies

for deletions and duplications separately. Exhaustively sampling

CNVs of different characteristics shows an increase up to 20% in

statistical power of our QS in comparison to the other quality met-

rics, for probes with low frequency and detectability (CNVs fre-

quency �5%; detectability �30%). Figure 3 illustrates power curves

for CNVs with frequency between 1 and 5% and precision 10-20%

for samples of the Hypergenes Geneva cohort As these two param-

eters increase, all the CNV quality metrics start to perform similarly

and the power curves overlap. Results for other frequency ranges

and other cohorts are shown in Supplementary Figures S15–S17.

Surprisingly, for most scenarios, classical filters have inferior per-

formance compared with keeping all CNVs without any filtering. It

seems that classical filters also remove too many consensus calls and

hence decrease power (this explains why the detection power

reaches a plateau below 100% in some cases). These simulations

show that our QS offers considerable advantage over other quality

metrics in particular for rare deletions overlapping poor quality

Table 2. Correlation, for HYPERGENES Geneva samples, between

the consensus CNV status and the different quality metrics and

filters

HYPERGENES

Geneva

QS Conf

score

Filter

A

Filter

B

Filter

C

Filter

D

Filter

E

All 0.53 0.37 0.24 0.26 0.25 0.26 0.17

Deletions 0.55 0.36 0.27 0.31 0.25 0.30 0.18

Duplications 0.45 0.42 0.16 0.11 0.23 0.12 0.10

A (Palta et al., 2015), B (Wang et al., 2007), C (Chettier et al., 2014), D

(Glessner et al., 2013) and E (Pinto et al., 2011).
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Fig. 1. Boxplots corresponding to the correlations between the consensus

CNV status (defined by the overlap between the three software) and quality

metrics such as QS, PennCNV confidence score and classical filters: A (Palta

et al., 2015), B (Wang et al., 2007), C (Chettier et al., 2014), D (Glessner et al.,

2013) and E (Pinto et al., 2011), as defined in the method section. Calculations

were done for deletions on the Hypergenes Geneva samples. CNVs were

classified according to their precision and frequency. The frequency range for

this boxplot is between 1 and 5% while the precision range is between 10 and

20%. The N number corresponds to the number of unique probes being in

the precision and CNV frequency window (Color version of this figure is avail-

able at Bioinformatics online.)

Fig. 2. ROC curve using the QS (based on the leave-one (cohort)-out cross-val-

idation) as predictor and the consensus CNV status as the response. The con-

sensus CNVs are the ones detected by the three software, all the others are

defined as false. The plot is based on the Hypergenes Geneva individuals. In

black are the results for all the CNVs, in blue for the deletions only and in red

for the duplications only. The cross and the star dots give the specificity and

sensitivity using a QS threshold of 0.8 and 0.5 respectively. Other symbols cor-

respond to the different filters: A (Palta et al., 2015), B (Wang et al., 2007), C

(Chettier et al., 2014), D (Glessner et al., 2013) and E (Pinto et al., 2011) (Color

version of this figure is available at Bioinformatics online.)
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probes. Comparable simulations have been made for duplications

(see Supplementary Figs. S18–S20) and, in accordance with the cor-

relation analysis, our QS performs similarly to the confidence score

or the raw copy number. Here again, the classical filters perform the

worst. Note that our simulations were based on small samples (n <

2000), hence large simulated effect sizes were necessary to reach

high meaningful power.

3.7 QS validation for other consensus definition
We estimated the performance of the QS by using a different defin-

ition of the consensus CNV status. A CNV detected in an offspring

was defined to be consensus if it was also detected in at least one of

the two parents. This definition doesn’t take into account de novo

CNVs but their occurrence is relatively low (Veltman and Brunner,

2012). Using this consensus definition, our QS (P¼4*10�80) clearly

outperforms all classical filters (P > 2*10�40) and the confidence

score (P¼7*10�60) from pennCNV, considering all the CNVs to-

gether (Supplementary Table S8) as well as when looking at deletions

and duplications separately (Supplementary Tables S9 and S10).

3.8 Recovering the known 16p11.2 CNV-BMI association
Two CNVs in the 16p11.2 region are robustly associated with BMI

(Jacquemont et al., 2011; Zufferey et al., 2012). Therefore, they can

be used to benchmark the performance of the different quality meas-

ures: Stronger association of these CNVs with BMI is an indicator of

performance. We computed the association between BMI and (i) the

QS, (ii) the confidence score, (iii) the raw copy number state and (iv)

the different filters for CNVs detected in the 16p11.2 region using

119 873 individuals from the UK BioBank. The association P-values

for QS were on average >10-fold smaller than for any that of the

other CNV measures. The QQplot (Supplementary Fig. S21) clearly

shows inflation for low P-values in this region. However, this infla-

tion is stronger when using the QS as genotypic data compared with

using any raw data or filters. Furthermore, the fraction of probes, in

this region, that pass the genome-wide significance level at 2*10�7 is

clearly higher when using our QS (44.4%) than any of the other

CNV measures (39.6% at best, Supplementary Table S11).

4 Discussion

Our QS has been built in order to estimate the probability of a CNV

to be a consensus call based on the fact that consensus CNV is

defined as the overlap of CNV calls from three distinct software

applied to Illumina genotyping arrays. We have demonstrated

through ROC, correlation and power analyses that our QS can bet-

ter recover consensus CNVs than other CNV quality metrics.

Naturally, many other consensus definitions could be used. For ex-

ample, CNVs called by only one other software may not necessarily

be false and hence could have been classified as neither false, nor

true calls. This definition of consensus, however, did not change the

conclusions (Supplementary Figs. S22–S24). Using trio data, we

have also explored a definition where CNV calls confirmed in (at

least) one of the parents are deemed as consensus CNVs. Notably,

our QS recovered these consensus calls significantly better than

other quality measures and filters. Finally, we demonstrated the ad-

vantage of the QS through (re-)discovering the known 16p11.2

CNV-BMI associations in the UK Biobank. Here again, association

P-values for the QS were >10-fold smaller than those of any other

CNV quality metric.

We thus recommend the use of this metric, as a probabilistic

CNV dosage for CNV association studies. This metric has been used

to search association between CNV load and cognitive phenotypes

in unselected populations (Mannik et al., 2015). Our CNV calls reli-

ably led to stronger association results and retrieved the same CNV

frequencies as in the discovery cohort [where some CNVs have been

manually confirmed (Mannik et al., 2015)].

It would have been possible to define the consensus as the over-

lap between CNV calls from multiple genotyping technologies [e.g.

genotyping arrays, array CGH (aCGH) or whole genome sequenc-

ing (WGS)] applied for the same study participants. Unfortunately,

even though aCGH is widely used for CNVs detection in clinical set-

tings, there is no gold standard software (Hupe et al., 2004; Pique-

Regi et al., 2008; Valsesia et al., 2012; van Houte et al., 2010;

Venkatraman and Olshen, 2007) for genome-wide CNV calling in

large population samples. Similarly, algorithms calling CNVs from

WGS are in early stages (Abyzov et al., 2011; Chen et al., 2009;

Klambauer et al., 2012; Zhu et al., 2012). Another problem is data

availability: there are over hundred-fold more population-based

samples available with genotyping chip data than those with aCGH

or WGS. An additional problem for WGS is that the coverage is usu-

ally below 10, which insufficient for reliable CNV calling (http://

www.haplotype-reference-consortium.org/). In the future, when

such data become available on larger scale one can apply our ap-

proach to other consensus CNV definitions.

Over the past years, many GWAS based on Illumina SNP array

data have been performed for different traits (Feuk et al., 2005;

Locke et al., 2015; Wood et al., 2014). All these data could be re-

analyzed to perform CNV association studies using our QS as CNV

allele dosage for associations just like the currently used imputed

genotype dosages (Kutalik et al., 2011). This would allow a better

filtering and would increase statistical power especially for rare dele-

tions as it has been demonstrated in the Results. Such rare variants

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Effect Size

S
ta

tis
tic

al
 p

ow
er

N = 94Quality Score
Confidence Score
Raw Copy Number
Filtering A
Filtering B
Filtering C
Filtering D
Filtering E

A

B

C

D

E

Fig. 3. CNV-phenotype association simulation based on deletions detected in

the Hypergenes Geneva samples. Associations were done with different qual-

ity metrics such as the QS, the confidence score, the classical filters: A (Palta

et al., 2015), B (Wang et al., 2007), C (Chettier et al., 2014), D (Glessner et al.,

2013) and E (Pinto et al., 2011), as defined the method section, and the raw

CNV calls. CNVs were classified according to their precision and frequency.

The frequency range for this boxplot is between 1 and 5% while the precision

range is between 10 and 20%. This plot shows the statistical power as a func-

tion of the effect size for the different quality metrics. N corresponds to the

number of unique probes being in the precision and CNV frequency window
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have to be meta-analyzed in a way such that the imputation quality

is taken into account in the meta-analysis.

As shown in our simulations, the power advantage offered by the

QS may not be remarkable for individual cohorts, but much more so

in the context of meta-analysis facilitating the collection of large sam-

ples. Although larger and larger association studies of common/rare

single nucleotide variants reveal increasing proportions of the ‘missing

heritability’, rare CNVs are relatively neglected apart from a few suc-

cessful examples (Jacquemont et al., 2011; Walters et al., 2010;

Zufferey et al., 2012). Therefore, as a future work, we will apply this

quality measure in the context of large meta-analytic CNV-association

studies on anthropometric traits. In particular, for BMI, the heritabil-

ity of which is estimated to be 40–70%, but common variants seem to

account for <25% (Locke et al., 2015; Maes et al., 1997; Zaitlen

et al., 2013). To this purpose, we wrapped up the QS calculation in a

pipeline designed to run CNV trait associations. This pipeline has

been tested with 18 analysts (on 70 000 samples) and is available on-

line (http://goo.gl/T6yuFM).

Acknowledgements

The Swiss Hepatitis C Cohort Study; The Hypergenes Consortium; We thank

the SKIPOGH team for providing access to the SKIPOGH genetic data. This

research has been conducted using the UK Biobank Resource; Thanks to

Teumer A for allowing access to the SHIP data and to Metspalu A. and

M€annik K. for allowing access to the EGCUT data for preliminary tests; we

thank to Valsesia A. and Porcu E. for their valuable advice and critical review

of the article. We thank to Ang W., Deelen P., Hayward C., Kristiansson K.,

Lenzini P., Liu X., M€annik K., Mattsson H., N~oukas M., Rosengren A.,

Sapkota Y., Schick U., Shrine N., Van Der Most P., Venturini C., Winkler T.

and Zhang W. for testing the QS pipeline and reporting valuable feedback.

Funding

This work was supported by grants from the Swiss National Science

Foundation (31003A_160203 to AR, 31003A-143914 to Z.K, 33CM30-

124087/140333 to SKIPOGH, 148417 to SCCS.), the Leenaards Foundation

(Z.K.), the SystemsX.ch (51RTP0_151019 to Z.K.) and FP7 EU grant

(HEALTH-F4-2007-201550).

Conflict of Interest: none declared.

References

Abyzov,A. et al. (2011) CNVnator: an approach to discover, genotype, and

characterize typical and atypical CNVs from family and population genome

sequencing. Genome Res., 21, 974–984.

Brasch-Andersen,C. et al. (2004) Possible gene dosage effect of glutathione-S-

transferases on atopic asthma: using real-time PCR for quantification of

GSTM1 and GSTT1 gene copy numbers. Hum. Mut., 24, 208–214.

Carter,N.P. (2007) Methods and strategies for analyzing copy number vari-

ation using DNA microarrays. Nat. Genet., 39, S16–S21.

Chen,K. et al. (2009) BreakDancer: an algorithm for high-resolution mapping

of genomic structural variation. Nat. Methods, 6, 677–681.

Chettier,R. et al. (2014) Endometriosis is associated with rare copy number

variants. PloS One, 9, e103968.

Colella,S. et al. (2007) QuantiSNP: an Objective Bayes Hidden-Markov

Model to detect and accurately map copy number variation using SNP geno-

typing data. Nucleic Acids Res., 35, 2013–2025.

Conrad,D.F. et al. (2006) A high-resolution survey of deletion polymorphism

in the human genome. Nat. Genet., 38, 75–81.

Craddock,N. et al. (2010) Genome-wide association study of CNVs in 16,000

cases of eight common diseases and 3,000 shared controls. Nature, 464,

713–720.

Dowjat,K. and Wlodarska,I. (1981) G-banding patterns in mouse lympho-

blastic leukemia L1210. J. Natl. Cancer Inst., 66, 177–182.

Fanciulli,M. et al. (2007) FCGR3B copy number variation is associated with

susceptibility to systemic, but not organ-specific, autoimmunity. Nat.

Genet., 39, 721–723.

Feuk,L. et al. (2006) Structural variation in the human genome. Nat. Rev.

Genet., 7, 85–97.

Feuk,L. et al. (2005) Discovery of human inversion polymorphisms by com-

parative analysis of human and chimpanzee DNA sequence assemblies.

PLoS Genet., 1, e56.

Glessner,J.T. et al. (2013) ParseCNV integrative copy number variation asso-

ciation software with quality tracking. Nucleic Acids Res., 41, e64.

Gonzalez,E. et al. (2005) The influence of CCL3L1 gene-containing segmental

duplications on HIV-1/AIDS susceptibility. Science, 307, 1434–1440.

Grozeva,D. et al. (2010) Rare copy number variants: a point of rarity in gen-

etic risk for bipolar disorder and schizophrenia. Arch. Gen. Psychiatry, 67,

318–327.

Hupe,P. et al. (2004) Analysis of array CGH data: from signal ratio to gain

and loss of DNA regions. Bioinformatics, 20, 3413–3422.

Iafrate,A.J. et al. (2004) Detection of large-scale variation in the human gen-

ome. Nat. Genet., 36, 949–951.

Itsara,A. et al. (2009) Population analysis of large copy number variants and

hotspots of human genetic disease. Am. J. Hum. Genet., 84, 148–161.

Jacquemont,S. et al. (2011) Mirror extreme BMI phenotypes associated with

gene dosage at the chromosome 16p11.2 locus. Nature, 478, 97–9102.

Kallioniemi,A. et al. (1992) Comparative genomic hybridization for molecular

cytogenetic analysis of solid tumors. Science, 258, 818–821.

Klambauer,G. et al. (2012) cn.MOPS: mixture of Poissons for discovering

copy number variations in next-generation sequencing data with a low false

discovery rate. Nucleic Acids Res., 40, e69.

Kutalik,Z. et al. (2011) Methods for testing association between uncertain

genotypes and quantitative traits. Biostatistics, 12, 1–17.

Locke,A.E. et al. (2015) Genetic studies of body mass index yield new insights

for obesity biology. Nature, 518, 197–206.

Maes,H.H. et al. (1997) Genetic and environmental factors in relative body

weight and human adiposity. Behav. Genet., 27, 325–351.

Mannik,K. et al. (2015) Copy number variations and cognitive phenotypes in

unselected populations. Jama, 313, 2044–2054.

McCarroll,S.A. et al. (2006) Common deletion polymorphisms in the human

genome. Nat. Genet., 38, 86–92.

McKinney,C. et al. (2008) Evidence for an influence of chemokine ligand 3-

like 1 (CCL3L1) gene copy number on susceptibility to rheumatoid arthritis.

Ann. Rheum. Dis., 67, 409–413.

Nguyen,D.Q. et al. (2008) Reduced purifying selection prevails over positive selec-

tion in human copy number variant evolution. Genome Res., 18, 1711–1723.

Nister,M. et al. (1987) Evidence for progressional changes in the human ma-

lignant glioma line U-343 MGa: analysis of karyotype and expression of

genes encoding the subunit chains of platelet-derived growth factor. Cancer

Res., 47, 4953–4960.

Palta,P. et al. (2015) Haplotype phasing and inheritance of copy number vari-

ants in nuclear families. PloS One, 10, e0122713.

Pepler,W.J. et al. (1968) An unusual karyotype in a patient with signs suggest-

ive of Down’s syndrome. J. Med. Genet., 5, 68–71.

Pinto,D. et al. (2011) Comprehensive assessment of array-based platforms and

calling algorithms for detection of copy number variants. Nat. Biotechnol.,

29, 512–520.

Pique-Regi,R. et al. (2008) Sparse representation and Bayesian detection of

genome copy number alterations from microarray data. Bioinformatics, 24,

309–318.

Ponte,B. et al. (2014) Reference values and factors associated with renal resist-

ive index in a family-based population study. Hypertension, 63, 136–142.

Prasad,L. et al. (2007) Cohort Profile: the Swiss Hepatitis C Cohort Study

(SCCS). Int. J. Epidemiol., 36, 731–737.

Pruijm,M. et al. (2013) Heritability, determinants and reference values of

renal length: a family-based population study. Eur. Radiol., 23, 2899–2905.

Ravnan,J.B. et al. (2006) Subtelomere FISH analysis of 11 688 cases: an evalu-

ation of the frequency and pattern of subtelomere rearrangements in indi-

viduals with developmental disabilities. J. Med. Genet., 43, 478–489.

3304 A.Macé et al.
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