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Abstract: We show that, in local Calabi–Yau manifolds, the topological open string
partition function transforms as a wavefunction under modular transformations. Our
derivation is based on the topological recursion for matrix models, and it generalizes in a
natural way the known result for the closed topological string sector. As an application,
we derive results for vacuum expectation values of 1/2 BPS Wilson loops in ABJM
theory at all genera in a strong coupling expansion, for various representations.

1. Introduction

Topological string theory on Calabi–Yau (CY) manifolds has been an important source
of results in string theory, gauge theory and mathematics (see for example [1–5] for
reviews). In the so-called local case, where the CY is non-compact, the theory can be
solved exactly, by using for example large N techniques in matrix models [6–8] or the
theory of the topological vertex [9].

Closed topological string amplitudes satisfy many interesting properties. In the local
case, and from the B-model point of view, they can be regarded as holomorphic objects
associated to an algebraic curve or Riemann surface. They depend on a choice of “sym-
plectic frame”, i.e., on a choice of symplectic basis for the homology of the Riemann
surface, and they turn out to have non-trivial transformation properties under a change
of basis or modular transformation. Equivalently, one can introduce a non-holomorphic
dependence in the amplitudes, which is governed by the holomorphic anomaly equations
of [10]. As shown in [11], the transformation properties of the closed string amplitudes
can be derived from the fact that the total closed string partition function (summed over
all genera) is a wavefunction [12]. Modular transformations correspond to canonical
transformations, which lift quantum-mechanically to integral transforms of the wave-
function. Therefore, a change of symplectic basis leads to an integral transform of the
topological closed string partition function.
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These properties of the closed topological string amplitudes can be also derived by
using the solution of the B-model in terms of matrix integrals [6–8]. This solution is
based on the topological recursion of Eynard andOrantin [13], which encodes as well the
modular properties of the resulting amplitudes. It was shown in [14] that the modular
behavior of the closed string amplitudes, as deduced from the topological recursion,
agrees indeed with the wavefunction behavior of the partition function found in [11,12].

The topological recursion of [13] also gives a method to compute the modular trans-
formation of open string amplitudes. In this paper, we show that these properties can
be summarized by saying that the total open string partition function transforms as a
wavefunction. This generalizes the results of [11,12] to the open sector, since the closed
string partition function can be regarded as a specialization of the open string partition
function where all the open moduli are set to zero.

The wavefunction behavior of the open string partition function has practical appli-
cations, since it makes it possible to relate in a precise way open string amplitudes in
different frames. One interesting situation where this can be used is the calculation of
vacuum expectation values (vevs) of 1/2 BPS Wilson loops [15] in ABJM theory [16].
These vevs can be computed by localization, in terms of a matrix model [15,17]. It turns
out that they are given by open topological string amplitudes in a non-compact CY, local
P
1×P

1 [18], but in the so-called orbifold frame [19]. As an application of themain result
of this paper, we obtain results for the vevs of 1/2 BPSWilson loops by first performing
the calculation in the large radius frame, and then using the fact that the open string
partition function is a wavefunction. We find in this way all-genus results for vevs of
1/2 BPS Wilson loops as integral transforms of topological string amplitudes at large
radius. These expressions are exact in k, the coupling of ABJM theory, but they are ex-
panded around the strong coupling limit. They correspond to the M-theory expansion of
the amplitudes discussed, in for example, [20,21]. In particular, we rederive in this way
the result for 1/2 BPS Wilson loop vev with winding n derived in [21] in the M-theory
regime, and we extend it to other representations. Our method also makes it possible to
calculate systematically worldsheet instanton corrections, which are difficult to obtain
in the Fermi gas approach of [21].

The wavefunction behavior of the open string amplitudes has been addressed before.
In [22–24], the behavior of the open string partition function has been studied as one
changes the open moduli, although as far as we know there is no general statement
for this behavior. The paper [25] studies the wavefunction behavior of the open string
partition function in the compact CY case.

This paper is organized as follows. In Sect. 2 we review the definition and construc-
tion of topological open string amplitudes and the topological recursion of Eynard and
Orantin. In Sect. 3 we derive our main result, namely, we show that the total, topological
open string partition function transforms as a wavefunction under modular transforma-
tions. In Sect. 4 we use our main result to obtain expressions for 1/2 BPS Wilson loop
vevs at all orders in the genus expansion and expanded at strong coupling. Finally, in
Sect. 5 we end up with some conclusions and prospects for future work.

2. Open Topological String Amplitudes and Topological Recursion

2.1. Open topological string amplitudes. In this paper we will study open topological
string amplitudes in local CY geometries. There are two types of local CYs which are
particularly interesting. The first ones are of the form

uv = H(x, y), H(x, y) = y2 − (W ′(x))2 + f (x), (2.1)
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where W (x), f (x) are polynomials of degree d + 1, d − 1 respectively. The Riemann
surface H(x, y) = 0 associated to this geometry is the hyperelliptic curve

y2 = (W ′(x))2 − f (x), (2.2)

of genus n = d − 1. Dijkgraaf and Vafa conjectured in [6] that type B topological string
theory on these backgrounds is equivalent to a matrix model with potential W (x) and
d − 1 cuts (see [1] for a review).

A more interesting class of local geometries are toric CY manifolds, which are non-
compact. In this case, both open and closed topological string amplitudes have an enu-
merative meaning in the A-model, which we now review briefly (see for example [2]
for a presentation with appropriate references). Closed string amplitudes at genus g can
be expressed as a sum over instanton sectors. These are labelled by a class β ∈ H2(X),
where X is the CY target, and they read

Fg(t) =
∑

β∈H2(X)

Ng,β e−β·t . (2.3)

In this equation, t denotes the vector of closedKählermoduli. The rational numbers Ng,β
are Gromov–Witten invariants counting holomorphic maps from a Riemann surface of
genus g, Σg , to the CY X , and in the class β. It is useful to define the total closed string
free energy as:

F(gs, t) =
∞∑

g=0

Fg(t)g
2g−2
s . (2.4)

Gopakumar and Vafa [26] showed that the generating functional (2.4) can be written
as a generalized index that counts BPS states in M-theory compactified on X , and this
leads to the following structural result for F(gs, t):

F(gs, t) =
∞∑

g=0

∑

β

∞∑

m=1

ng,β
1

m

(
2 sinh

mgs
2

)2g−2

e−mβ·t , (2.5)

where ng,β , known as Gopakumar–Vafa invariants, are integer numbers.
In order to define open topological strings on a CY X , we need to specify boundary

conditions. This is done by choosing a branewrapping aLagrangian submanifoldL ⊂ X .
The free energy of the open topological string theory can be obtained by summing the
contribution of open worldsheet string instantons in different topological sectors. These
sectors classify maps from an open Riemann surface Σg,h to X , in such a way that
the boundaries of Σg,h are mapped to L. They are labelled by two different kinds of
data: the boundary part and the bulk part. The bulk part is labelled by relative homology
classes β ∈ H2(X,L). We will assume that b1(L) = 1 (as it happens for the Lagrangian
submanifolds constructed in [27]) so that H1(L) is generated by one nontrivial one-
cycle. Then, the topological sector of the boundary is classified by winding numbers �i
specifying how many times the boundaries of Σg,h wrap the non-trivial one-cycle of L.
We will collect these integers into a single h-tuple denoted by � = (�1, · · · , �h).

There are various amplitudes that we can consider, depending on the topological
data that we want to keep fixed. It is very useful to fix g and the winding numbers, and
sum over all bulk classes. This produces the following generating functional of open
Gromov–Witten invariants:

Fg,�(t) =
∑

β

Ng,β,� e
−β·t . (2.6)
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In this equation, the sum is over relative homology classes β ∈ H2(X,L). The quanti-
ties Ng,β,� are open Gromov–Witten invariants. They “count” in an appropriate sense
the number of holomorphically embedded Riemann surfaces of genus g in X with La-
grangian boundary conditions specified by L, and in the class represented by β, �. They
are in general rational numbers.

In order to consider all topological sectors, we have to introduce a U (∞) matrix V
which takes into account different sets of winding numbers �. The total open topological
string free energy is defined by

F(V ) =
∞∑

g=0

∞∑

h=1

∑

�

1

h!g
2g−2+h
s Fg,�(t)Tr V

�1 · · ·Tr V �h . (2.7)

Open topological string amplitudes have an integrality structure discovered in [28,29].
It turns out that the total free energy can be written as

F(V ) =
∑

β∈H2(X,L)

∞∑

g=0

∞∑

h=1

∑

�

∞∑

m=1

1

h!ng,β,�
1

m

(
2 sinh

mgs
2

)2g−2

·
h∏

i=1

(
2 sinh

m�i gs
2

)
1

�1 · · · �h Tr V
m�1 · · ·Tr Vm�he−mβ·t .

(2.8)
In this expression, ng,β,� are integer invariants which generalize the Gopakumar–Vafa
invariants of closed topological strings (in fact, as shown in [29], the invariants ng,β,�

can be written in terms of a more fundamental set of integer invariants, but we will not
need them in this paper).

We will often write the free energy as

F(V ) =
∑

R

WRTrR V, (2.9)

where the sum is overU (∞) representations,while the total open string partition function
is defined as

Z(V ) = Zcl exp(F(V )). (2.10)

Here, we used the total closed string free energy (2.4) to define the closed string partition
function,

Zcl = exp (F(gs, t)) . (2.11)

We will write Z(V ) sometimes as

Z(V ) =
∑

R

ZRTrR V . (2.12)

It was conjectured in [7,8] that type B topological string theory on mirror of toric CY
manifolds can be solved in terms of the topological recursion of [13] (this conjecture has
been recently proved in [30]). Since this formalism describes as well the solution to the
1/N expansion of matrix models, this generalizes the conjecture of [6] to backgrounds
with an enumerative meaning. We can then use the formalism of topological recursion
to provide a unified description of open and closed topological string amplitudes in local
CY geometries.



The Topological Open String Wavefunction 537

2.2. Open strings and topological recursion. The formalism of topological recursion of
[13] starts with an algebraic curve H(x, y) = 0 of genus ḡ. We will choose a canonical
basis of cycles on it:

AI ∩ BJ = δI J , AI ∩ AJ = 0, B I ∩ B J = 0, I, J = 1, . . . , ḡ. (2.13)

There are ḡ linearly independent holomorphic forms ωI on H(x, y) normalized on the
A-cycles: ∮

AI

ωJ = δI J , I, J = 1, . . . , ḡ, (2.14)

and the Riemann matrix of periods, τ , is a symmetric ḡ × ḡ matrix defined by
∮

BJ

ωI = τI J . (2.15)

On the curve H(x, y) = 0 there exists a unique bilinear form B(p, q) with a unique
double pole at p = q without residue, and normalized on the A cycles:

B(p, q) ∼
p→q

dz(p)dz(q)

(z(p) − z(q))2
+ finite,

∮

A
B = 0. (2.16)

Here, z is any local parameter on the curve, and B is usually called the Bergmann kernel.
The Bergmann kernel has the following properties [13]

B(p, q) = B(q, p),
∮

B I

B = 2π iωI . (2.17)

Following the procedure in [13,14], we will now introduce a new set of cycles,A,B,
depending on an arbitrary complex symmetric matrix κ:

B := B − τA, A := A − κB. (2.18)

We then define a κ-modified Bergmann kernel B, normalized on these new cycles, and
satisfying thus

B(p, q) ∼
p→q

dz(p)dz(q)

(z(p) − z(q))2
+ finite,

∮

A
B = 0. (2.19)

This definition implies the relation

B(p, q) = B(p, q) + 2π i
∑

I,J

ωI (p) κ I J ωJ (q). (2.20)

Notice that for the new B-cycles we have the following relations:
∮

BI

B = 2π iωI ,

∮

BI

ωJ = 0. (2.21)

With these ingredients, one defines recursively an infinite set of symmetric meromorphic
differentials W (g)

h on the curve, as follows. Let ai be the branching points of the curve.
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If q is near a branchpoint, there is by definition a unique point q such that x(q) = x(q).
The starting point of the recursion is

W (g)
h = 0 if g < 0,

W (0)
1 (p) = 0,

W (0)
2 (p1, p2) = B(p1, p2).

(2.22)

The recursion is then given by

W (g)
h+1(p, p1, . . . , ph)

=
∑

i

Resq=ai
dEq(p)

ω(q)

( g∑

m=0

∑

J⊂H

W (m)
|J |+1(q, pJ )W

(g−m)
h−|J |+1(q, pH/J )+W

(g−1)
h+2 (q, q, pH )

)
.

(2.23)

Notice that it follows that all W (g)
h ’s have vanishing A-cycle integrals. In this equation,

q is taken to be near a branchpoint, and

ω(q) = (y(q) − y(q))dx(q), dEq(p) = 1

2

∫ q

q
B(ξ, p) (2.24)

where the integration path lies entirely in a vicinity of ai . If J = {i1, i2, . . . , i j } is
a set of indices, we write pJ = {pi1, pi2 , . . . , pi j }. In the equation above we have
H = {1, 2, . . . , h}, and the summation over J is over all subsets of H .

Once these differentials are constructed, one can compute the closed string free
energies F (g) for g ≥ 2 as

F (g) = 1

2g − 2

∑

i

Resq=ai Φ(q)W (g)
1 (q), (2.25)

where Φ(q) = ∫ q
λ is any antiderivative of the meromorphic differential

λ = ydx, (2.26)

which satisfies
∂Iλ = (2π i)

1
2 ωI . (2.27)

The meromorphic differentials W (g)
h defined by the topological recursion are func-

tions of two types of variables. On the one hand, we have the open string moduli, which
are the variables pi upon which they depend. On the other hand, they depend on the
closed string moduli, which are the complex moduli of the spectral curve itself. These
closed string moduli can be parameterized by the A-periods of λ

t I = 1

(2π i)1/2

∮

AI

λ. (2.28)

In this formalism, both F (g) and the formsW (g)
h depend as well on the matrix-valued

parameter κ which we have introduced in (2.18). The usual topological string or matrix
model amplitudes are obtained by setting κ = 0 in the above formalism, i.e. by using the
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topological recursion but with the standard Bergmann kernel. To recover the standard
open string amplitudes as defined for example in (2.7), we define the integrated forms
Ag
h , h > 0 by

A(g)
h (t, κ) =

∫
W (g)

h (t, κ), (2.29)

except for (g, h) = (0, 1) and (g, h) = (0, 2). In those cases we have

A(0)
1 = −

∫
λ, (2.30)

and

A(0)
2 =

∫ (
B(p1, p2) − dp1dp2

(p1 − p2)2

)
. (2.31)

The differentials W (g)
h have an expansion in inverse powers of the open string moduli

pi , and the integrated amplitudes have then an expansion of the form

A(g)
h (t, κ, z1, . . . , zh) =

∑

�

A(g)
� (t, κ)z�11 . . . z�hh , (2.32)

where zi = p−1
i and, as above, � = (�1, . . . , �h). The coefficients of this expansion,

evaluated at κ = 0, are the topological open string amplitudes for boundary conditions
specified by �:

Fg,�(t) = A(g)
� (t, κ = 0). (2.33)

3. The Topological Open String Partition Function as a Wavefunction

3.1. Symplectic transformations. The construction of the open and closed string ampli-
tudes through the topological recursion depends on a choice of symplectic frame, i.e. on
a choice of a distinguished set of A, B cycles on the curve H(x, y) = 0. A natural and
important question in the study of topological string theory and matrix models is: how
do F (g) and W (g)

h change under a change of symplectic frame? We will refer to these
transformations of the amplitudes as one changes the symplectic frame as symplectic or
modular transformations. In the case of the closed string free energies F (g), a detailed
answer was obtained in [11] by using the fact that, as pointed out in [12], the total closed
string partition function can be regarded as a wavefunction. This was based in turn on
the holomorphic anomaly equations of [10].

We recall that a modular or symplectic transformation for a curve H(x, y) = 0 of
genus ḡ is implemented by a symplectic matrix

Γ =
(
A B
C D

)
∈ Sp(2ḡ,Z) (3.1)

where the ḡ × ḡ matrices A, B, C , D, with integer-valued entries, satisfy

ATD − CTB = 1ḡ, ATC = CTA, BTD = DTB. (3.2)

The cycles of the curve change as
( B
A

)
→

(
A B
C D

)( B
A

)
, (3.3)
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while the period matrix τ of the curve changes as

τ → (Aτ + B)(Cτ + D)−1. (3.4)

The formalism of [13] reviewed in the previous section gives a direct way of deriving
the modular properties of the amplitudes, through the incorporation of the κ parameter.
In fact, there are two equivalent ways of understanding these properties, as emphasized
in [11]. In the first point of view, one considers the topological string amplitudes, which
are the holomorphic objects F (g)(t, 0) andW (g)

h (t, 0) for κ = 0. Then, under a modular
transformation implemented by Γ , the amplitudes change as follows,

W (g)
h (t, 0) → W (g)

h (t, κ),

F (g)(t, 0) → F (g)(t, κ),
(3.5)

where
κ = −(τ + C−1D)−1. (3.6)

One important fact of these transformation properties is that the open string moduli do
not change under a modular transformation. However, open string amplitudes evaluated
in different regions of moduli space require different parameterizations of these moduli,
and one needs to redefine them by an overall factor which depends on the closed string
moduli, as first found in [31]. In general, one has

pi → pi exp

[
∑

I

(
aI tI + bI t

bare
I

)]
, (3.7)

where tbareI are the “bare” closed string moduli, corresponding to complex deformation
parameters of the spectral curve, and aI , bI are rational numbers which can be found
by a detailed analysis of the geometry, see for example [8] for a detailed explanation.
This is often called the open string mirror map, or the choice of open flat coordinate.
There is then a canonical choice of open moduli, given by the solution of the topological
recursion, and other choices can be obtained by using (3.7).

As shown in [14], the transformation of the closed string amplitudes in (3.5) is
equivalent to the statement of [11,12] that the closed string partition function transforms
as a wavefunction. More precisely, it was shown in [14] that the total κ-dependent
partition function

ln (Z(t, κ)) = F(t, κ) =
∞∑

g=0

g2−2g
s F (g)(t, κ) (3.8)

can be obtained as an integral transform of the partition function with κ = 0, Z(η, 0) =
exp F(η, κ = 0),

Z(t, κ) =
∫

dη e−S(t,η,κ)g−2
s +F(η,0), (3.9)

where

S(t, η, κ) = 1

2
(η− t)κ−1(η− t)+(η− t)I ∂I F

(0)(t, 0)+
1

2
(η− t)I ∂2I J F

(0)(t, 0)(η− t)J .

(3.10)
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The integral transform is evaluated in a genus expansion, by doing a saddle-point eval-
uation of the integral for small gs .

In the second point of view onmodular transformations, one considers the amplitudes
Wg

h (t, κ), F (g)(t, κ) with

κ = −(τ − τ)−1. (3.11)

In this case, the resulting amplitudes are modular invariant, as shown in [13], but they in-
herit a non-holomorphic dependence through the conjugate τ appearing in (3.11). It was
shown in [14] that, for the choice of κ in (3.11), the closed string amplitudes F (g)(t, κ)

satisfy the holomorphic anomaly equations of [10], specialized to local geometries [32].
The purpose of this paper is to generalize to the open string sector the results of

[14] concerning the wavefunction behavior of the closed string partition function. As
we will illustrate in a moment, the transformations (3.5) are quite complicated when
written down for the individual amplitudes. It is a non-trivial fact that, when we organize
the amplitudes in terms of partition functions, these transformation properties can be
elegantly summarized by a wavefunction behavior, i.e. by an integral transform of the
partition function.

3.2. The wavefunction behavior. In order to show that the total open topological string
partition function transforms as a wavefunction, one has to be more explicit about the
transformations (3.5), i.e. one should compute W (g)

h (t, κ) and F (g)(t, κ) in terms of

W (g)
h (t, 0) and F (g)

h (t, 0). As explained in [14], the basic observation is that the κ de-

pendence of the W (g)
h ’s enters only through the Bergmann kernel, therefore each W (g)

h
is a polynomial in κ of degree at most 3g − 3 + 2h:

W (g)
h (t, κ) =

3g−3+2h∑

m=0

κm

m!
dmW (g)

h

dκm
(t, 0). (3.12)

In order to obtain this polynomial, it is convenient to compute dW (g)
h /dκ . This was done

in [13] and the result is:

2π i
∂

∂κI J
W (g)

h (pH ) =1

2

∮

r∈BJ

∮

s∈BI

W (g−1)
h+2 (pH , r, s)

+
1

2

g∑

m=0

∑

L⊂H

∮

r∈BI

W (m)
|L|+1(pL , r)

∮

s∈BJ

W (g−m)
h−|L|+1(pH/L , s).

(3.13)
In particular, for h = 0,

2π i
∂

∂κI J
F (g) = 1

2

∮

r∈BJ

∮

s∈BI

W (g−1)
2 (r, s)

+
1

2

g−1∑

m=1

∮

r∈BI

W (m)
1 (r)

∮

s∈BJ

W (g−m)
1 (s), g ≥ 2. (3.14)

The recursion relations (3.13) and (3.14) can be written in terms of diagrams [14] where
the W (g)

h ’s and F (g)’s are represented by Riemann surfaces with g holes and h legs
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g

=
1
2

1
2

+
∑

l

2i − 1

2i − 12i
2i

g − 1

d
dκ

h h

m g − m

h − l

Fig. 1. A graphic representation of the Eq. (3.13)

sticking out. The integrals over B cycles are represented by legs which start and end on
Riemann surfaces. This is illustrated in Fig. 1.

Notice that the Eq. (3.13) have the same structure that the topological recursion itself.
They can be iterated to calculate the expansion (3.12), in terms of integrals ofW (g)

h (t, 0)

around B-cycles. For example, one finds, for W (1)
1 (t, κ),

W (1)
1 (t, κ) = W (1)

1 (t, 0) +
κ I J

2π i

(
1

2

∮

BI

∮

BJ

W (0)
3 +

∮

BI

W (1)
1

∮

BJ

W (0)
2

)

+
κ I JκMN

(2π i)2

(
1

2

∮

BI

∮

BJ

∮

BM

W (0)
3

∮

BN

W (0)
2

)
, (3.15)

where we have used (2.21) to show that

∮

BI

∮

BJ

W (0)
2 = 0. (3.16)

It is illuminating to verify this transformation law in the case of an elliptic curve by
using the explicit expressions for the W (g)

h . This we do in the “Appendix”.
After using the recursion relations we end up with integrals of the form

∮

B
· · ·

∮

B︸ ︷︷ ︸
n

W (g)
h , (3.17)

where h ≥ n. We can rewrite them as derivatives with respect to t . We have that [13]

∮

B
· · ·

∮

B︸ ︷︷ ︸
n

W (g)
h = (−1)n∂nW (g)

h−n, h > n + 1, g ≥ 0, (3.18)

∮

B
· · ·

∮

B︸ ︷︷ ︸
n

W (g)
h = (−1)n∂nW (g)

1 , h = n + 1, g > 0, (3.19)

∮

B
· · ·

∮

B︸ ︷︷ ︸
n

W (0)
h = 2π i (−1)n−1 ∂n−1ω, h = n + 1, g = 0, (3.20)
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∮

B
· · ·

∮

B︸ ︷︷ ︸
n

W (g)
h = (−1)n∂n F (g), h = n, g ≥ 0, (3.21)

where the derivatives are w.r.t.

ε = (2π i)−
1
2 t (3.22)

and (3.21) does not hold for (g, h) = (0, 1), (0, 2). As can be seen from the formulas in
Sect. 2.2, in these two cases we get zero on the r.h.s. in (3.21).

For example, using this, (3.15) can instead be written as (derivatives are now w.r.t. t)

W (1)
1 (t, κ) = W (1)

1 (t, 0) − (2π i)
1
2 κ I J

(
1

2
∂IωJ + ∂I F

(1)ωJ

)

− (2π i)
1
2

2
κKMκN P∂K ∂M∂N F

(0)ωP . (3.23)

We are interested in studying the κ transformation of the the integrated open string
amplitudes (2.29), which will be of the form

A(g)
h (t, κ, z1, . . . , zh) =

3g−3+2h∑

m=0

κm

m!
dm A(g)

h

dκm
(t, 0, z1, . . . , zh). (3.24)

We will denote,

A(g)
0 = F (g). (3.25)

In the following we will always use (3.18)–(3.21) to express the results in terms of
derivatives. As explained above the results of the κ-expansion can be represented graph-
ically in terms of surfaces. We will use the following prescription to represent our result
graphically:

1. For each A(g)
h (t, 0) we draw a Riemann surface with g holes and h legs sticking out.

2. For each derivative ∂I acting on A(g)
h (t, 0) we draw a puncture on the Riemann

surface.
3. For each element κ I J we draw a propagator connecting the I th puncture to the J th

puncture.

By integrating (3.23) we find,

A(1)
1 (t, κ, z) = A(1)

1 (t, 0, z) + κ I J
(
1

2
∂I ∂J A

(0)
1 (t, 0, z) + ∂J A

(1)
0 (t, 0)∂I A

(0)
1 (t, 0, z)

)

+
1

2
κKMκN P∂K ∂M∂N A(0)

0 (t, 0)∂P A
(0)
1 (t, 0, z). (3.26)
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+

+

3

4
+21

1

2

+
κ

2
21A

(1)
1 (t, κ, z) = +

1

2

+
κ2

22 · 2!

3

4
2

1

3 4

2

1

+ 34

2

1

Fig. 2. Graphs that contribute to A(1)
1 (t, κ, z) after iterating (3.13)

+21 +2 1 21

+ +2 1 +21 2 1

y z y z z y

z y z zy

y
z

+
κ

2 · 3!

1
3!

A
(0)
3 (t, κ, x, y, z) =

1
3!

+O(κ2)

x

x x x

x x xy

Fig. 3. Graphs that contribute to A(0)
3 (t, κ, x, y, z) after iterating (3.13), up to order κ

This can be represented graphically as in Fig. 2. In a similar way we obtain for the
amplitude at genus zero and three boundaries,

A(0)
3 (t, κ, z1, z2, z3) = A(0)

3 (t, 0, z1, z2, z3)

+ 3
∑

σ∈S3

1

3!κ
I J ∂I A

(0)
2 (t, 0, zσ(1), zσ(2))∂J A

(0)
1 (t, 0, zσ(3))

+ 3
∑

σ∈S3

1

3!κ
I JκK L∂I A

(0)
1 (t, 0, zσ(1))∂K A(0)

1 (t, 0, zσ(2))∂L∂J A
(0)
1 (t, 0, zσ(3))

+ κ I JκK LκMN ∂I A
(0)
1 (t, 0, z1)∂K A(0)

1 (t, 0, z2)∂M A(0)
1 (t, 0, z3)∂J ∂L∂N A(0)

0 (t, 0).
(3.27)

The graphs contributing to this result, up to order κ , are shown in Fig. 3. For the amplitude
at genus one and two boundaries,

A(1)
2 (t, κ, z1, z2)

= A(1)
2 (t, 0, z1, z2) + κ I J

(
1

2
∂I ∂J A

(0)
2 (t, 0, z1, z2) + ∂I A

(1)
0 (t, 0)∂J A

(0)
2 (t, 0, z1, z2)
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+ 2∂I A
(0)
1 (t, 0, z1)∂J A

(1)
1 (t, 0, z2)

)
+ κ I JκK L

(
1

2
∂I A

(0)
2 (t, 0, z1, z2)∂J ∂L∂K A(0)

0 (t, 0)

+
1

2
∂I ∂K A(0)

1 (t, 0, z1)∂J ∂L A
(0)
1 (t, 0, z2) +

1

2
∂I A

(0)
1 (t, 0, z1)∂J ∂K ∂L A

(0)
1 (t, 0, z2)

1

2
∂I A

(0)
1 (t, 0, z2)∂J ∂K ∂L A

(0)
1 (t, 0, z1) + ∂I ∂L A

(0)
1 (t, 0, z2)∂K A(0)

1 (t, 0, z1)∂J A
(1)
0 (t, 0)

+ ∂I ∂L A
(0)
1 (t, 0, z1)∂K A(0)

1 (t, 0, z2)∂J A
(1)
0 (t, 0)

+ ∂I A
(0)
1 (t, 0, z1)∂K A(0)

1 (t, 0, z2)∂J ∂L A
(1)
0 (t, 0)

)

+ κ I JκK LκMN
(
1

2
∂I A

(0)
1 (t, 0, z1)∂K A(0)

1 (t, 0, z2)∂J ∂L∂M∂N A(0)
0 (t, 0)

+
1

2

(
∂I ∂K A(0)

1 (t, 0, z1)∂M A(0)
1 (t, 0, z2)

+ ∂I ∂K A(0)
1 (t, 0, z2)∂M A(0)

1 (t, 0, z1)
)

∂L∂J ∂N A(0)
0 (t, 0)

1

2

(
∂I ∂K A(0)

1 (t, 0, z1)∂L A
(0)
1 (t, 0, z2)

+ ∂I ∂K A(0)
1 (t, 0, z2)∂L A

(0)
1 (t, 0, z1)

)
∂M∂J ∂N A(0)

0 (t, 0)

+ ∂I A
(0)
1 (t, 0, z1)∂L A

(0)
1 (t, 0, z2)∂K ∂J ∂M A(0)

0 (t, 0)∂N A(1)
0 (t, 0)

)

+κ I JκK LκMNκ PQ
(
1

2
∂I A

(0)
1 (t, 0, z1)∂K A(0)

1 (t, 0, z2)∂L∂J ∂M A(0)
0 (t, 0)∂P∂Q∂N A(0)

0 (t, 0)

+
1

2
∂I A

(0)
1 (t, 0, z1)∂K A(0)

1 (t, 0, z2)∂P∂L∂M A(0)
0 (t, 0)∂J ∂Q∂N A(0)

0 (t, 0)

)
. (3.28)

As in [11,14], we would like to write these transformations in terms of an integral
transform. We will first make an educated guess based on the above results, and then
we will give a combinatorial proof in the next subsection. To proceed, we introduce the
open string amplitudes to all genera and fixed number of boundaries,

Ah(z1, . . . , zh) =
∑

g≥0

g2g−2+h
s A(g)

h (z1, . . . , zh). (3.29)

The above results for the κ-dependence of the open string amplitudes can be obtained
from the following integral formulae,

A1(t, κ, z) =
∫

dη A1(η, 0, z)e−S(t,η,κ)g−2
s +F(η,0)

∣∣∣∣
connected

,

A2(t, κ, z1, z2) =
∫

dη (A2(η, 0, z1, z2)

+ A1(η, 0, z1)A1(η, 0, z2)) e
−S(t,η,κ)g−2

s +F(η,0)
∣∣∣∣
connected

,

A3(t, κ, z1, z2, z3) =
∫

dη
(
A3(η, 0, z1, z2, z3)

+ 3
∑

σ∈S3

1

3! A2(η, 0, zσ(1), zσ(2))A1(η, 0, zσ(3))

+ A1(η, 0, z1)A1(η, 0, z2)A1(η, 0, z3)
)
e−S(t,η,κ)g−2

s +F(η,0)
∣∣∣∣
connected

.

(3.30)
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Fig. 4. A graphic representation of a disconnected (left) and connected (right) surface

In these equations, S(t, η, κ) is given in (3.10), and one performs the integrals by doing
a saddle-point expansion at small gs . As in [14], the terms obtained when doing this
expansion can be written in terms of the same diagrams that we considered before. One
finds both connected and disconnected diagrams. To understand what connected means
in this context, let us consider the following example:

κ I JκMN ∂I ∂J A
1
2(t, 0, z1, z2)∂M∂N A2

1(t, 0, z3),

κ I JκMN ∂I ∂M A1
2(t, 0, z1, z2)∂N ∂J A

2
1(t, 0, z3).

(3.31)

The diagrammatic representation of the above surfaces is given in Fig. 4. The first one
consists of two disconnected parts, while in the second one the two surfaces are linked
together, i.e. they are connected.

This suggests the following expression for the κ-dependence,

Ah(t, κ, zH ) =
∫

dη

⎛

⎝Ah(η, 0, zH ) +
h∑

a=2

1

a!
∑

(L1,...,La)

A|L1|(η, 0, zL1 ) . . . A|La |(η, 0, zLa )

⎞

⎠

× eF(η,0)−S(t,η,κ)g−2
s

∣∣∣∣
connected

(3.32)

where Li ⊂ H, Li 
= ∅ and
∑a

i=1 Li = H . We can reorganise (3.32) into amore elegant
expression by including as well disconnected diagrams:

exp

⎡

⎣
∑

h≥0

1

h!
∑

�

A�(t, κ)TrV �1 · · ·TrV �h

⎤

⎦

=
∫

dη exp

⎡

⎣
∑

h≥0

1

h!
∑

�

A�(η, 0)TrV �1 · · ·TrV �h

⎤

⎦ e−S(t,η,κ)g−2
s (3.33)

where A� is defined as in (2.32), but summed to all genera,

Ah(t, κ, z1, . . . , zh) =
∑

�

A�(t, κ)z�11 · · · z�hh . (3.34)

In writing these expressions, we have used the dictionary

TrV �1 · · ·TrV �h ↔ 1

h!
∑

σ∈Sn

h∏

i=1

z�iσ(i). (3.35)

Notice that the quantity appearing in (3.33) is just the total open free energy F(V ).
Therefore, (3.33) says that the κ-dependent open free energy is obtained from the original
one by the same integral transform.
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We can now use this integral transform to obtain the modular transformation of the
open plus closed string amplitudes, generalizing in this way the result of [11,14] to the
open sector. We will now put the formula (3.33) in the form presented in [11]. This will
also take care of the transformation of F (0). Let us consider a symplectic transformation
(3.1), and let us define the bilinear functional associated to Γ ,

SΓ (x, x̃) = −1

2
(C−1D)J K x

J xK + (C−1)J K x
J x̃ K − 1

2
(AC−1)J K x̃

J x̃ K . (3.36)

This is the bilinear entering the integral transformof [11] for the closed string amplitudes,

Z(x̃) =
∫

dx e−SΓ (x,x̃)g−2
s Z(x). (3.37)

Given x̃ , let xcl be defined by

x̃ I = C I J ∂J F
0(xcl) + DI

J x
J
cl , (3.38)

which is the saddle-point for the integral transform (3.37). One has the following rela-
tionship,

SΓ (x, x̃) = S(xcl , x,−(τ + C−1D)−1) + SΓ (xcl , x̃), (3.39)

where we have set η = x , t = xcl . The first term in the r.h.s. in (3.39) leads to the integral
kernel appearing in (3.33). The second term leads to a constant factor

exp(g−2
s SΓ (xcl , x̃)) (3.40)

in front of the integral. This factor just gives the correct modular transformation of F (0),
which is not incorporated in (3.33). If we now define,

Ah(x̃, z1, . . . , zh) := Ah(xcl ,−(τ + C−1D)−1, z1, . . . , zh),

Ah(x, z1, . . . , zh) := Ah(x, 0, z1, . . . , zh),
(3.41)

where the quantities in the r.h.s. are defined in (3.29), and we modify (3.33) by using
(3.36), we obtain the following formula for themodular transformation of the open string
partition function,

exp

⎡

⎣
∑

h≥0

1

h!
∑

�

A�(x̃)TrV
�1 · · ·TrV �h

⎤

⎦

=
∫

dx exp

⎡

⎣
∑

h≥0

1

h!
∑

�

A�(x)TrV
�1 · · ·TrV �h

⎤

⎦ e−SΓ (x,x̃)g−2
s . (3.42)

This generalizes (3.37) to the open sector.



548 A. Grassi, J. Källén, M. Mariño

One can also use (3.33) to study the non-holomorphic dependence of the quantities
A�(t,−(τ − τ)−1). Since the non-holomorphic dependence in the r.h.s. of (3.33) is
only due to the one appearing in S(t, η,−(τ − τ)−1), the open string partition function
satisfies the same holomorphic anomaly equation as the closed string partition function.
It is easy to show that one recovers, in particular, the holomorphic anomaly equation for
open string amplitudes derived in [14].

3.3. A proof. We now prove the relationship (3.33), i.e. we prove that the Feynman
expansion of the integral on the r.h.s. generates the terms which are obtained by iterating
(3.13). Our proof is a generalization of the one for the closed string sector in [14].

The main idea is that we have the same kind of diagrams appearing in both sides of
(3.33) and we have to check that each of them appears with the same multiplicity. More
precisely we will show that the multiplicity factor appearing when we expand the l.h.s.
in κ is the multiplicity factor which arises by applying Wick’s theorem to the r.h.s. of
(3.33).

Let us first consider the l.h.s. and we start by looking at a single surface
A(g)
h (t, κ, z1, . . . , zh). By iterating (3.13), the κ-expansion in (3.24) can be written as

A(g)
h (t, κ, z1, . . . , zh) =

3g−3+2h∑

m=0

∑

I1,...,I2m

κI1,I2 . . . κI2m−1,I2m
1

2m m!
∑

Gh
m

AGh
m
, (3.43)

where Gh
m is a connected, degenerate surface with h legs sticking out andm propagators

connecting 2m points labelled by 1, . . . , 2m, in such a way that the point labelled by
2i − 1 is connected by a propagator to the point labelled by 2i . Each of the terms AGh

m

is of the form1
r∏

i=1

∂mi A(gi )
hi

(t, 0, z1, . . . , zhi ), (3.44)

where ∑

i

mi = 2m,

∑

i

hi = h,

∑

i

(2gi − 2) + 2m = 2g − 2.

(3.45)

Many Gh
m graphs give the same contribution, hence it would be useful to count them

only once and add a multiplicity factor. We can split the counting into two parts: first
we compute the multiplicity factor due to the relabeling of external legs and then we
compute the multiplicity due to the relabeling of the endpoints of the propagator.

– Let {h1, . . . , ha} = {L1, . . . , L1, L2, . . . , L2, . . . , La, . . . , La}, where Li appear
with multiplicity ni , i.e. we have ni surfaces with Li legs sticking out. The number
of such terms is given by

1 The notation ∂mi A
gi
hi

(t, 0, z1, . . . , zhi ) means that there are mi derivatives acting on A
gi
hi

(t, 0,

z1, . . . , zhi ).
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h!
(L1!)n1 · · · (La !)na . (3.46)

– For a fixed choice of {(L1, n1), . . . , (La, na)} we have an additional factor NGh
m
,

which counts the inequivalent ways of relabeling the punctures at the endpoints of
the propagators in such a way that 2i − 1 is linked to 2i for i = 1, . . . ,m.

Hence each diagram appears with a multiplicity factor

h!
(L1!)n1 · · · (La !)na

NGh
m

2mm! . (3.47)

As in [14] the factor NGh
m
is related to the symmetry factor s through

NGh
m

2mm! = 1

s
. (3.48)

The factor 1/s is the multiplicity arising from Wick’s theorem applied to

∫
dη exp

⎡

⎣
∑

k≥0

∑

�

A�(η, 0)TrV �1 · · ·TrV �k

⎤

⎦ e−S(t,η,κ)g−2
s , (3.49)

where we select only connected diagrams fulfilling (3.45) and we fix the external legs.
In particular, here we do not allow for permutation of the external legs. The relation
(3.48) follows from the definition of the symmetry factor. Indeed the symmetry factor
counts the number of equivalent contractions which in our language is the number of
equivalent ways of relabeling the punctures at the endpoints of the propagators. By
standard combinatorics one can deduce the relation (3.48). It follows that

MGh
m

:= 1

(L1!)n1 · · · (La !)na
NGh

m

2mm! , (3.50)

is the multiplicity factor for connected diagrams fulfilling (3.45) arising from Wick’s
theorem applied to

∫
dη exp

⎡

⎣
∑

k≥0

1

k!
∑

�

A�(η, 0)TrV �1 · · ·TrV �k

⎤

⎦ e−S(t,η,κ)g−2
s , (3.51)

where we now allow for permutations of the external legs. It follows that A(g)
h (t, κ,

z1, . . . , zh)/h! is obtained by considering all connected diagrams fulfilling (3.45) com-
ing from

∫
dη exp

⎡

⎣
∑

k≥0

1

k!
∑

�

A�(η, 0)TrV �1 · · ·TrV �k

⎤

⎦ e−S(t,η,κ)g−2
s . (3.52)

From the Fourier transform point of view, imposing the selection rule (3.45) is natural
since it is equivalent to picking up only the terms which are proportionals to g2g+h−2

s
in the genus expansion, with h legs sticking out. As an example of this procedure, we
show in Fig. 3 the graphs that contribute to A(0)

3 (t, κ, x, y, z) up to first order. We see
that the multiplicity factor is precisely (3.50).
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Let us consider the full term on the l.h.s. of (3.33). The argument of the exponential
is made of products of connected surfaces. By expanding it we obtain a sum involving
terms of the form:

s∏

i=1

⎛

⎝M
Gh(i)

m(i)

r (i)∏

j=1

∂
m(i)

j A
(g(i)

j )

h(i)
j

(t, 0, z1, . . . , zh(i)
j

)

⎞

⎠
ñi

1

ñ1! · · · ñs ! , (3.53)

where each term ⎛

⎝M
Gh(i)

m(i)

r (i)∏

j=1

∂
m(i)

j A
(g(i)

j )

h(i)
j

(t, 0, z1, . . . , zh(i)
j

)

⎞

⎠ (3.54)

denotes a connected surface appearing with multiplicity ñi . Hence the total multiplicity
factor is

s∏

i=1

(
M

Gh(i)

m(i)

)ñi 1

ñi ! . (3.55)

This is precisely the symmetry factor arising from Wick’s theorem applied to r.h.s. of
(3.33). Indeed the multiplicity factor is inversely proportional to the equivalent ways of
relabeling the punctures. This has two sources:

1. The equivalent ways of relabeling the puncture inside a given connected surface.
2. The equivalent ways of relabeling the puncture between disconnected surfaces.

As explained above the first contribution is

M
Gh(i)

m(i)
, (3.56)

while the second one is given by the overall factor

1

ñ1! · · · ñs ! . (3.57)

4. Application: The ABJM 1/2 BPS Wilson Loop

As an application of the general result of this paper, we will now present expressions
for the vevs of 1/2 BPS Wilson loops of ABJM theory, in different representations.
Since the results are obtained as an integral transform of topological vertex results, they
are exact in the string coupling constant but perturbative in the exponentiated Kähler
parameter. Therefore, they correspond to an expansion at large N with k fixed, which is
the M-theory expansion of the Wilson loop amplitudes.

4.1. ABJM theory and topological strings. The partition function and vevs of BPSWil-
son loops in ABJM theory can be computed through localization (see [33] for a review
and a list of references). The result of this computation is a matrix integral [17] which
in turn can be related [18] to topological string theory in the CY manifold known as
local P1 × P

1. This manifold has two Kähler moduli. In the large radius frame, they
correspond to the sizes T1, T2 of the two P1’s. ABJM theory is described by the “slice”

T = T1 = T2. (4.1)
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The appropriate frame for the matrix model calculation in ABJM theory is the so-called
orbifold frame of [19], and the strong coupling limit of ABJM theory corresponds to the
large radius regime of topological string theory. One can then compute ABJM quantities
at strong coupling by first computing the amplitudes in the large radius frame, and then
performing a modular transformation.

In the case of the partition function, one can use the integral transform formula of
[11] to obtain the partition function of ABJM theory at strong coupling [20]. Let us
review this in some detail. In the orbifold frame, the natural periods are

λ = N

k
, (4.2)

which is the ’t Hooft coupling of the gauge theory, and the dual period ∂λF0, where F0
is the genus zero free energy. In the large radius, the natural periods are T [the diagonal
Kähler modulus in (4.1)] and the derivative ∂T FLR

0 . There is only one effective class,
labelled by an integer d, such that β · T = dT . The closed string free energy in the large
radius frame is given by

FLR(λ, gs) = T 3

6g2s
+

T

12
+ A(gs) +

∑

g≥0

∑

d>0

Ng,d e
−dT g2g−2

s , (4.3)

where Ng,d are Gromov–Witten invariants in the local P1 × P
1 geometry and A(gs) is

the contribution of constant maps. The topological string coupling constant is related to
k by2

gs = 4π i

k
. (4.4)

There is a symplectic transformation relating the periods in the orbifold frame, to the
periods in the large radius frame:

(
∂λ̃ F̃0

λ̃

)
=

(
0 1

−1 2

)(
∂T̃ F̃

LR
0

T̃

)
(4.5)

where

λ̃ = 4π2

c
λ, T̃ = π i

2c
T, c2 = 2π i, (4.6)

and

F̃0 = F0 − π3iλ,

F̃LR
g = (−1)g−1

(
FLR
g − δg,0

π2T

3

)
.

(4.7)

Then, according to (3.37), the total partition functions are related by the following
formula:

2 In [18,20,34] one sets gs = 2π i/k, but then the resulting topological string free energy at genus g and
large radius differs by a factor of 4g−1 from the standard one. The normalization used in this paper is more
suited to comparisons with standard large radius results.
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exp
[
F(λ) − π3iλ/g2s

]
=

∫
dT̃ exp

[
−T̃ 2/g2s + T̃ λ̃/g2s + F̃LR(T̃ )

]
. (4.8)

Let us introduce a variable μ through

T = 4μ

k
− π i. (4.9)

Then, one finds the expression

Zcl(N , k) = eA(k)
∫

dμ exp

{
2μ3

3kπ2 − μN +
k

24
μ +

1

3k
μ +O

(
e− 4μ

k

)}

= eA(k) Ai
[
C−1/3(N − B)

] (
1 +O(e−2π

√
2λ)

)
, (4.10)

where we used the following integral representation of the Airy function,

Ai(z) = 1

2π i

∫

C
dt exp

(
t3

3
− zt

)
, (4.11)

and C is a contour in the complex plane from e−iπ/3∞ to eiπ/3∞. In (4.10),

C = 2

π2k
, B = k

24
+

1

3k
. (4.12)

The result (4.10) was first obtained in [35] by studying the holomorphic anomaly equa-
tions. The function A(k) has been studied in detail in [36].

4.2. Wilson loops. It is possible to construct 1/2 BPS Wilson loops in ABJM theory
and to evaluate their vevs through localization [15]. These Wilson loops are labelled by
Young tableaux R, and their vevs reduce to an average in the matrix model of [17]. This
has been recently tested in perturbation theory, to two loops, and for the fundamental
representation, in [37]. In [18] it was shown that the matrix model averages are topo-
logical open string amplitudes associated to an outer brane in local P1 × P

1, again in
the so-called orbifold frame. We can now generalize to the open string sector the obser-
vation of [20] for computing the closed string partition function in the orbifold frame:
we first evaluate the open string amplitudes in the large radius frame, and then perform
an integral transform to obtain the result in the orbifold frame, which gives the Wilson
loop vevs.

The open string amplitude for an outer brane in local P1 × P
1 can be computed

by using for example the topological vertex [19]. The topological vertex formalism
computes directly the open string partition function Z(V ), and explicit results for the
first ZR defined in (2.12) can be easily obtained. Equivalently, one can list the integer
invariants ng,d,� appearing in (2.8). We find, for the fundamental representation,

Z

Zcl
= 1

q − q−1

[
1 + 2Q + 3Q2 + 10Q3 +

(
33 + 8

(
q2 + q−2

))
Q4

+
(
132 + 56

(
q2 + q−2

)
+ 22

(
q4 + q−4

))
Q5 + · · ·

]
. (4.13)

The integer invariants for � = (1) and � = (1, 1), (2) are listed in Tables 1 and 2,
respectively.
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Table 1. The integer invariants ng,d,(1)

d 0 1 2 3 4 5
g = 0 1 2 3 10 49 288
g = 1 0 0 0 0 8 144
g = 2 0 0 0 0 0 22

Table 2. The integer invariants ng,d,(1,1) (left) and ng,d,(2) (right)

d 1 2 3 4 5
g = 0 1 2 8 48 336
g
g
= 1 0 0 0 7 148
= 2 0 0 0 0 20

d 1 2 3 4 5
g
g
g

= 0 1 2 8 36 208
= 1 0 0 0 7 112
= 2 0 0 0 0 20

When using our general result (3.42) we have to be careful with the open stringmirror
map. In the computation of large radius open string amplitudes with the topological
vertex, we are implicitly using an open string modulus Ṽ . Let V be the open string
modulus at the orbifold point, appropriate for the matrix model of [17,19]. Then, one
has the relationship [8,18,34]

Ṽ = −Q−1/2V = −eT/2V, (4.14)

where we denoted
Q = e−T . (4.15)

We will now test (3.42) for h = 1, 2, 3 boundaries.

4.2.1. One boundary. Wewill denote simply by A� the open string amplitudes evaluated
in the orbifold frame, which corresponds to ABJM vevs, and by ALR

� the amplitudes
evaluated at large radius, computed for example by the topological vertex. To study the
disk invariants, we specialize (3.42) for � = (l) and we pick only terms of the form
Tr V l . We find,

Zcl(λ, k)
∑

l≥1

Al(λ)Tr V l

=
∑

l≥1

∫
dμ ALR

l (T ) exp

[
2μ3

3kπ2 − μN + μ

(
k

24
+

1

3k

)
+ A(k) +O

(
e− 4μ

k

)]
Tr Ṽ l .

(4.16)
We will now calculate the amplitudes by doing an expansion in Q, which corresponds
to a worldsheet instanton expansion. From the results in Table 1 we find, for l = 1

ALR
1 = 1

2i sin
( 2π

k

)
(
1 + 2Q + 3Q2 + · · ·

)
, (4.17)

and through the integral transform (4.16) we obtain, for the leading contribution,

Alead
1 = 1

2 sin(2π/k)

(
Ai

(
C−1/3

(
N − k

24 − 1
3k − 2

k

))

Ai
(
C−1/3

(
N − k

24 − 1
3k

))
)

. (4.18)

This reproduces the result derived in [21] with Fermi gas techniques (up to an extra
factor of 2, due to the fact that we are expanding in gs = 4π i

k rather than gs = 2π i
k ). Our
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formalism makes it possible to calculate subleading corrections to this result coming
from worldsheet instantons. In particular, the subleading order in Q in (4.17) leads to
the following exponentially small correction to (4.18),

Asl
1 = − 1

sin(2π/k)
W (−1) +

1

2 sin3(2π/k)
W (−1) − 1

2 sin3(2π/k)
W (−2)W (1),

(4.19)
where

W (n) = Ai
(
C−1/3

(
N − k

24 − 1
3k − 2n

k

))

Ai
(
C−1/3

(
N − k

24 − 1
3k

)) . (4.20)

Higher order corrections can be computed straightforwardly from the topological vertex.
The corrections in (4.19) and higher order should be interpreted, in the large N type
IIA superstring dual, as due to closed string worldsheet instantons attached to the disk
instanton responsible for the leading order behavior (4.18).

Notice that the above formulae give all genus results: since the topological vertex
expressions sum up the genus expansion, order by order in the degree, the expressions
resulting from their integral transform sum up the genus expansion in the type IIA dual
of ABJM theory, and can be therefore lifted to M-theory.

One can also use the fact that, for d = 0, the only non-zero integer invariant ng,d,�

occurs for g = 0 and � = (1), to derive

ALR
n = 1

2ni sin(2nπ/k)
+ · · · (4.21)

at leading order in Q. This is due only tomulticovering of the n = 1 amplitude. Therefore
we find

Alead
n = 1

2n sin(2nπ/k)
W (n), (4.22)

which also agrees with the result in [21].
We can now test the above all-genus results against explicit computations done di-

rectly in the orbifold frame. Following [34], we use the following genus expansion

A1 =
∑

g≥0

g2g−1
s A(g)

1 . (4.23)

The quantities A(g)
1 have been computed for g = 0 [18] and g = 1 [34], and they are

naturally expressed in terms of the parameter κ introduced in [18] through

λ(κ) = κ

8π
3F2

(
1

2
,
1

2
,
1

2
; 1, 3

2
;−κ2

16

)
. (4.24)

This can be inverted, at strong coupling κ � 1, as

κ = eπ

√
2λ̂

(
1 +

(
−2 +

1

π
√
2λ̂

)
e−2π

√
2λ̂ +O

(
e−4π

√
2λ̂

))
, (4.25)

where

λ̂ = λ − 1

24
. (4.26)
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It has been shown in [18] that at genus zero the exact expression for the 1/2 BPSWilson
loop vev is

A(0)
1 = iκ(λ), (4.27)

up to a factor of 1/2 as mentioned after (4.18). This is indeed reproduced by our for-
malism, since we find, from the genus expansion of (4.18) and (4.19), that

A(0)
1 = i e

√
2λ̂π + i

(
1√
2λ̂π

− 2

)
e−

√
2λ̂π +O

(
e−3π

√
2λ̂

)
, (4.28)

which agrees with (4.27) after using (4.25).
We now look at the genus one results. From (4.18) and (4.19) we have

A(1)
1 = 3 − 4

√
2λ̂π + 4λ̂π2

96iλ̂π2
eπ

√
2λ̂

− 6 + 5
√
2λ̂π + 4λ̂π2 − 20

√
2λ̂3/2π3 + 16λ̂2π4

192iλ̂2π4
e−π

√
2λ̂ +O

(
e−3π

√
2λ̂

)
.

(4.29)

This can be compared with the expression obtained from theW (1)
1 (p) computed in [34].

We find perfect agreement.

4.2.2. Two boundaries. Let us now look at the terms proportional to (TrV )2 in (3.33):

Zcl(λ, k)
(
A1,1(λ) + A1(λ)A1(λ)

)
(TrV )2 =

∫
dμ

(
ALR
1,1(T ) + ALR

1 (T )ALR
1 (T )

)

× exp

[
2μ3

3kπ2 − μN + μ

(
k

24
+

1

3k

)
+ A(k) +O

(
e− 4μ

k

)] (
TrṼ

)2
. (4.30)

The integrand in the second line can be computed by using the topological vertex, or
equivalently the results for the integer invariants in Table 2. As before, we first look at
the leading order in the worldsheet instanton expansion, and we find, after the integral
transform,

Alead1,1 (λ)

= 1

4 sin2( 2πk )

⎡

⎢⎣
Ai(C−1/3(N − k

24 − 1
3k − 4

k ))

Ai
(
C−1/3

(
N − k

24 − 1
3k

)) −
⎛

⎝
Ai

(
C−1/3

(
N − k

24 − 1
3k − 2

k

))

Ai
(
C−1/3

(
N − k

24 − 1
3k

))

⎞

⎠
2⎤

⎥⎦ .

(4.31)

Similarly, the subleading term is given by

Asl
1,1 =

(
1

2
+

1

4 sin4(2π/k)
− 1

sin2(2π/k)

)
W (0) +

1

2 sin4(2π/k)
W (−2)W (1)W (1)

+

(
1

sin2(2π/k)
− 1

2 sin4(2π/k)

)
W (1)W (−1) − 1

4 sin4(2π/k)
W (2)W (−2).

(4.32)
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The annulus amplitude (4.31) has a genus expansion given by

A1,1 =
∑

g≥0

g2gs A(g)
1,1. (4.33)

We find, at genus zero,

A(0)
1,1 = − e2

√
2π

√
λ̂

8
√
2π

√
λ̂
+

√
2 − 8

√
2λ̂π2 + 32λ̂3/2π3

32λ̂3/2π3
+O

(
e−2π

√
2λ̂

)
. (4.34)

We can compute this quantity by using Akemann’s expression for the annulus correlator
W (0)

2 (p, q) [38], which has an expansion

W (p, q) =
∑

k,l≥1

kl A(0)
k,l p

−k−1q−l−1. (4.35)

The explicit expression forW (p, q) is given in terms of data of the spectral curve of the
ABJM matrix model,

W (p, q) = 1

4(p − q)2

(√
(p − x1)(p − x2)(q − x4)(q − x3)

(p − x4)(p − x3)(q − x1)(q − x4)

+

√
(p − x4)(p − x3)(q − x1)(q − x2)

(p − x1)(p − x2)(q − x4)(q − x3)

)

+
(x1 − x3)(x4 − x2)

4
√

σ(p)σ (q)

E(k)

K (k)
− 1

2(p − q)2
. (4.36)

Here, xi are the branch points of the spectral curve, which is elliptic, k is an appropriate
elliptic modulus, and E(k), K (k) are elliptic integrals. Explicit expressions for all these
quantities can be found in [34, section 8.1], or [21, section 2]. The result obtained in this
way matches with (4.34).

4.2.3. Three boundaries. Wefinally discuss verybriefly a simple check for the amplitude
with three boundaries. Using the integral transform, we find, at leading order in the
worldsheet instanton expansion,

A1,1,1 =
(

1

2 sin
( 2π

k

)
)3 (

W (3) − 3(W (2) − W (1)2)W (1) − W (1)3
)
+ · · · . (4.37)

This has a genus expansion

A1,1,1 =
∑

g≥0

g2g+1s A(g)
1,1,1. (4.38)

At genus zero we find, from (4.37),

A(0)
1,1,1 = i

64

(1 − 3π
√
2λ̂)

(π
√
2λ̂)3

e3π
√

2λ̂ +O
(
eπ

√
2λ̂

)
. (4.39)

We can compare this with the explicit expression extracted from the W (0)
3 (p, q, r) pre-

sented in for example [8] (and applied to the spectral curve of the ABJMmatrix model).
The result at leading order matches again with (4.39).
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5. Conclusions and Open Problems

In this paper, motivated by the results in [21], we have generalized the results of [14] to
the open sector, and showed that the intricate combinatorics of the κ-dependence in [13]
can be simply summarized by the statement that the total open string partition function
is a wavefunction. Notice that in our derivation the open moduli played no significant
role, since the open mirror map simply involves multiplying them by an overall factor,
and the only source of non-holomorphic dependence is the factor κ already present in
the closed sector. Clearly, it would be very interesting to generalize this wavefunction
behavior under modular transformations to the case of compact CY manifolds. This can
be probably worked out as a consequence of [25].

A nice application of our general result is the computation of vevs of 1/2 BPS
Wilson loops in ABJM theory. These are simply given by integral transforms of open
string amplitudes in the large radius frame. The expressions for these amplitudes in terms
of integer invariants, which include all genera but are perturbative in the exponentiated
Kähler coupling, correspond precisely, after the integral transform, to the M-theory
expansion of Wilson loop vevs. By using the large N dual, we obtain in this way a genus
resummation in type IIA superstring theory.

One important open problem that we have not addressed here is the computation
of membrane instanton corrections to the Wilson loop vevs of ABJM theory. These
corrections are known to be present in the free energy on the three-sphere [20,39] and
they can be computed within the Fermi gas formalism [20,40–42]. It would be very
interesting to know whether they are present in the case of Wilson loops, and if so, what
is their value.

In this respect there is however one interesting difference between the vevs of 1/2
BPSWilson loops and the free energy. For the free energy, the contribution of worldsheet
instantons is singular for all integer values of k. This singular behavior is not physical
(the original matrix integral is well-defined for all k > 0), and as shown in [40] these
singularities are cancelled by membrane instantons. In the case of vevs of 1/2 BPS
Wilson loops with winding numbers �, there are singularities for the values of k which
divide 2�i , for all i = 1, . . . , h [this follows from the integrality structure (2.8)]. For
example, for the winding � = (1), the vev is singular for k = 1, 2. However, as pointed
out in [21], these singularities are physical, since the matrix integral computing the vevs
actually diverges for these values. Therefore, the contribution of membrane instantons
is not required to cancel out singularities, as in the case of the free energy, and it might
be zero. It would be interesting to further explore this issue.

Acknowledgements. We would like to thank Albrecht Klemm for discussions. This work is supported by the
Fonds National Suisse, subsidy 200020-137523.

A. A Check of Modular Transformation Properties

As explained in Sect. 3.1 the κ-dependence in the quantities W (g)
k encodes the infor-

mation about how it transforms under a modular transformation. In this appendix we
perform an explicit check of this statement for a simple case of a local Calabi–Yau
manifold. A particular class of manifolds considered in this paper are those having an
underlying algebraic curve which is given in “exponentiated” variables by

y2(x) = M2(x)σ (x), (A.1)
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where

σ(x) =
2s∏

i=1

(x − xi ) (A.2)

and M(x) is some transcendental function. Let us consider the simple case s = 2 and
M(x) = 1. In this case we have a curve of genus one, i.e. an elliptic curve. The cuts
defining the A and B-cycles are given by

A1 = (x1, x2), A2 = (x3, x4), B1 = (x2, x3). (A.3)

We will consider an S-duality transformation defined by

A = D = 0, B = −C = 1 (A.4)

in (3.3).According to (3.5) the quantityW (1)
1 (p)will transformas (3.15)with κ = −τ−1.

We can test this by using explicit expressions in terms of the end points of the cuts for
the various quantities appearing in (3.15).
We have [38,43]

W (0)
3 (p1, p2, p3) = 1

8

4∑

i=1

M2(xi )σ
′(xi )χ(1)

i (p1)χ
(1)
i (p2)χ

(1)
i (p3), (A.5)

W (1)
1 (p) = 1

16

4∑

i=1

χ
(2)
i (p) +

1

8

4∑

i=1

(
2αi −

∑

j 
=i

1

xi − x j

)
χ

(1)
i (p), (A.6)

where

χ
(1)
i (p) = 1

M(xi )
√

σ(p)

(
1

p − xi
+ αi

)
,

χ
(2)
i (p) = −M ′(xi )

M(xi )
χ

(1)
i (p) +

1

M(xi )
√

σ(p)

1

(p − xi )2
− 1

3

1

M(xi )
√

σ(p)

∑

j 
=i

α j − αi

x j − xi
,

(A.7)
and the αi are given by

α1 = 1

(x1 − x2)

[
1 − (x4 − x2)

(x4 − x1)

E(k)

K (k)

]
,

α2 = 1

(x2 − x1)

[
1 − (x3 − x1)

(x3 − x2)

E(k)

K (k)

]
,

α3 = 1

(x3 − x4)

[
1 − (x4 − x2)

(x3 − x2)

E(k)

K (k)

]
,

α4 = 1

(x4 − x3)

[
1 − (x3 − x1)

(x4 − x1)

E(k)

K (k)

]
.

(A.8)

The S-duality transformation for W (1)
1 (p) is given by exchanging the roots

x1 ↔ x3 (A.9)
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in (A.6). Doing this we find after a little work that

W (1)
1 (p) → W (1)

1 (p) +
1√

σ(p)

4∑

i=1

F(p, xi , τ ), (A.10)

where

F(p, xi , τ ) = 1

4

Ki

(p − x̃i )
− ∑

j 
=i

(
1

48

K j − Ki

x̃ j − x̃i
+
1

8

Ki

x̃i − x̃ j

)
+
1

4
(2Ki + 2Ki Ri + K 2

i ),

(A.11)

with

K1 = − 1

(x3 − x2)

[
(x4 − x2)

(x4 − x3)

iπ

2K (k)2τ

]
, R1 = − 1

(x3 − x2)

[
(x4 − x2)

(x4 − x3)
(1 − E(k)

K (k)
)

]
,

K2 = − 1

(x2 − x3)

[
(x1 − x3)

(x1 − x2)

iπ

2K (k)2τ

]
, R2 = − 1

(x2 − x3)

[
(x1 − x3)

(x1 − x2)
(1 − E(k)

K (k)
)

]
,

K3 = − 1

(x1 − x4)

[
(x4 − x2)

(x1 − x2)

iπ

2K (k)2τ

]
, R3 = − 1

(x1 − x4)

[
(x4 − x2)

(x1 − x2)
(1 − E(k)

K (k)
)

]
,

K4 = − 1

(x4 − x1)

[
(x1 − x3)

(x4 − x3)

iπ

2K (k)2τ

]
, R4 = − 1

(x4 − x1)

[
(x1 − x3)

(x4 − x3)
(1 − E(k)

K (k)
)

]
,

x̃i =
⎧
⎨

⎩

xi if i = 2, 4
x3 if i = 1
x1 if i = 3

⎫
⎬

⎭ (A.12)

and τ is the standard elliptic modulus

τ = i
K (k′)
K (k)

(A.13)

where
k′2 = 1 − k2. (A.14)

Using the same approach as in for example [8] we can compute the integrals around
the B-cycles of the quantities W (0)

2 (p1, p2), W
(1)
1 (p) and W (0)

3 (p1, p2, p3), which are
needed on the r.h.s of (3.15), in terms of elliptic functions. Without showing the full
computation let us give a few important ingredients. For W (0)

2 (p1, p2) we have [44],
∮

B
W (0)

2 = 2π iω = − π

2K (k)

√
(x1 − x3)(x2 − x4)√

σ(p)
. (A.15)

For the integrals of the quantities χ
(1)
i (p) in (A.5) we find

∮

B
χ

(1)
1 = − 4√

(x1 − x3)(x2 − x4)

π

2

1

K (k)

x2 − x4
(x1 − x2)(x1 − x4)

,

∮

B
χ

(1)
2 = − 4√

(x1 − x3)(x2 − x4)

π

2

1

K (k)

x3 − x1
(x1 − x2)(x2 − x3)

,

∮

B
χ

(1)
3 = − 4√

(x1 − x3)(x2 − x4)

π

2

1

K (k)

x4 − x2
(x3 − x4)(x3 − x2)

,

∮

B
χ

(1)
4 = − 4√

(x1 − x3)(x2 − x4)

π

2

1

K (k)

x1 − x3
(x3 − x4)(x4 − x1)

.

(A.16)
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In order to compute
∮
B W (1)

1 it is useful to observe that
∫ x3

x2

dx

(xi − x)2
√|σ(x)| = K (k′)1

3

∑

j 
=i

α̃ j − α̃i

x̃ j − x̃i
. (A.17)

The quantities α̃i and x̃i in (A.17) are obtained from αi and xi by everywhere exchanging
the indices 1 and 3, as in (A.12).
After computing the relevant integrals and putting everything togetherwefind that indeed

− 1

2π iτ

(
1

2

∮

B

∮

B
W (0)

3 +
∮

B
W (1)

1

∮

B
W (0)

2

)
+

1

(2π iτ)2

(
1

2

∮

B

∮

B

∮

B
W (0)

3

∮

B
W (0)

2

)

= 1√
σ(p)

4∑

i=1

F(p, xi , τ ), (A.18)

where F(p, xi , τ ) is defined in (A.11). This is what we wanted to show.
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