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Abstract Due to the limited applicability in practice of the classical job shop schedul-

ing problem, many researchers have addressed more complex versions of this prob-

lem by including additional process features, such as time lags, setup times, and

buffer limitations, and have pursued objectives that are more practically relevant than

the makespan, such as total flow time and total weighted tardiness. However, most

proposed solution approaches are tailored to the specific scheduling problem studied

and are not applicable to more general settings.

This article proposes a neighborhood that can be applied for a large class of job

shop scheduling problems with regular objectives. Feasible neighbor solutions are

generated by extracting a job from a given solution and reinserting it into a neighbor

position. This neighbor generation in a sense extends the simple swapping of crit-

ical arcs, a mechanism that is widely used in the classical job shop but that is not

applicable in more complex job shop problems.

The neighborhood is embedded in a tabu search, and its performance is evalu-

ated with an extensive experimental study using three standard job shop schedul-

ing problems: the (classical) job shop, the job shop with sequence-dependent setup

times, and the blocking job shop, combined with the following five regular objectives:

makespan, total flow time, total squared flow time, total tardiness, and total weighted

tardiness. The obtained results support the validity of the approach.

Keywords job shop scheduling · general regular objective · sequence-dependent

setup times · blocking job shop · job insertion · neighborhood · tabu search

1 Introduction

The classical job shop scheduling problem has attracted the attention of a large num-

ber of researchers and has earned the reputation of being one of the most computa-
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(Québec), Canada H3C 3A7, E-mail: reinhard.burgy@gerad.ca

Manuscript Click here to download Manuscript CJS-Rev2.tex 

Click here to view linked References
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

http://www.editorialmanager.com/josh/download.aspx?id=38446&guid=58d04300-bf56-447a-b233-606c7ef189f7&scheme=1
http://www.editorialmanager.com/josh/download.aspx?id=38446&guid=58d04300-bf56-447a-b233-606c7ef189f7&scheme=1
http://www.editorialmanager.com/josh/viewRCResults.aspx?pdf=1&docID=2528&rev=2&fileID=38446&msid={0E8DB6F3-91B0-48E3-AED7-792AF4A0DBB4}


2 Reinhard Bürgy

tionally stubborn combinatorial optimization problems (Applegate and Cook, 1991).

This standard scheduling problem is, however, of limited applicability in practice

since real-world scheduling problems possess process features that are not captured

by the classical job shop model, such as, for example, sequence-dependent setup

times, minimum and maximum time lags between operations, limited buffer capac-

ity, routing flexibility, and transportation tasks. Also, the makespan is not the only

relevant performance measure in practice: total (weighted) flow time, total squared

tardiness, and other possibly nonlinear measures of earliness and tardiness are equally

relevant in applications. This has given rise to active research on job shop schedul-

ing models that better capture real-world scheduling problems (Potts and Strusevich,

2009). Some of these models have established themselves over the years as standard

problems in the literature, among them the job shop with total weighted tardiness ob-

jective, the job shop with sequence-dependent setup times, the no-wait job shop, and

the blocking job shop.

Referring to the general area of scheduling research, Potts and Strusevich (2009)

mention that many researchers were motivated by the need to create scheduling mod-

els capturing more features that arise in practice. However, they conclude that “In

spite of the vast body of research being produced, a large gap still remains between

theory and practice.” A similar assessment can be found in (Pinedo, 2012, pp. 431 -

435). This gap has also been widely acknowledged in scheduling problems of the job

shop type.

A main reason for the existence of this gap is, in our view, the lack of research

into generic job shop scheduling problems that would model a wide range of process

features and cover generic objectives. Indeed, most articles study specific job shop

problems and include only a few additional features. As a result, the proposed solu-

tion approaches are highly specialized, and job shop scheduling research has become

fragmented. Bülbül and Kaminsky (2013) concur with this opinion, and point out

that, as a result, job shop scheduling software is highly specialized and customized.

The following are some of the few contributions addressing more general job

shop scheduling problems. Mati et al (2011) considered the job shop problem with

a general regular objective. This class of objectives comprises all functions that are

monotone non-decreasing in the completion times. They formulated the problem in a

disjunctive graph and developed a local search heuristic where neighbors are built

by swapping a critical arc. For future research, they proposed investigating more

complex job shop scheduling problems with a general regular objective. Bülbül and

Kaminsky (2013) developed a decomposition heuristic for the job shop problem ap-

plicable to all linear functions of the operation start (and end) times. This class of

objectives makes it possible to consider, for example, intermediate holding costs,

which are a relevant performance measure in practice. They formulated the problem

in a disjunctive graph and developed a shifting-bottleneck-based solution approach.

An interesting and novel component of their method is the integration of dual val-

ues from the timing problems (of partial schedules) into the single machine sub-

problems. Grimes and Hebrard (2015) recently considered a generic disjunctive ma-

chine scheduling problem in which various processing features and objectives can be

modeled. They proposed a constraint programming approach that combines a num-

ber of generic search techniques (restarts, adaptive heuristics, and solution-guided
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A neighborhood for CJS problems with regular objectives 3

branching). While the basic approach is generic, some specific knowledge is incor-

porated to improve its effectiveness in certain problem types. Their numerical tests

on some standard job shop problems showed that the approach works well for small

and medium-sized instances, but is less suited for solving large instances. In addi-

tion, they observe that a good initial upper bound improves the performance of the

approach.

In view of the excellent (hybrid) local search approaches developed for specific

job shop scheduling problems (see, e.g., Nowicki and Smutnicki, 2005; Zhang et al,

2008; González et al, 2012a), it seems surprising that almost no local search meth-

ods have been proposed for a more general job shop scheduling setting. In fact, the

applied meta-heuristics are typically generic in nature; however, the neighborhood,

a main component of the local search, is in most cases only applicable in a rather

narrow setting. The generation of feasible neighbors is a major problem. Indeed, the

standard strategy of swapping critical arcs generates a feasible neighbor with cer-

tainty in the (classical) job shop, but may lead to an infeasible neighbor in other vari-

ants. For the job shop with sequence-dependent setup times, necessary conditions for

feasibility have been established (see, e.g., Vela et al, 2010), and a critical arc is only

swapped if such a condition is fulfilled. However, in more complex job shop schedul-

ing problems, such as the blocking job shop, swapping a single arc mostly leads to an

infeasible solution. Hence, another approach is needed for these complex scheduling

problems.

In this paper, we develop a neighborhood that is applicable to a large class of job

shop problems and any regular objective. The neighborhood in a sense extends the

idea of swapping a critical arc and is based on a neighbor generation scheme that ex-

tracts a job from a given solution and reinserts it into a feasible neighbor position. The

neighbor generation scheme relies on the job insertion theory developed by Gröflin

and Klinkert (2007), and has already been successfully applied in various job shop

scheduling problems with the makespan objective, namely, in the (flexible) blocking

job shop (Gröflin and Klinkert, 2009; Gröflin et al, 2011), in the blocking job shop

with rail-bound transportation (Bürgy and Gröflin, 2016), and in a more general job

shop model (Bürgy, 2014). This article casts the neighbor generation scheme in a uni-

fying framework and extends its use to any regular objective. Note that we abstained

from dealing with machine flexibility in this work and refer to (Gröflin et al, 2011;

Bürgy, 2014) for a possible inclusion of this feature.

The remainder of the article is organized as follows. The next section proposes

a generic job shop scheduling problem called the complex job shop with a regular

objective (CJS-R). Sect. 3 introduces the job insertion problem, which is an impor-

tant subproblem of the CJS-R problem. The feasible solutions of this subproblem

are characterized as the stable sets (with a prescribed cardinality) of a conflict graph,

and structural properties of this conflict graph are established. Based on these re-

sults, Sect. 4 provides a generic scheme for deriving feasible neighbor solutions and

proposes a specific neighborhood. Sect. 5 casts this neighborhood in a tabu search,

whose performance is evaluated with an extensive experimental study on some well-

known, standard job shop scheduling problems. Proofs and detailed numerical results

are provided in the Appendix.
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4 Reinhard Bürgy

The introduction is concluded with some notation and terminology. Unless other-

wise stated, the graphs will be directed and simple, and the following standard nota-

tion will be used. In a graph G = (V,E), an arc e = (v,w) ∈ E has a tail t(e) = v and

a head h(e) = w. For any set V ′ ⊆V , the set of its ingoging arcs is δ−(V ′) = {e ∈ E :

t(e)∈V \V ′ and h(e)∈V ′}, the set of its outgoing arcs is δ+(V ′) = {e∈ E : t(e)∈V ′

and h(e)∈V \V ′}, the set of arcs in its cut is δ (V ′) = δ−(V ′)∪δ+(V ′), and the set of

arcs with both ends in V ′ is γ(V ′) = {e ∈ E : t(e)∈V ′ and h(e)∈V ′}. If an arc length

vector c ∈R
E is given, G will be denoted by the triplet G = (V,E,c). In G = (V,E,c),

a cycle is called positive if its length is positive.

2 The complex job shop scheduling problem with a regular objective

We first propose a generic job shop scheduling problem called the complex job shop

with a regular objective (CJS-R). The CJS-R problem is based on the scheduling

model presented in (Gröflin and Klinkert, 2007), which is adapted to incorporate jobs

and regular objectives. The CJS-R problem is then formulated as a combinatorial

problem in a disjunctive graph. Finally, two standard job shop scheduling problems,

the job shop problem with sequence dependent setup times and a regular objective

and the blocking job shop with transfer times, setup times, and a regular objective,

are specified as CJS-R problems.

2.1 Notation, data, and a problem formulation

Let V be a finite set of events (e.g., start or end of operations), σ ∈V a dummy start

event, and V− = V \ {σ}. Let J be a set of jobs such that J forms a partition of

V−, i.e., a job J ∈ J consists of a set of events and each event v ∈ V− belongs to

exactly one job. For each job J ∈ J , the set VJ ⊆ V contains all events that belong

to J. For ease of notation, introduce function Job : V \{σ}→ J mapping any event

to its job, i.e., if event v belongs to job J then Job(v) = J.

Furthermore, let A⊆V ×V− and E ⊆V−×V− be two disjoint sets of precedence

constraints and d ∈ R
A∪E a weight function. A precedence constraint (v,w) ∈ A∪E

with weight dvw states that event v must occur at least dvw time units before event

w. Elements of set A and E are called conjunctive and disjunctive precedence con-

straints, respectively. Each conjunctive precedence constraint must be satisfied in any

feasible solution while a disjunctive precedence constraint must hold if some other

disjunctive constraint in E is violated. To formalize this disjunctive structure, define

a family of disjunctive sets E ⊆ 2E where E is a partition of E into pairs. Then,

for each (unordered) pair {(v,w),(v′,w′)} ∈ E , either precedence constraint (v,w) or

(v′,w′) must be fulfilled in any feasible solution. Note that a general disjunctive pair

is sometimes denoted by {e,e} and e is called the mate of e.

Let α = (αv ∈R : v ∈V ) be a vector of the times αv at which events v ∈V occur.

Vector α specifies a schedule. The objective function f : RV → R considered here

satisfies:

α ≤ α ′ implies f (α)≤ f (α ′) for all vectors α,α ′ ∈ R
V . (1)
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A neighborhood for CJS problems with regular objectives 5

Objective functions satisfying (1) are called regular (see, e.g., Pinedo, 2012, p. 19).

The CJS-R problem (V,J ,A,E,E ,d, f ) can then be formulated as the following

disjunctive programming problem:

minimize f (α),α ∈ R
V (2)

subject to:

αw −αv ≥ dvw for all (v,w) ∈ A, (3)

αw −αv ≥ dvw or

αw′ −αv′ ≥ dv′w′ for all {(v,w),(v′,w′)} ∈ E , (4)

ασ = 0. (5)

Any feasible solution α ∈R
V of the CJS-R specifies times αv for all events v ∈V

so that all conjunctive precedence constraints are satisfied (3), at least one disjunc-

tive precedence constraint of each disjunctive pair is satisfied (4), and the start event

occurs at time 0 (5). The objective (2) is to minimize the value f (α).
It can generally be assumed that the solution space {α ∈R

V : ασ = 0, αw −αv ≥
dvw for all (v,w) ∈ A} is nonempty. According to the meaning of event σ , we also

assume that (σ ,v) ∈ A with weight dσv ≥ 0 for all v ∈ V−, stipulating together with

(5) that any feasible schedule α consists of nonnegative starting times.

In this paper, we further restrict the use of the conjunctive and disjunctive prece-

dence constraints as follows. Each conjunctive precedence constraint considers two

events of the same job or involves the dummy start, i.e., for all (v,w) ∈ A with v 6= σ :

Job(v) = Job(w). (6)

Conversely, each disjunctive precedence constraint considers two events of distinct

jobs, i.e., for all (v,w) ∈ E:

Job(v) 6= Job(w). (7)

Furthermore, each pair of disjunctive precedence constraints considers events that

belong to exactly two distinct jobs. More precisely, for all {(v,w),(v′,w′)} ∈ E :

Job(v) = Job(w′) and Job(w) = Job(v′). (8)

Moreover, for each disjunctive pair, at most one precedence constraint can be fulfilled

in any feasible solution, i.e., for all {(v,w),(v′,w′)} ∈ E :

{

α ∈ R
V : ασ = 0, αq −αp ≥ dpq for all (p,q) ∈ A∪{(v,w),(v′,w′)}

}

= /0. (9)

Some remarks are in order. While there is no mention of resources in the CJS-R

scheduling problem, the most common applications are scheduling problems involv-

ing machines with unit capacities. Then, the capacity constraints can easily be cap-

tured by the disjunctive constraints (4). Also, there is no prescribed job structure. In

many cases, a job is just a sequence of operations, but the CJS-R problem makes it

possible to specify other type of structures, such as assembly or disassembly opera-

tions.
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6 Reinhard Bürgy

2.2 A formulation in a disjunctive graph

The CJS-R problem (V,J ,A,E,E ,d, f ) is formulated in an associated disjunctive

graph G = (V,A,E,E ,d) that is defined as follows. Each event v ∈ V is represented

by a node, and we identify a node with the event it represents. Each precedence

constraint (v,w) ∈ A∪E is represented by an arc with length dvw. Consequently, A

is the set of conjunctive arcs, E is the set of disjunctive arcs, E is the family of

disjunctive arcs pairs, and d is the arc length vector. Note that the conjunctive part

(V,A,d) of G contains no positive cycle as there exists no feasible solution otherwise.

In order to capture solutions in graph G, we introduce selections of disjunctive

arcs.

Definition 1 Any subset of disjunctive arcs S ⊆ E is called a selection. A selection S

is positive acyclic if its associated graph (V,A∪S,d) contains no positive cycle, and

is positive cyclic otherwise. A selection S is complete if S∩D 6= /0 for all D ∈ E .

Given any selection S ⊆ E , we have the following timing problem at hand. The space

of the feasible times for the events is

Ω(S) = {α ∈ R
V : ασ = 0, αw −αv ≥ dvw for all (v,w) ∈ A∪S}.

Clearly, Ω(S) 6= /0 if and only if S is positive acyclic. Consequently, a selection S

is called feasible if S is complete and positive acyclic. Observe that, in a feasible

selection, exactly one disjunctive arc is picked for each pair of arcs. Indeed, for all

D ∈ E , graph (V,A∪D,d) is positive cyclic by (9), hence |D∩S| ≤ 1 if S is positive

acyclic, therefore |D∩S|= 1 if S is feasible.

For any feasible selection S, earliest times α(S) = (αv(S) : v ∈ V ) can be effi-

ciently calculated by determining the length αv(S) of a longest path from σ to v in

graph (V,A∪ S,d) for each node v ∈ V . Then, α(S) ≤ α ′ for all α ′ ∈ Ω(S). As the

objective function f is regular,

f (α(S)) = min{ f (α) : α ∈ Ω(S)},

i.e., the earliest time schedule α(S) is an optimal solution in Ω(S).
The CJS-R problem (V,J ,A,E,E ,d, f ) can then be formulated as the following

combinatorial problem in disjunctive graph G: “Among all feasible selections, find a

selection S minimizing f (α(S)).”
We conclude this section by schematically illustrating the assumptions (6), (7),

and (8) in Fig. 1. The conjunctive and disjunctive arcs are depicted by solid and

dashed lines, respectively. Considering all conjunctive arcs not incident to σ , (6)

states that both end nodes of these arcs belong to the same job. In contrast, as stated

in (7), the two end nodes of a disjunctive arc must belong to different jobs. By (8), a

pair of disjunctive arcs links nodes of the same two jobs, and the arcs point in opposite

directions, as depicted by e and e. Finally, an arc (σ ,v) should be present for each

v ∈V . However, (σ ,v) may be omitted if there exists a nonnegative length path from

σ to v in the conjunctive part (V,A,d) as it ensures that v obtains a nonnegative

starting time.

In the sequel of the paper, CJS-R problems are specified by directly constructing

their disjunctive graph G = (V,A,E,E ,d).
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A neighborhood for CJS problems with regular objectives 7

σ e

e

a job

Fig. 1: Schematic illustration of the assumptions stated in (6), (7), and (8).

2.3 Examples

A large class of job shop problems can be formulated as CJS-R problems. We give

two specific examples, which will be used in the sequel of the paper.

2.3.1 The job shop with sequence-dependent setup times and a regular objective

The job shop with sequence-dependent setup times and a regular objective (JSS) is

a version of the classical job shop including sequence-dependent setup times and

allowing all regular objectives. The problem can be formally described as follows.

Given a set of operations I and a set of machines M. Each operation i ∈ I needs a

specific machine, say mi ∈ M, for its non-preemptive execution of duration pi > 0.

The set of operations is structured into jobs: given is a set of jobs J ′ ⊆ 2I such that

J ′ is a partition of I. For each job J ∈ J ′, its set of operations {i : i ∈ J} is ordered

(J1,J2, . . . ,J|J|) specifying in which sequence the operations of J must be executed.

Hereby Jr denotes the r-th operation of job J. Two operations i and j of some job J

are said to be consecutive if i = Jr and j = Jr+1 for some r,1 ≤ r < |J|.

We allow for sequence-dependent setup times. If two operations i and j are using

the same machine m and j follows i directly on m, then a setup of duration si j ≥
0 occurs between the completion of i and the start of j. We assume that the setup

durations satisfy the so-called weak triangle inequality (see, e.g., Brucker and Knust,

2011, p. 11), i.e., for any distinct operations i, j,k using a same machine, si j + p j +
s jk ≥ sik must hold. (Otherwise setup times between non-adjacent operations on a

machine might become active in the problem formulation.)

We also allow to specify a release time sr
J ≥ 0 and a due date sd

J ≥ 0 for each job

J ∈ J ′. While the release times must be satisfied in any feasible solution, violations

of the due date are allowed but can be penalized in the objective function.

The problem consists in finding starting times for all operations i ∈ I so that each

machine processes at most one operation at any time and some regular objective is

minimized. In the three field notation introduced by Graham et al (1979), the JSS is

specified by J|r j,si j|reg.

The JSS can be described as a CJS-R problem in disjunctive graph G = (V,A,E,
E ,d) as follows (see also the example below, which is illustrated in Fig. 2). For each

operation i ∈ I, introduce a node vi ∈ V indicating the start of operation i. For each
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8 Reinhard Bürgy

job J′ ∈J ′, introduce a job J in J containing all nodes of the operations belonging

to J′.

The set of conjunctive arcs A is built as follows:

– For each job J ∈J ′, add an arc (σ ,vJ1
) with length sr

J reflecting the release time

of J.

– For each job J ∈ J ′ and each pair of consecutive operations i, j ∈ J, add an arc

(vi,v j) with length pi reflecting the processing order within a job.

– For each job J ∈ J ′ and each pair of operations i = Jr, j = Jr′ , with r < r′ and

mi = m j, add an arc (vi,v j) with length pi+ si j reflecting the setup between oper-

ations of a same job.

The set of disjunctive arcs E is built by adding for each pair of operations i, j ∈ I

from distinct jobs using a same machine an arc (vi,v j) with length pi + si j and an arc

(v j,vi) with length p j + s ji. The pairs of disjunctive arcs {(vi,v j),(v j,vi)} form the

disjunctive sets of E .

For ease of notation, let αJ = αJ|J|
+ pJ|J|

be the time at which job J ∈ J is fin-

ished. The following five objective functions are considered in the sequel of the pa-

per: makespan f m(α) =maxJ∈J αJ , total flow time f f(α) = ∑J∈J αJ , total squared

flow time f sf(α) = ∑J∈J α2
J , total tardiness f t(α) = ∑J∈J max{0,αJ − sd

J}, and

total weighted tardiness f wt(α) = ∑J∈J wJ ·max{0,αJ − sd
J} where wJ is a given

nonnegative weight of job J.

A small example of a JSS instance is illustrated in Fig. 2. It consists of ten

operations I = {1, . . . ,10} and four jobs J = (1,2,3), K = (4,5), L = (6,7), and

N = (8,9,10). The processing data can be directly read in the solution depicted in

the Gantt chart of Fig. 2. For example, operation 2 is executed on machine M4 and

has duration 2. The setup times between the operations on machine M1 are: s1,5 = 2,

s1,8 = 1, s5,1 = 2, s5,8 = 1, s8,1 = 1, s8,5 = 3, and all other setup times are 0. The

release time of job L is 5 and all other release times are 0. The due date is 20, 30, 20,

and 20 for job J, K, L, and N, respectively. Finally, the weight of job J is 3 and all

other job weights are 1.

2.3.2 The blocking job shop with transfer times, setup times, and a regular objective

The blocking job shop problem with transfer times, setup times, and a regular objec-

tive (BJS) is a version of the JSS introduced above, characterized by the absence of

buffer capacity. This additional feature implies that, after completing an operation,

a job waits on its current machine, thus blocking it, until it is transferred to its next

machine. While transferring a job, both involved machines are simultaneously occu-

pied. Each operation of a job is then best described by the four consecutive steps:

(i) a take-over step in which the job is taken over from its previous machine, (ii) a

processing step, (iii) a possible waiting step on its current machine, (iv) a hand-over

step in which the job is transferred to its next machine. For the first operation of a job,

the take-over step is more appropriately called loading step, and similarly, for the last

operation of a job, the hand-over step is called unloading step. We refer to (Gröflin

and Klinkert, 2009; Gröflin et al, 2011) for a more detailed description of the BJS. In

the three field notation, the BJS is specified by J|blocking,r j,si j |reg.
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Fig. 2: A JSS instance with four jobs and four machines. (top) Its associated disjunctive graph G. Conjunc-

tive and disjunctive arcs are depicted by solid and dashed lines, respectively. (bottom) A Gantt chart of the

earliest time schedule α(S) of selection S consisting of the bold, dotted disjunctive arcs of G. The values

of the five introduced objectives are: f m(α(S)) = 27, f f(α(S)) = 63, f sf(α(S)) = 1169, f t(α(S)) = 7,

and f wt(α(S)) = 21. In the Gantt chart, each operation is depicted by one bar, and the narrow, hatched

bars display setups.

In order to formally define the BJS problem, the following additional notation and

data is used. Let ti j be the time needed to transfer the job of operation i from machine

mi to its next machine m j, where i and j are consecutive operations in a job. Also,

let t l
J and tu

J be the time needed to load job J ∈ J ′ on its first machine and unload it

from its last machine, respectively. Denote by Ifirst ⊆ I and Ilast ⊆ I the subset of all

first and last operations of jobs, respectively.

The BJS can then be described as a CJS-R problem in graph G = (V,A,E,E ,d) as

follows (see also the example below, which is illustrated in Fig. 3). For each operation

i ∈ I, add four nodes to V : v1
i (start of take-over), v2

i (end of take-over), v3
i (start of

hand-over), and v4
i (end of hand-over). Note that the end of the take-over step is

also the start of the processing step. For each job J′ ∈ J ′, introduce a job J in J
containing all nodes of the operations belonging to J′.

The set of conjunctive arcs A is built as follows:

– For each job J ∈J ′, add an arc (σ ,v1
J1
) with length sr

J reflecting the release time

of job J.

– For each operation i ∈ I, add three arcs: a take-over arc (v1
i ,v

2
i ) with length t l

Job(i)

if i ∈ Ifirst and 0 otherwise, a processing arc (v2
i ,v

3
i ) with length pi, and a hand-

over arc (v3
i ,v

4
i ) with length tu

Job(i) if i ∈ Ilast and 0 otherwise.

– For any two consecutive operations i, j of some job J ∈J ′, add two pairs of arcs

(v3
i ,v

1
j),(v

1
j ,v

3
i ) and (v4

i ,v
2
j),(v

2
j ,v

4
i ) of length 0 synchronizing the start and end

of the hand-over step of i with the start and end of the take-over step of j, and add

an arc (v3
i ,v

2
j) of length ti j reflecting the transfer of the job.
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Fig. 3: The BJS example. (top) Its associated disjunctive graph G. (bottom) A Gantt chart of the earliest

time schedule α(S) of selection S consisting of the bold, dotted disjunctive arcs of G. Its objective values

are: f m(α(S)) = 41, f f(α(S)) = 95, f sf(α(S)) = 2715, f t(α(S)) = 21, and f wt(α(S)) = 63. In the Gantt

chart, the take-over, processing, and hand-over steps are depicted by thick bars. The narrow bars stand for

the setups (hatched) and the waiting steps (solid).

– For each job J ∈ J ′ and each pair of operations i = Jr, j = Jr′ with r < r′ and

mi =m j, add an arc (v4
i ,v

1
j) with length si j reflecting the setup between operations

of a same job.

The set of disjunctive arcs E is built by adding for each pair of operations i, j ∈ I

from distinct jobs using a same machine an arc (v4
i ,v

1
j) with length si j and an arc

(v4
j ,v

1
i ) with length s ji. The pairs of disjunctive arcs {(v4

i ,v
1
j),(v

4
j ,v

1
i )} form the dis-

junctive sets of E .

We consider the same five regular objective functions as in the JSS. Note that the

time αJ at which a job J ∈ J is finished is αJ = αv4
i

with i = J|J|.

We reconsider the JSS example introduced in the previous section as BJS in-

stance. Let the durations of all take-over, hand-over, loading, and unloading steps be

1. Fig. 3 depicts the disjunctive graph G of this example and a Gantt chart of a feasible

schedule.

Note that the given formulation of the BJS is not the most compact form. It is

for instance easy to see that nodes occurring at the same time can be represented by

a single node. In our view, the given form is more readable than, for example, the

so-called alternative graph formulation presented in (Mascis and Pacciarelli, 2002).
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A neighborhood for CJS problems with regular objectives 11

3 A special subproblem: the job insertion problem

We first describe and formulate the job insertion problem and then present some

structural properties. These are based on results of Gröflin and Klinkert (2007) and

are specialized to the problem under study. Proofs that are similar as those in the

referenced work are provided in the appendix.

3.1 The job insertion problem

Informally, job insertion can be thought of as the following problem. Given a job and

a feasible selection of all other jobs, insert the job in such a way that the resulting

schedule is feasible, and, if an optimal insertion is sought, find a feasible insertion

with minimum objective value.

Specifically, given a CJS-R problem (V,J ,A,E,E ,d, f ) and a job J ∈ J , a

feasible selection of all other jobs is specified in disjunctive graph G = (V,A,E,E ,d)
by a selection R that is positive acyclic and “complete”, i.e., D∩R 6= /0 holds for each

pair D = {(v,w),(v′,w′)} ∈ E with {v,w}∩VJ = /0. We are interested in finding a

feasible selection S = T ∪R, where T is more appropriately called a feasible insertion

of job J.

We study the job insertion problem in the insertion graph GJ = (V,AJ,EJ,E J,d)
of job J derived from G as follows. Set AJ of conjunctive arcs is obtained by adding to

A the set R, and set EJ is obtained by deleting from E all disjunctive arcs that are not

incident to job J. Formally, AJ = A∪R, EJ = E∩δ (VJ), and E J = {D ∈ E : D ⊆ EJ}.

Note that by (8), if e ∈ EJ then also e ∈ EJ . Clearly, T ⊆ EJ is a (positive acyclic,

complete, feasible) insertion in GJ if and only if S = T ∪ R is a (positive acyclic,

complete, feasible) selection in G.

3.2 Structural properties of job insertion

Given is a job insertion problem of job J in its insertion graph GJ = (V,AJ,EJ ,E J,d).
We examine cycles in graph (V,AJ ∪EJ ,d). The fictive node σ is never part of a cycle

as (V,AJ ∪E,d) contains no arcs entering σ . By (6), all conjunctive arcs incident to

job J are of the type (σ ,v), hence any cycle Z in (V,AJ ∪EJ,d) enters job J through

disjunctive arcs in δ−(VJ) and leaves J through disjunctive arcs in δ+(VJ), and the

number of times Z enters and leaves J is the same, i.e., |Z∩δ−(VJ)|= |Z∩δ+(VJ)|=
k for some k ≥ 1. Number k can be seen as the number of times Z visits job J.

Considering any positive cycle Z in (V,AJ ∪EJ,d), it is easy to see that Z must

visit J at least once. Indeed, the conjunctive part (V,AJ,d) of GJ contains no positive

cycles since R is a positive acyclic selection in G and AJ = A∪R. We now capture all

positive cycles visiting job J exactly once in a so-called conflict graph.

Definition 2 The conflict graph of job insertion graph GJ = (V,AJ,EJ ,E J,d) is the

undirected graph H = (EJ ,U) where for any two distinct disjunctive arcs e, f ∈ EJ ,

edge {e, f} ∈U if insertion {e, f} is positive cyclic.
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Fig. 4: The job insertion graph and its associated conflict graph for the JSS example (above) and the BJS

example (below). In both cases, the job insertion problem of job J (consisting of the operations 1, 2, and

3) is considered. The feasible selections of all other jobs are taken from Fig. 2 and 3.

Fig. 4 depicts the job insertion graph and its associated conflict graph for the JSS

and BJS examples.

Based on the previous discussion and by (9), it is easy to see that the conflict

graph H has the following structural properties.

Proposition 1 Let GJ = (V,AJ,EJ,E J,d) be a job insertion graph and H = (EJ,U)
its associated conflict graph.

(i) {e,e} ∈ H for each disjunctive arc pair {e,e} ∈ E J .

(ii) The conflict graph is bipartite with partitions EJ− = EJ ∩ δ−(VJ) and EJ+ =
EJ ∩δ+(VJ).

We can establish the following relations between the feasible insertions in GJ and

the stable sets in H.

Proposition 2 Let GJ = (V,AJ,EJ,E J,d) be a job insertion graph and H = (EJ,U)
its associated conflict graph.

(i) Any feasible insertion in GJ corresponds to a stable set in conflict graph H of size

|EJ|/2.

(ii) Any stable set in H of size |EJ|/2 corresponds to a complete insertion.

Proof See appendix.

Unfortunately, an insertion T that corresponds to a stable sets of size |EJ|/2 can

be positive cyclic as cycles visiting job J more than once may be present in graph
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A neighborhood for CJS problems with regular objectives 13

(V,AJ ∪T,d). We introduce a structural property of the job insertion graph preventing

the existence of these cycles. It is called the short cycle property (SCP) and was first

introduced in (Gröflin and Klinkert, 2007) for general disjunctive graphs.

Definition 3 A job insertion graph GJ has the SCP if for any positive cycle with arc

set Z′ in (V,AJ ∪EJ,d), there exists a short positive cycle Z in (V,AJ ∪EJ,d) with

Z ∩EJ ⊆ Z′∩EJ and |Z ∩EJ|= 2.

In other words, a job insertion graph has the SCP if for any positive cycle Z′ visiting

J more than once, there exists a positive cycle Z visiting J exactly once entering and

leaving J through disjunctive arcs present in Z′.

We say that a CJS-R problem has the SCP for job insertion if GJ has the SCP for

all jobs J ∈ J and all feasible selections R of the other jobs.

Theorem 1 Let GJ be a job insertion graph with the SCP. There is a one-to-one

correspondence between the feasible insertions in GJ and the stable sets T in conflict

graph H with |T |= |EJ|/2.

Proof See appendix.

Hence, if a CJS-R problem has the SCP for job insertion, a nice characterization

of all feasible insertions as stable sets in an associated bipartite conflict graph is at

hand for all job insertion subproblems.

3.3 The short cycle property in specific job shop problems

Unfortunately not all, but a large class of CJS-R problems has the SCP for job inser-

tion. We show here that the JSS and BJS problems have the SCP for job insertion.

We give a similar proof as in Lemma 8 of Gröflin and Klinkert (2007) and refer the

reader to this work for general structural results.

Proposition 3 Let GJ = (V,AJ,EJ ,E J,d) be a job insertion graph of a JSS instance

for some job J ∈ J . Then GJ has the SCP.

Proof Given any positive cycle Z′, let Z be a “shortest” positive cycle in graph

(V,AJ ∪EJ,d) with Z ∩EJ ⊆ Z′ ∩EJ where the length is measured by the number

of disjunctive arcs |Z ∩EJ|. If |Z ∩EJ|= 2, we are done.

Assume |Z ∩EJ| > 2, and say Z visits job J k = |Z ∩EJ |/2 times. Describe Z

by the concatenation Z = (e1,P1,e
′
1,Q1,e2,P2,e

′
2,Q2, . . . ,ek,Pk,e

′
k,Qk) where the ei’s

and e′i’s are disjunctive arcs entering and leaving J, respectively, the Pi’s are paths in

(V,γ(VJ),d) and the Qi’s are paths in (V,γ(V \VJ),d).
The following two simple properties of the subgraph (V,δ (AJ),d) are used. For

any pairs of distinct operations Jr,Js: i) If r < s, there exists a path from node vr to

node vs and such as path is of positive length. Indeed, it must contain arc (vr,vr+1),
which is of length pJr > 0, and no arc is of negative length. ii) If r > s, it is easy to

see that there exists no path from vr to vs.

Consider P1 and P2 of cycle Z. P1 starts at node vJr of some operation Jr and ends

at node vJs of some Js. Similarly, P2 starts at some vJr′
and ends at some vJs′

. By ii),
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r ≤ s and r′ ≤ s′ hold, and as Z is a cycle, r 6= r′ (a cycle does not enter the same node

more than once).

Consider the following two cases. a) If r < r′, let concatenation W = (e1,P
∗,e′2,

Q2, . . . ,ek,Pk,e
′
k,Qk) where P∗ is a path from node vr to node vs′ in (V,γ(VJ),d). By

i), path P∗ exists and is of positive length as r < r′ and r′ ≤ s′ implies r < s′. Then W

is of positive length as no arc in GJ is of negative length arcs. Clearly, W is a closed

walk visiting J less than k times. Therefore, W can be decomposed into cycles (cycle

decomposition of integer circulations) where each cycle visits J at least once and less

than k times. As W is of positive length, one of these cycles, say Z′′, is also of positive

length.

b) If r > r′ then consider the cycle Z′′ = (e2,P
∗,e′1,Q1), where P∗ is a path from

node vr′ to node vs in (V,γ(VJ),d). By i), path P∗ exists and is of positive length as

r′ < r and r ≤ s implies r′ < s. Then Z′′ is of positive length.

In both cases, Z′′ is a positive cycle with Z′′∩EJ ⊆ Z′∩EJ visiting J less than k

times, contradicting the choice of Z as being the shortest. ⊓⊔

Proposition 4 Let GJ = (V,AJ,EJ ,E J,d) be a job insertion graph of a BJS instance

for some job J ∈ J . Then GJ has the SCP.

Proof The proof is similar to the proof given above. The only differences are the

properties of subgraph (VJ,δ (A
J),d) we use, namely: i) For any pair of operations

Jr,Js with r ≤ s, there exists a path from node v1
r (of operation Jr) to node v4

s (of Js)

and it is of positive length as it must contain the processing arc (v2
r ,v

3
r ) and no arc is

of negative length. And ii) for any pair of operations Jr,Js with r > s+1, there exists

no path from node v1
r (of operation Jr) to node v4

s (of Js).

Then, as above, take a “shortest” positive cycle and, and, if it visits J more than

once, say k times, construct a positive cycle Z′′ visiting J less than k times. ⊓⊔

Hence, independent of the choice of the job J and the feasible selection R for

all other jobs, GJ has the SCP in JSS and BJS problems. Therefore, JSS and BJS

problems have the SCP for job insertion.

4 A neighborhood for the CJS-R

In this section, we develop a neighborhood that is applicable to all CJS-R problems

possessing the SCP for job insertion.

4.1 A neighbor generation scheme

Given is a CJS-R problem (V,J ,A,E,E ,d, f ) with the SCP for job insertion. Let

S be some feasible selection. We are interested in extracting some job J ∈ J and

reinserting J into a position that is “close” to its position described by selection S.

For this purpose, we consider the job insertion graph GJ = (V,AJ,EJ ,E J,d), where

the feasible selection of all other jobs R is taken from S, i.e. R = S∩ (E \EJ). We

choose a disjunctive arc g ∈ EJ \S that is forced to be in the neighbor insertion. Then
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A neighborhood for CJS problems with regular objectives 15

we ask to construct a feasible insertion Tg with g ∈ T that is “close” to the current

insertion TS = S∩EJ , i.e., we seek to find a feasible insertion Tg maximizing |Tg∩TS|.
The corresponding neighbor selection Sg is then obtained by Sg = Tg ∪R.

Consider the neighbor construction in the conflict graph H = (EJ,U) associated

to GJ . By Theorem 1, TS is stable in H with size |EJ|/2, and any feasible insertion

Tg is stable in H with size |EJ|/2. We now sketch how to iteratively construct Tg.

The procedure is based on the following observation. For any f ∈ Tg, if there exists

an edge { f ,e} ∈ U , then e cannot be picked, hence its mate e must be part of any

feasible insertion containing f . We say f implies e. Hence, start with Tg = {g}. For

each f ∈ Tg and { f ,e} ∈ U with e /∈ Tg, add e to Tg. Repeat this step until Tg is

“closed”, i.e., for each f ∈ Tg there exists no { f ,e} ∈U with e /∈ Tg. Finally, for each

“uncovered” pair D ∈ E , i.e., D∩Tg = /0, add e ∈ D∩TS from the current insertion TS

to Tg.

We formalize this idea by introducing a closure operator and then prove feasibility

of the constructed neighbor insertion.

Definition 4 For any e, f ∈ EJ in conflict graph H = (EJ,U), let e → f if {e, f } ∈
U. A sequence P = (e0,e1, . . . ,en),n ≥ 0, of distinct nodes in H = (EJ ,U) is an

alternating path from e0 to en if ei → ei+1 for all 0 ≤ i < n. For any two nodes e, f ∈
EJ , write e f if there exists an alternating path from e to f in H.

Definition 5 For any Q ∈ EJ , the closure of Q is the set

Φ(Q) = {g ∈ EJ : e g for some e ∈ Q}. (10)

Q ⊆ EJ is said to be closed if Q = Φ(Q).

Observe that e e holds for all e ∈ EJ as {e,e} ∈ U by Proposition 1(i). More-

over, Φ(Q) can be rewritten as Φ(Q) =
⋃

e∈Q Φ({e}). Then, it is easy to see that Φ
is a well-defined closure operator as: i) Q ⊆ Φ(Q), ii) Φ(Φ(Q)) = Φ(Q), and iii)

Q ⊆ R implies Φ(Q)⊆ Φ(R).

For any subset of disjunctive arcs T ∈ EJ , let the span [T ] of T contain all arcs of

T together with all their mates, formally, [T ] = {e ∈ EJ : {e,e}∩T 6= /0}.

Theorem 2 Given any job insertion graph GJ = (V,AJ,EJ ,E J,d) with the SCP and

a disjunctive arc g ∈ EJ , insertion

Tg = Φ({g})∪ (T S \ [Φ({g})]) (11)

is feasible.

Proof See appendix.

It is easy to see that the constructed neighbor Tg is the “closest” to neighbor T S,

i.e. among all neighbor insertions T containing g, it maximizes |Tg ∩TS|.

Theorem 2 implies feasibility of the corresponding selection, stated as follows.
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Fig. 5: The neighbor schedules obtained by extracting job J (consisting of the operations 1, 2, and 3) from

the schedule of Fig. 2 and 3 in the JSS (above) and BJS example (below), respectively, and reinserting this

job by forcing operation 3 to be executed before operation 6 on machine M3.

Corollary 1 Given a CJS-R problem (V,J ,A,E,E ,d, f ) with the SCP for job inser-

tion, for any feasible selection S, job J ∈J , and disjunctive arc g∈ EJ , the neighbor

selection

SJ
g = Tg ∪ (S \EJ) (12)

is feasible.

We illustrate the neighbor generation scheme in the JSS and BJS examples. Start-

ing with the selections given in Fig. 2 and 3, we choose job J to be extracted and

reinserted, obtaining the job insertion graphs and conflict graphs depicted in Fig. 4. In

both examples, the current insertion T S = {e1,e2,e3,e4,e5} places job J after all other

jobs. We force e5 to be part of the neighbor insertion. In the JSS example, we obtain

Φ({e5}) = {e3,e4,e5} and T S \ [Φ({g})] = {e1,e2}. Hence, the neighbor insertion is

Tg = {e1,e2,e3,e4,e5}. In the BJS example, we obtain Φ({e5}) = {e1,e3,e4,e5} and

T S \ [Φ({g})] = {e2}. Hence, the neighbor insertion is Tg = {e1,e2,e3,e4,e5}. The

corresponding earliest time schedules are illustrated in Fig. 5.

Note that if an instance of the classical job shop scheduling problem is given and

g is a critical arc incident to job J in some feasible selection S, then Φ({g}) = {g},

and the neighbor SJ
g = {g}∪ (S \ {g}). Hence SJ

g is obtained by replacing the critical

arc g by its mate g, which is typically called swapping a critical arc. In this sense, the

proposed neighbor generation scheme can be seen as a generalization of swapping a

critical arc.

4.2 A job-insertion-based neighborhood

Corollary 1 provides a general tool to derive a large set of neighbors for any feasible

selection given the possible choices of the job and the “forced” disjunctive arc. In
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A neighborhood for CJS problems with regular objectives 17

order to generate neighbors that are potentially improving the current solution, we

use and slightly extend the standard concept of critical arcs as follows.

For any given selection S, an operation with latest completion time determines

the makespan. With the makespan objective, we call such an operation contributing.

In the disjunctive graph, a longest path from the dummy start to a node representing

a contributing operation is called a critical path. The disjunctive arcs of a critical

path are called critical arcs. With a general regular objective, usually not only an

operation with the latest completion time contributes to the objective value, but some

subset of (times of) operations determine the objective value for a given selection S.

Consequently, we call all of these operations contributing. The definitions of critical

paths and critical arcs are the same as in the makespan case.

Formally, this can be specified as follows. Given is some CJS-R problem (V,J ,

A, E ,E ,d, f ) with the SCP for job insertion and some feasible selection S. Let V contr

be a (setwise) minimal subset of nodes in V determining the objective value for selec-

tion S. For each node v ∈V , let Pv be the arc set of a longest path from σ to v in graph

(V,A∪ S,d). For each v ∈ V contr, path Pv is called a critical path. The set of critical

arcs CS of S is given by CS = {e ∈ S : e ∈ Pv for some v ∈ V contr}. A job J ∈ J is

said to be critical if v ∈VJ or w ∈VJ for some (v,w) ∈CS.

In order to move to a better neighbor, we need to replace some arcs of CS. Indeed,

by construction of CS, α(S′)≥ α(S) holds for any feasible selection S′ with CS ⊆ S′,

hence f (α(S′))≥ f (α(S)) as function f is regular.

In our neighborhood, we build a neighbor selection SJ
g by (12) for each critical

job J and each critical arc g ∈ CS ∩ δ (VJ). The size of the neighborhood is 2|CS| as

two neighbors are built for each critical arc. We remark that this size can be related

to the number of operations |I| for the JSS and BJS problems. As the setup durations

satisfy the weak triangle inequality, we can assume that disjunctive arcs between non-

consecutive operations on some machine are not part of longest paths in (V,A∪S,d).
It is easy to see that the number of disjunctive arcs between consecutive operations on

a machine is |I|− |M|, where |M| is the number of machines. Then, |CS| ≤ |I| holds,

implying that the neighborhood is at most of size 2|I|.

We illustrate the neighborhood in the BJS example. Consider selection S that

corresponds to the solution depicted in Fig. 5 (below). In Fig. 6, the graph (V,A∪S,d)
of selection S is depicted in the upper part, and longest paths from σ to nodes v4

3, v4
5,

v4
7, v4

10 are depicted in the lower part.

With the makespan objective, the set of contributing nodes is V contr = {v4
5} as

the completion time of operation 5 determines the makespan. Inspecting the longest

path from σ to v4
5 reveals that the set of critical arcs is CS = {a,b,c,d}. With a total

flow time objective, all end nodes of the jobs contribute to the objective value, hence

V contr = {v4
3,v

4
5,v

4
7,v

4
10}. The set of critical arcs is then CS = {a,b,c,d}. By chance,

both objectives lead to the same set of critical arcs. Hence, with both objectives, the

following eight neighbors are built: SN
a , SJ

a, SJ
b, SL

b , SL
c , SN

c , SN
d , SK

d . Their earliest time

schedules are illustrated in Fig. 7. It can be seen, that the two neighbors generated

with the same forced arc result in the same selection for arcs a, b, and c, while the

two neighbors are different for arc d.
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σ
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σ

a

d

b
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v4
3

v4
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10

Fig. 6: (above) Graph (V,A∪ S,d) of selection S that corresponds to the BJS solution of Fig. 5 (below).

The arcs of set A and S are depicted by solid and dashed lines, respectively. (below) Longest paths from σ
to nodes v4

3, v4
5, v4

7 , v4
10 in graph (V,A∪S,d).

5 Computational results

In order to evaluate the performance of the proposed neighborhood, we casted it in

a tabu search and conducted an extensive experimental study using well-known job

shop scheduling problems. This section first sketches the tabu search, then describes

the experimental setting, and finally discusses the obtained results.

5.1 A tabu search

In principle, the described neighborhood can be used in any local search scheme.

We here apply it in a tabu search with some generic features that proved useful in

various local search approaches for job shop scheduling problems. It is similar to the

approach taken in (Gröflin et al, 2011; Bürgy, 2014) and will be called JILS (job-

insertion-based local search). We describe its main ingredients and refer the reader to

Glover and Laguna (1997) for a comprehensive description of tabu search.

A tabu list L is used for storing entries of the last maxL iterations. Initially, list

L is empty. In an iteration, i.e., after moving from a selection S to a neighbor SJ
g by

(12), arc g, which is the mate of the forced arc g, is added to L at first position and the

oldest entry is deleted from L if |L|> maxL. A neighbor S′ is called tabu if S′∩L 6= /0.
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Fig. 7: An illustration of the neighborhood in the BJS example. For each attained earliest time schedule,

we indicate the objective value and the neighbors leading to this schedule.
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20 Reinhard Bürgy

Given a selection S, the choice of the move to be executed is based on the evalua-

tion of the entire set of neighbors of S. First, the objective value f (S′) is computed for

each neighbor S′. Some of these values are “corrected” using the tabu list as follows.

If a neighbor selection S′ is tabu and f (S′) is not lower than the objective value of

the best selection found so far, then a penalty value of (maxL− k) ·B is added to the

objective value, where k is the position of the first entry in L making the move tabu

and B is a large constant. B should be chosen so that the corrected objective value of

the tabu moves are higher than those of non-tabu moves. Finally, we select a neighbor

with lowest (corrected) objective value.

In order to improve the search, we implemented the following two additional long

term memory structures, which were also used by Nowicki and Smutnicki (1996).

As the tabu search does not prevent being trapped in long cycles, we use a list

C that stores the sequence of objective values obtained during the search. Cycles are

detected by scanning C for repeated subsequences. Specifically, the search is said to

be cycling at iteration k if there exists a period δ > maxL such that C[k] =C[k− aδ ]
for a = 1, . . . ,maxR, where C[ j] is the objective value obtained in iteration j, maxC

reflects the maximum length of a cycle and maxR is the number of repetitions we

search for.

A list E of so-called elite selections is maintained to diversify the search. Initially,

E is empty. A new selection S is added to E at first position if its objective value is

lower than the value of the best selection found so far. If the search runs for a given

number maxI of iterations without improving the best selection or if a selection has

no neighbors or if a cycle is detected, then the current search path is terminated, list

C is cleared, and the search is resumed from the first selection of list E . For this

purpose, an elite selection S is stored together with its tabu list and the best (w.r.t. the

objective value) maxN neighbors that have not yet been directly visited from S. An

elite selection is deleted from E if its set of neighbors is empty.

In order to further diversify the search, we make use of the parallel computing ca-

pabilities by starting and running maxS independent search paths in parallel threads,

each with its own initial selection, tabu list and list C. The maxS search paths share

list E of elite selections and the best selection found so far.

5.2 Initial selection

Each of the maxS initial selections is constructed as follows. First, we generate ran-

domly a permutation of all jobs. According to this permutation, we then insert one

by one a job into the current (partial) selection Spart. For the insertion of a job J into

Spart, we apply the job insertion procedure to generate a set of feasible selections SJ

and choose the best selection among them. Specifically, a first selection SJ is ob-

tained by inserting J after all other jobs, i.e. SJ = Spart ∪EJ− . Store SJ in SJ . While

EJ−∩SJ 6= /0, execute the following three steps:

1. Determine a critical arc f in SJ ∩EJ−.

2. If no such f exists stop, else build neighbor selection SJ
f
= Tf ∪(S\EJ) according

to (12).

3. Store SJ
f

in SJ and set SJ to SJ
f
.
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A neighborhood for CJS problems with regular objectives 21

Finally, among all selections in set SJ , choose selection S with lowest objective value

and update Spart to S.

We illustrate this procedure in the BJS example with job permutation (J,K,L,N)
(see Fig. 8). Job J (operations 1, 2, and 3) has only one possible insertion as it is

the first job in the permutation, see subfigure 1). In 2), job K (op. 4 and 5) is placed

after job J. The next insertion for K is generated by forcing operation 5 to be moved

before operation 1 as arc (v4
1,v

1
5) is critical, obtaining insertion 3). This is the last

insertion considered for job K, and we choose the insertion depicted in 2) for K as it

has a lower objective value than 3). In 4), job L (op. 6 and 7) is placed after all other

jobs. As arc (v4
3,v

1
6) is critical, we force operation 6 to be moved before operation 3.

Insertion 5) is obtained, which is the last insertion considered for job L. We choose

the insertion depicted in 4) as it is better than 5). In 6), job N (op. 8, 9, and 10) is

placed after all other jobs. As arc (v4
5,v

1
8) is critical, we force operation 8 to be moved

before operation 5. Insertion 7) is obtained. In this insertion, arc (v4
7,v

1
10) is critical,

and we force operation 10 to be moved before operation 7. Insertion 8) is obtained, in

which arc (v4
1,v

1
8) is critical. We force operation 8 to be moved before operation 1 and

obtain insertion 9). In this insertion, arc (v4
2,v

1
10) is critical, and we force operation 10

to be moved before operation 2. Thus, we obtain insertion 10). Among the insertions

depicted in 6) to 10), insertion 6) is the best, hence we start the tabu search with its

corresponding selection.

5.3 Experimental setting

JILS was implemented in Java and run on a PC with 3.3. GHz Intel Core i5-4590

processor (4 threads) and 16 GB memory.

Extensive tests were performed to evaluate JILS using the job shop problems in-

troduced in Sect. 2.3.1 and 2.3.2 with various regular objectives. Specifically, we con-

sidered the job shop without setup times (JS), the job shop with sequence-dependent

setup times (JSS), and the blocking job shop (BJS) with the five objective functions

introduced in the examples: makespan, total flow time, total squared flow time, total

tardiness, and total weighted tardiness.

We used standard benchmark instances from the literature: for the JS, la01-40

introduced by Lawrence (1984), orb01-010 by Applegate and Cook (1991), and ta01-

50 by Taillard (1994); for the JSS, t2-psXY , XY ∈ {01, . . . ,15} by Brucker and Thiele

(1996), t2-laXYsdst, XY ∈ {21,24,25,27,29,38,40}, and t2-abzZsdst, Z ∈ {7,8,9},

by Vela et al (2010); and for the BJS, la01-40 by Lawrence (1984) and we set all

transfer and setup times to 0 (obtaining so-called with-swap BJS instances).

In all problem types and instances, the release times are set to 0. For the three

tardiness objectives, the due date sd
J of each job J ∈ J is set according to the rule

introduced by Eilon and Hodgson (1967): sd
J = ⌊ f ∗∑i∈J pi⌋ where f is referred to

as the due date tightness factor. f is set to 1.3 for all JS instances, 1.6 for all JSS

instances, and 1.8 for all BJS instances.

The input parameter settings of JILS were carefully analyzed in preliminary tests

and set as follows: maxC = 4, maxI = 50000, maxN = 10, maxS = 8, and the tabu

list size maxL is 10 for all instances with the makespan objective and 16 for all other
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Fig. 8: Construction of an initial selection.
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objectives. We observed that JILS is quite robust with respect to different parameter

settings.

Five independent runs of JILS were executed for each problem type, objective,

and instance. The computation time limit of each run was set to 1800 seconds. In

order to evaluate the approach also with shorter run times, we recorded the objective

value of the best solution found so far by JILS after 60 and 300 seconds. The appendix

contains the detailed results: for the JS in Table 5, 6, and 7, for the JSS in Table 8 and

9, and for the BJS in Table 10 and 11.

While we tried to keep the JILS as generic as possible, we incorporated a slight

modification of the neighborhood for the JS with the makespan objective. We ob-

served in preliminary tests that better results can be obtained for this problem type if

JILS considers only the critical arcs at the border of so-called critical blocks. Indeed,

it is well-known that swapping a critical arc in the “inner part” of a critical block does

not improve the makespan. Therefore, we used this smaller neighborhood, called N5

in (Blazewicz et al, 1996), for the JS with the makespan objective.

5.4 Comparison with benchmarks

In order to assess the performance of JILS, we compare the attained results with

current benchmarks from the literature when available. As these benchmarks were

obtained using different computational settings, especially computing power and run

times, we compare the average values of JILS (over the five runs) after 60, 300, and

1800 seconds with the benchmark values. While comparisons of heuristics are intrin-

sically difficult (see, e.g., Hooker, 1995), this test setting should provide evidence

that the quality of the JILS results is comparable to the state-of-the-art for a large

class of CJS-R problems. A simple performance measure is used to compare the re-

sults of JILS with benchmarks. For each benchmark result, we compute the relative

gap of the average result of JILS over the five runs (JILS) with the result of the

benchmark (bench), i.e., (JILS− bench)/bench. These gaps are determined for the

results of JILS after a run time of 60, 300, and 1800 seconds. While this performance

measure is simple to interpret and is widely used, some care should be given to the

numbers as large gaps may be obtained if the benchmark value is low even if the ab-

solute difference is small. We use small multiples (see, e.g., Tufte, 2001) to illustrate

the relative gaps in a compact way.

We successively consider the JS, JSS, and BJS. In all three problem types, we

first deal with the makespan objective and then address all other objectives.

5.4.1 JS with the makespan objective

There is a large collection of benchmark results available for the JS with the makespan

objective. We briefly describe the approaches and the basic computational settings of

the benchmarks we compare to.

As mentioned in Sect. 1, Grimes and Hebrard (2015) recently proposed a method

that is applicable to a broad class of job shop scheduling problems with the makespan

objective. We consider their average results (over 10 runs) for the JS obtained by their
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general light-weighted approach and abbreviate these results by GH. The authors

used a Intel Pentium IV 3.0 GHz processor and a time limit of 3600 seconds per run.

Peng et al (2015) developed a specialized heuristic for the JS with the makespan

objective. They combined a path relinking strategy with a tabu search, which uses

a neighborhood based on swapping critical operations. Their approach is currently

among the best heuristics for solving the JS with the makespan objective. We consider

their average results over 10 runs (see Peng et al, 2015, Table 8, p. 160) and abbreviate

these results by PLC. The authors used an AMD Athlon 3.0 GHz processor, and the

run time varied between 1 and 1726 seconds.

We first discuss the results obtained for the instances la01 to la40 and orb01 to

orb10. The optimal values are known for these instances (see Brucker et al, 1994;

Perregaard and Clausen, 1998; Grimes and Hebrard, 2015). Similar as other state-of-

the-art heuristics, JILS finds optimal or near-optimal solutions within a short compu-

tation time. Indeed, the overall average relative gap to the optimal values is 0.14%,

0.06%, and 0.03% for the results of JILS obtained after 60, 300, and 1800 seconds,

respectively. Also, JILS finds an optimal solution in all the five runs for 41 instances

(out of 50), and in at least one of the five runs for 47 instances.

The results of the Taillard instances are now compared with GH. The relative gaps

of JILS to GH are illustrated in Fig. 9 (above) using small multiples as follows. The

first, second, and third line depicts the relative gaps for the average results of JILS

after 60, 300, and 1800 seconds, respectively. The time limit of JILS and the relative

gap averaged over all instances is provided on the left. The range of the attained gaps

is partitioned into seven intervals: [a%;−6.0%], [−6.0%;−2.0%], [−2.0%;−0.5%],
[−0.5%;0.5%], [0.5%;2.0%], [2.0%;6.0%], and [6.0%;b%], where a is the minimum

of −10.0% and the minimum attained gap, and similarly, b is the maximum of 10.0%

and the maximum attained gap. Each instance is illustrated by drawing a small rect-

angle above the interval where its corresponding relative gap belongs to. In order to

distinguish the instances, the rectangles are always drawn at the same relative posi-

tion in each interval. For this purpose, an ordering of the instances is specified. To

keep it simple, we use the orderings given in the result tables (see Table 5 to 11).

In Fig. 9 (above), we represent the first instance (ta01) at the top left (first row,

first column) in each interval, then ta02 on its right (first row, second column), and

so forth. Consider, for example, the instance ta42. As 10 instances are depicted per

line, its position is in the fifth row and second column. The benchmark value of GH

is 2027.5, and the average value obtained by JILS is 2033, 1990, and 1982 for 60,

300, and 1800 seconds, respectively (see Table 5). This gives respective relative gaps

of 0.3%, −1.8%, and −2.2%. Hence, in the first, second, and third line of Fig. 9,

the rectangle of ta42 is drawn in the interval [−0.5%;0.5%], [−2.0%;−0.5%], and

[−6.0%;−2.0%], respectively.

Considering the resulting small multiples in Fig. 9 (above), it can be observed that

JILS is competitive with GH. Indeed, already after 60 seconds, the quality of JILS is

comparable to GH. Furthermore, after 1800 seconds, JILS gives considerably lower

results than GH for the largest instances (ta31 to ta50).

The following can be observed when comparing the relative gaps of JILS to PLC

in Fig. 9 (below). JILS needs some time to get close to the values of PLC. After 60

seconds, PLC provides better results, especially for the large instances. Quite similar
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GH

60 s
avg: -0.1%

300 s
avg: -1.0%

1800 s
avg: -1.2%

−10.0% -6.0% -2.0% -0.5% 0.5% 2.0% 6.0% 10.0%

ta42 (1800 s) ta42 (300 s) ta42 (60 s)

PLC

60 s
avg: 2.0%

300 s
avg: 1.1%

1800 s
avg: 0.8%

−10.0% -6.0% -2.0% -0.5% 0.5% 2.0% 6.0% 10.0%

Fig. 9: Comparison of the results obtained in the JS with the makespan objective with results of Grimes

and Hebrard (2015) (above) and Peng et al (2015) (below) in the Taillard instances.

results are attained after 1800 seconds. Indeed, the overall average gap is then 0.8%.

Only in some of the largest instances, PLC produces results that are more than 2%

lower than the results of JILS. It can be concluded that JILS is quite competitive with

PLC.

Table 1 provides a more detailed comparison of the JILS average results after

1800 seconds to the average results of GH and PLC and to the average results of

Gonçalves and Resende (2014) (abbreviated by GR) and Zhang et al (2008) (abbre-

viated by ZRLG). GR and ZRLG also describe state-of-the-art approaches for the JS

with the makespan objective. It can be verified that the specialized algorithms of PLC,

GR, and ZRLG provide slightly better results than JILS, and JILS gives lower val-

ues than generic approach of GH, especially for larger instances. For a more detailed

comparison of the state-of-the-art approaches for the JS with the makespan objective,

we refer to Peng et al (2015). Altogether, we conclude that JILS performs well in the

JS with the makespan objective.

5.4.2 JS with the other objectives

The majority of the JS articles considers the makespan objective. Consequently, there

are less benchmark results available for the other objectives. In this section, we suc-

cessively consider the total flow time, total weighted tardiness, total squared flow

time, and total tardiness objectives.

González et al (2010) developed a hybrid solution method for the JS with flow

time objective. They combined a tabu search and a genetic algorithm. The tabu search

applies a neighborhood in which a critical operation is moved (forward or backward)

in its critical block provided that a sufficient condition for feasibility of the move is

satisfied. We consider their average results over 20 runs (see González et al, 2010,
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Table 1: Comparison of the JILS average results after 1800 seconds (JILS) to current state-of-the-art

results. Column one gives the instance name and columns two to six the results of JILS, GH, PLC, GR,

and ZRLG. The values in brackets provide the relative gap (in %) of the JILS result (res) to the benchmark

value (val), i.e., (res− val)/val. The last line presents the overall average relative gaps. All values are

rounded to one decimal place.

Instance JILS GH PLC GR ZRLG

ta01 1232.2 1231.0 (0.1%) 1231.0 (0.1%) 1231.0 (0.1%) 1231.0 (0.1%)

ta02 1245.4 1244.0 (0.1%) 1244.0 (0.1%) 1244.0 (0.1%) 1244.1 (0.1%)

ta03 1222.6 1218.0 (0.4%) 1218.0 (0.4%) 1218.0 (0.4%) 1219.4 (0.3%)

ta04 1177.4 1175.0 (0.2%) 1175.0 (0.2%) 1175.0 (0.2%) 1176.2 (0.1%)

ta05 1232.0 1224.0 (0.7%) 1224.0 (0.7%) 1224.9 (0.6%) 1224.0 (0.7%)

ta06 1242.2 1238.1 (0.3%) 1238.4 (0.3%) 1238.9 (0.3%) 1240.8 (0.1%)

ta07 1228.0 1227.0 (0.1%) 1228.0 (0.0%) 1228.0 (0.0%) 1228.0 (0.0%)

ta08 1217.8 1217.0 (0.1%) 1217.0 (0.1%) 1217.0 (0.1%) 1217.1 (0.1%)

ta09 1283.2 1274.0 (0.7%) 1274.0 (0.7%) 1277.0 (0.5%) 1275.2 (0.6%)

ta10 1245.0 1241.0 (0.3%) 1241.0 (0.3%) 1241.0 (0.3%) 1246.6 (-0.1%)

ta11 1374.6 1395.4 (-1.5%) 1359.9 (1.1%) 1360.0 (1.1%) 1367.6 (0.5%)

ta12 1375.4 1382.5 (-0.5%) 1369.9 (0.4%) 1372.6 (0.2%) 1374.3 (0.1%)

ta13 1355.2 1350.5 (0.3%) 1346.0 (0.7%) 1347.3 (0.6%) 1355.2 (0.0%)

ta14 1345.0 1345.1 (0.0%) 1345.0 (0.0%) 1345.0 (0.0%) 1346.7 (-0.1%)

ta15 1353.0 1371.4 (-1.3%) 1339.0 (1.0%) 1348.9 (0.3%) 1348.4 (0.3%)

ta16 1368.6 1392.1 (-1.7%) 1360.0 (0.6%) 1362.1 (0.5%) 1366.2 (0.2%)

ta17 1476.0 1477.0 (-0.1%) 1473.0 (0.2%) 1470.5 (0.4%) 1472.9 (0.2%)

ta18 1417.8 1435.6 (-1.2%) 1401.0 (1.2%) 1400.9 (1.2%) 1408.7 (0.6%)

ta19 1344.8 1359.6 (-1.1%) 1336.6 (0.6%) 1333.2 (0.9%) 1340.6 (0.3%)

ta20 1363.0 1372.6 (-0.7%) 1351.3 (0.9%) 1350.4 (0.9%) 1356.7 (0.5%)

ta21 1660.2 1656.3 (0.2%) 1645.2 (0.9%) 1647.0 (0.8%) 1650.5 (0.6%)

ta22 1618.8 1623.8 (-0.3%) 1603.8 (0.9%) 1600.0 (1.2%) 1606.4 (0.8%)

ta23 1566.4 1574.6 (-0.5%) 1559.6 (0.4%) 1562.6 (0.2%) 1564.5 (0.1%)

ta24 1660.6 1648.6 (0.7%) 1647.7 (0.8%) 1650.6 (0.6%) 1653.2 (0.4%)

ta25 1604.2 1613.5 (-0.6%) 1597.0 (0.5%) 1602.0 (0.1%) 1607.7 (-0.2%)

ta26 1658.8 1671.5 (-0.8%) 1651.4 (0.4%) 1652.3 (0.4%) 1654.9 (0.2%)

ta27 1694.2 1695.8 (-0.1%) 1686.7 (0.4%) 1685.6 (0.5%) 1688.7 (0.3%)

ta28 1623.8 1619.0 (0.3%) 1616.2 (0.5%) 1611.7 (0.8%) 1616.6 (0.4%)

ta29 1632.6 1638.8 (-0.4%) 1627.4 (0.3%) 1627.4 (0.3%) 1630.1 (0.2%)

ta30 1602.6 1607.4 (-0.3%) 1588.3 (0.9%) 1588.5 (0.9%) 1597.7 (0.3%)

ta31 1765.6 1826.5 (-3.3%) 1764.0 (0.1%) 1764.4 (0.1%) 1765.8 (0.0%)

ta32 1828.8 1884.8 (-3.0%) 1803.5 (1.4%) 1794.1 (1.9%) 1811.7 (0.9%)

ta33 1817.8 1886.9 (-3.7%) 1794.6 (1.3%) 1793.7 (1.3%) 1806.7 (0.6%)

ta34 1842.6 1910.6 (-3.6%) 1831.2 (0.6%) 1832.1 (0.6%) 1831.8 (0.6%)

ta35 2007.0 2007.0 (0.0%) 2007.0 (0.0%) 2007.0 (0.0%) 2011.0 (-0.2%)

ta36 1828.2 1886.6 (-3.1%) 1819.0 (0.5%) 1822.9 (0.3%) 1820.5 (0.4%)

ta37 1799.6 1831.4 (-1.7%) 1776.8 (1.3%) 1777.8 (1.2%) 1784.4 (0.9%)

ta38 1687.8 1739.0 (-2.9%) 1673.0 (0.9%) 1676.7 (0.7%) 1678.5 (0.6%)

ta39 1805.2 1832.4 (-1.5%) 1795.0 (0.6%) 1801.6 (0.2%) 1806.6 (-0.1%)

ta40 1706.2 1777.2 (-4.0%) 1676.0 (1.8%) 1678.1 (1.7%) 1684.0 (1.3%)

ta41 2059.8 2117.2 (-2.7%) 2018.6 (2.0%) 2018.7 (2.0%) 2028.5 (1.5%)

ta42 1981.6 2027.5 (-2.3%) 1950.3 (1.6%) 1949.3 (1.7%) 1964.5 (0.9%)

ta43 1896.8 1958.0 (-3.1%) 1865.1 (1.7%) 1863.1 (1.8%) 1882.6 (0.8%)

ta44 2016.6 2100.8 (-4.0%) 1989.1 (1.4%) 1992.4 (1.2%) 1998.2 (0.9%)

ta45 2020.4 2077.9 (-2.8%) 2000.5 (1.0%) 2000.0 (1.0%) 2006.8 (0.7%)

ta46 2069.0 2106.4 (-1.8%) 2022.3 (2.3%) 2015.5 (2.7%) 2029.2 (2.0%)

ta47 1942.4 1994.1 (-2.6%) 1906.2 (1.9%) 1902.1 (2.1%) 1918.2 (1.3%)

ta48 1987.0 2055.4 (-3.3%) 1955.5 (1.6%) 1959.2 (1.4%) 1968.6 (0.9%)

ta49 2010.6 2053.9 (-2.1%) 1971.5 (2.0%) 1972.6 (1.9%) 1980.0 (1.5%)

ta50 1965.6 2039.7 (-3.6%) 1931.4 (1.8%) 1927.0 (2.0%) 1945.6 (1.0%)

overall average -1.3% 0.8% 0.8% 0.4%
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GVSV

60 s
avg: 1.7%

300 s
avg: 0.6%

1800 s
avg: 0.2%

−10.0% -6.0% -2.0% -0.5% 0.5% 2.0% 6.0% 10.0%

Fig. 10: Comparison of the results obtained in the JS with total flow time objective with results of González

et al (2010).

Table 4, p. 41) and abbreviate these by GVSV. The authors used an Intel Xeon 2.66

GHz processor, and the computation time per run varied between 98 and 895 seconds.

Fig. 10 illustrates the relative gaps of JILS to GVSV for the instances la01 to la20.

It can be observed that JILS gives slightly higher values than GVSV after 60 seconds.

After 1800 seconds, the performances of JILS and GVSV are similar. Indeed, the

average relative gap of JILS to GVSV is then only 0.2%.

A considerable amount of work has been dedicated to study the JS with total

weighted tardiness objective, which is a generalization of the JS with total flow time

objective. We compare JILS with the following two approaches.

As mentioned in Sect. 1, Mati et al (2011) recently developed a tabu search

method that is applicable to the JS with a general regular objective. We consider

their results for the JS with total weighted tardiness objective (see Mati et al, 2011,

results with f = 1.3 in Table 3, p. 38) and abbreviate these results by MDL. The au-

thors used a 2.6 GHz processor. As they set the computation time limit to only 18

seconds per run, we compare the JILS results to their best results over 10 runs.

González et al (2012a) recently addressed the JSS problem with weighted tar-

diness objective, and they also provide benchmark results for the JS (without setup

times). They proposed a hybrid heuristic, combining a tabu search and a genetic algo-

rithm. In the tabu search component, neighbors are built by reversing a single critical

arc provided that some feasibility condition is satisfied. We consider their average

results over 10 runs (see González et al, 2012a, column GTN with f = 1.3, Table 2,

p. 2108 and Table 3, p. 2110) and abbreviate these results by GGVV. They used an

Intel Core 2 Duo processor with 2.66 GHz, and the computation time of a run varied

between 18 and 1931 seconds.

Fig. 11 (upper part) illustrates the relative gaps of JILS to MDL for the instances

la17 to la20 and orb01 to orb10. It can be observed that, after 300 and 1800 seconds,

the results of JILS are quite similar as MDL. Hence, we conclude that both methods

have a similar performance.

Fig. 11 (lower part) illustrates the relative gaps of JILS to GGVV for the instances

la01 to la40 and orb01 to orb10. It can be observed that JILS quickly finds results of a

similar quality than GGVV for the small instances. Furthermore, after 1800 seconds,

the average relative gap is 0.0%. Interestingly, the relative gaps are quite high for

some instances. They are, for example, −7.5% for instance la34 and 7.3% for la29

after 1800 seconds.

For the total squared flow time and total tardiness objectives, no benchmarks re-

sults are available. Hence, we resorted to compare the performance of JILS with

results obtained via a mixed integer programming (MIP) model that we derived in a
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MDL

60 s
avg: 2.0%

300 s
avg: 0.3%

1800 s
avg: -0.2%

−10.0% -6.0% -2.0% -0.5% 0.5% 2.0% 6.0% 10.0%

GGVV

60 s
avg: 4.9%

300 s
avg: 1.6%

1800 s
avg: 0.0%

−10.0% -6.0% -2.0% -0.5% 0.5% 2.0% 6.0% 29.0%

Fig. 11: Comparison of the results obtained in the JS with total weighted tardiness objective with results

of Mati et al (2011) (above) and González et al (2012a) (below).

Table 2: Comparison of the MIP results to the JILS results for JS instances with total squared flow time

objective (left, in units of 1000) and total tardiness objective (right). Columns avg-1800 provide the results

obtained by JILS after 1800 seconds, columns LB; UB give the MIP lower and upper bounds (“opt” if

they are the same), and columns diff present the relative difference of the results avg-1800 and UB. The

instances are grouped according to their size n×m, where n is the number of jobs and m the number of

machines.

objective total squared flow time total tardiness

results avg-1800 LB ; UB diff avg-1800 LB ; UB diff

10×5

la01 2599 2599 (opt) 0.0% 1194 1194 (opt) 0.0%

la02 2296 2110 ; 2339 -1.8% 1065 1065 (opt) 0.0%

la03 1956 1956 (opt) 0.0% 1076 1076 (opt) 0.0%

la04 2060 1916 ; 2060 0.0% 1096 1096 (opt) 0.0%

la05 1862 1862 (opt) 0.0% 1164 1164 (opt) 0.0%

15×5

la06 5953 2193 ; 6396 -6.9% 3491 916 ; 3643 -4.2%

la07 5252 2022 ; 5651 -7.1% 3282 713 ; 3333 -1.5%

la08 5188 1969 ; 6135 -15.4% 3056 735 ; 3872 -21.1%

la09 6553 2364 ; 7340 -10.7% 3567 786 ; 3984 -10.5%

la10 6348 2150 ; 6916 -8.2% 3655 818 ; 4097 -10.8%

straightforward manner from the disjunctive programming formulation of the CJS-R

problem (see Sect. 2.1). As preliminary tests revealed that the simple MIP approach

only finds good solutions in small instances, we decided to use the smallest instances

la01 to la10 for these experiments. We ran the MIP using the solver Gurobi 6.5 with a

time limit of 7200 seconds for each instance. Table 2 reports the obtained results. The

following can be observed for the instances of size 10× 5. The MIP approach shows

that JILS always found an optimal solution for the total tardiness objective. For the

total squared flow time objective, the MIP approach could prove optimality of three

(out of five) results, and JILS obtained results with a similar quality. For the instances

of size 15× 5, the optimality gaps of the MIP approach are large. On average, JILS
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gives 9.7% and 9.6% lower results than the MIP approach for the total squared flow

time and the total tardiness objective, respectively.

In summary, JILS is competitive in the JS with all considered objectives.

5.4.3 JSS with the makespan objective

The JSS has attracted the attention of many researchers. As in the JS, most articles

discuss the makespan objective.

A prominent contribution addressing the JSS with the makespan objective is

(Balas et al, 2008), in which a shifting bottleneck procedure is proposed. The sin-

gle machine scheduling subproblems are treated as traveling salesman problems with

time windows, which are solved with dynamic programming. We consider the re-

sults obtained by the multi-run SB-RGLS10 version (see Balas et al, 2008, Table 6,

p. 2108 and Table 3, p. 260) and abbreviate these results by BSV. The authors used

a UltraSPARC-II processor with 360 MHz, and the computation time of a run varied

between 264 and 3033 seconds.

Vela et al (2010) also addressed the JSS with the makespan objective. They pro-

posed a hybrid heuristic, which combines a local search and a genetic algorithm. In

the tabu search, neighbors are built by reversing the orders of operations in a criti-

cal block. They consider only moves where feasibility is ensured by some sufficient

condition. We consider their average results over 30 runs (see Vela et al, 2010, Ta-

ble 5, p. 161 and Table 6, p. 162) and abbreviate these results by VVG. They used an

Intel Pentium IV processor with 1.7 GHz, and the computation time of a run varied

between 2 and 166 seconds.

González et al (2012b) tackled the JSS with the makespan objective. They pro-

posed a genetic algorithm with a local search component. We consider their average

results (over 30 runs) obtained by Lamarckian evolution (see González et al, 2012b,

Table 1, p. 157) and abbreviate these results by GVV. They used an Intel Core 2 Duo

processor with 2.6 GHz, and the computation time of a run varied between 35 and

180 seconds.

Fig. 12 (upper part) illustrates the relative gaps of JILS to BSV for the instances

t2-ps01 to t2-ps15. We observe that the average gaps are small and conclude that the

results of JILS are of a similar quality than BSV.

Fig. 12 (middle part) illustrates the relative gaps of JILS to VVG for the instances

t2-ps01 to t2-ps15 and t2-laXYsdst, XY ∈ {21,24,25,27,29,38,40}. It can be ob-

served that the results of JILS are slightly better than VVG, even after a short run

time.

Fig. 12 (lower part) illustrates the relative gaps of JILS to GVV for the instances

t2-ps11 to t2-ps15, t2-laXYsdst, XY ∈ {21,24,25,27,29,38,40}, t2-abzZsdst, Z ∈
{7,8,9}. It can be seen that GVV provides better results than JILS, especially when

compared to the JILS results obtained after 60 and 300 seconds. Nevertheless, the

average gap is only about 1.8% after 1800 seconds.

In summary, JILS has a quite good performance in the JSS with the makespan

objective.
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BSV
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GVV
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avg: 1.8%
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Fig. 12: Comparison of the results obtained in the JSS with the makespan objective to the results of Balas

et al (2008); Vela et al (2010); González et al (2012b).

GGVV2

60 s
avg: 12.3%

300 s
avg: 7.2%

1800 s
avg: 2.9%

best
avg: -0.7%

−16.0% -6.0% -2.0% -0.5% 0.5% 2.0% 6.0% 83.0%

Fig. 13: Comparison of the results obtained in the JSS with total weighted tardiness objective to the results

of González et al (2012a).

5.4.4 JSS with the other objectives

Only few papers address the JSS with other objectives than the makespan.

González et al (2012a) tackle the JSS with total weighted tardiness objective. The

approach was already described in Sect. 5.4.2. We consider their average results over

10 runs (González et al, 2012a, column GTN with f = 1.6 in Table 1, p. 2106) and

abbreviate these results by GGVV2. They used an Intel Core 2 Duo processor with

2.66 GHz, and the computation time of a run varied between 45 and 810 seconds.

Fig. 13 illustrates the relative gaps of JILS to GGVV2 for the instances t2-ps01 to

t2-ps15, t2-laXYsdst, XY ∈ {21,24,25,27,29,38,40}, and t2-abzZsdst, Z ∈ {7,8,9}.

It can be seen that GGVV2 provides substantially lower values when compared to the

average results of JILS after 60 and 300 seconds. Also, when compared to the results

obtained after 1800 seconds, GGVV2 gives 2.9% lower results on average. However,

as illustrated in the last row, the best results of JILS (over the five runs) meet the

performance of GGVV2. We recognized in preliminary tests that JILS can be made
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Table 3: Comparison of the MIP results to the results of JILS for JSS instances with total flow time (top

left), total squared flow time (top right, in units of 1000), and total tardiness objective (bottom). See Table 2

for a detailed explanation.

objective total flow time total squared flow time

results avg-1800 LB ; UB diff avg-1800 LB ; UB diff

10×5

t2-ps01 6050 6050 (opt) 0.0% 4053 3753 ; 4210 -3.7%

t2-ps02 5505 5220 ; 5522 -0.3% 3479 2511 ; 3479 0.0%

t2-ps03 5092 4773 ; 5171 -1.5% 2973 2467 ; 2973 0.0%

t2-ps04 5478 4793 ; 5549 -1.3% 3375 2449 ; 3467 -2.7%

t2-ps05 5041 5041 (opt) 0.0% 2874 2173 ; 3054 -5.9%

15×5

t2-ps06 10706 6522 ; 11261 -4.9% 8685 2756 ; 10690 -18.8%

t2-ps07 10144 5936 ; 11211 -9.5% 7912 2458 ; 9349 -15.4%

t2-ps08 10193 6231 ; 11074 -8.0% 8019 2620 ; 9937 -19.3%

t2-ps09 10879 6578 ; 12253 -11.2% 9346 2849 ; 10564 -11.5%

t2-ps10 10828 6324 ; 11709 -7.5% 8950 2731 ; 10433 -14.2%

objective total tardiness

results avg-1800 LB ; UB diff

10×5

t2-ps01 1623 1623 (opt) 0.0%

t2-ps02 1395 1395 (opt) 0.0%

t2-ps03 1361 1361 (opt) 0.0%

t2-ps04 1583 1020 ; 1620 -2.3%

t2-ps05 1545 1190 ; 1553 -0.5%

15×5

t2-ps06 4379 591 ; 5241 -16.4%

t2-ps07 4180 747 ; 4521 -7.5%

t2-ps08 4083 537 ; 4966 -17.8%

t2-ps09 4155 976 ; 4672 -11.1%

t2-ps10 4305 807 ; 4897 -12.1%

more robust for the JSS with total weighted tardiness if a specialized neighborhood

is used. A further investigation is left for future work.

No benchmarks results are available for the total flow time, total squared flow

time, and total tardiness objectives. Hence, as for the JS, we compare the perfor-

mance of JILS with results obtained by a MIP approach (see also Sect. 5.4.2). For

this purpose, we considered the smallest JSS instances ts-ps01 to ts-ps10, and ran

the MIP with the solver Gurobi 6.5 using a time limit of 7200 seconds per instance.

Table 3 reports the obtained results. The following can be observed for the instances

of size 10× 5. The average results of JILS are equal as or lower than the MIP re-

sults. Also, for the instances where the MIP approach could prove optimality, JILS

always found an optimal solution. For the instances of size 15× 5, JILS gives sub-

stantially lower results than the MIP approach. Indeed, the average relative gap is

−8.2%, −15.8%, and −13.0% for the total flow time, total squared flow time, and

total tardiness objective, respectively.

Altogether, we conclude that JILS performs well in the JSS with all considered

objectives.
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ORCS

60 s
avg: -4.5%

300 s
avg: -6.0%

1800 s
avg: -7.6%

−14.0% -6.0% -2.0% -0.5% 0.5% 2.0% 6.0% 10.0%

PP

60 s
avg: -2.0%

300 s
avg: -3.6%

1800 s
avg: -5.2%

−14.0% -6.0% -2.0% -0.5% 0.5% 2.0% 6.0% 10.0%

Fig. 14: Comparison of the results obtained in the BJS with the makespan objective to results of Oddi et al

(2012); Pranzo and Pacciarelli (2015).

5.4.5 BJS with the makespan objective

A considerable amount of work has been dedicated to the BJS with the makespan ob-

jective. The benchmarks are taken from the following two recently published articles.

Oddi et al (2012) developed a constraint programming approach for the BJS with

the makespan objective. They proposed an improvement algorithm based on iterative

flattening search, and they performed tests with the IBM ILOG CP optimizer. We

consider their results obtained by the CP optimizer (see Oddi et al, 2012, Table 3, p.

7) and abbreviate these results by ORCS. They used an AMD Phenom II X4 Quad

processor with 3.5 GHz, and executed one run of 1800 seconds for each instance.

Pranzo and Pacciarelli (2015) developed an iterated greedy algorithm for the BJS

with the makespan objective. Their approach is based on a repetition of a destruction

phase, which is deleting a part of the solution, and a construction phase, which starts

from a partial solution and applies a greedy approach to construct a new solution.

We consider their results from (Pranzo and Pacciarelli, 2015, Table 7, p. 21) and

abbreviate them by PP. They used an Intel Core 2 Duo processor with 2.6 GHz.

As they set the computation time limit to only 60 seconds per run, we compare the

average results of JILS with their best results over 10 runs.

Fig. 14 illustrates the relative gaps of JILS to ORCS (above) and PP (below) for

the instances la01 to la40. It can be observed that JILS is substantially better than

ORCS. Indeed, the average gap is −4.5%, −6.0%, and −7.6% after 60, 300, and

1800 seconds, respectively. Especially in the large instances, JILS gives substantially

better results than ORCS. The average gap is, for example, −12.0% for the instances

of size 15× 15 (i.e., la36 to la40).

Considering the results of PP, it can be seen that JILS gives substantially lower

values. Indeed, the average gap is −2.0%, −3.6%, and −5.2% after 60, 300, and

1800 seconds, respectively. JILS is at a particular advantage in large instances. The

results of JILS are, on average, 13.3% lower than PP for the instances of size 30×10

(i.e., la31 to la35).
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We conclude that JILS is substantially improving the best results of the literature

in the BJS with the makespan objective.

Note that we proposed a tabu search in (Gröflin et al, 2011) for the BJS with

machine flexibility and the makespan objective, and a refined version for more gen-

eral complex job shops with the makespan criterion in (Bürgy, 2014). These methods

formed the basis for the development of JILS, and the attained results in (Bürgy,

2014) are of a similar quality than the present results.

5.4.6 BJS with the other objectives

To the best our knowledge, no benchmark results are available for all other objectives.

Therefore, we compare the performance of JILS to the results obtained by the same

MIP approach that was applied for the JS and JSS (see Sect. 5.4.2). For this purpose,

we considered the smallest BJS instances la01 to la10, and ran the MIP with the

solver Gurobi 6.5 using a time limit of 7200 seconds per instance. Table 4 reports the

obtained results.

The following can be observed for the instances of size 10×5. The MIP approach

shows that JILS always found an optimal solution for the total flow time, total tardi-

ness, and total weighted tardiness objectives. In addition, the JILS results are of the

same quality or slightly better than the MIP results for the total squared flow time ob-

jective. Similar as in the JS and JSS, the optimality gaps of the MIP results are large

for the instances of size 15× 5 for all four objectives, and JILS gives substantially

lower results.

In summary, JILS has a good performance for the BJS with all considered objec-

tives.

6 Concluding remarks

We developed a neighborhood that can be applied to a wide range of job shop schedul-

ing problems with regular objectives. By casting the neighborhood in a tabu search,

we evaluated its performance with an extensive experimental study using three well-

known job shop scheduling problems and five regular objectives. The obtained results

show that the proposed approach has a good, robust performance. Indeed, it is quite

competitive with the state-of-the-art for all considered objectives in the job shop and

in the job shop with sequence-dependent setup times, it substantially improves the

state-of-the-art results in the blocking job shop with the makespan objective, and it

establishes first results in the blocking job shop with the other considered objectives.

The class of regular objectives is certainly valuable in practice. The total squared

tardiness objective makes it possible, for example, to keep the maximum tardiness

low while maintaining an acceptable level for the total tardiness, which cannot be ac-

complished by a linear (weighted) penalization of the tardiness. In further research,

it could be interesting to investigate non-regular objectives, which, for example, pe-

nalize earliness and tardiness. This type of objectives is especially relevant in a just-

in-time scheduling context.
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Table 4: Comparison of the MIP results to JILS for the BJS instances with total flow time objective (top

left), total squared flow time objective (top right, in units of 1000), total tardiness objective (bottom left),

and total weighted tardiness objective (bottom right). See Table 2 for a detailed explanation.

objective total flow time total squared flow time

results avg-1800 LB ; UB diff avg-1800 LB ; UB diff

10×5

la01 5152 5152 (opt) 0.0% 3123 2928 ; 3123 0.0%

la02 4937 4937 (opt) 0.0% 2982 2313 ; 2982 0.0%

la03 4605 4605 (opt) 0.0% 2574 2108 ; 2682 -4.0%

la04 4764 4764 (opt) 0.0% 2663 2318 ; 2663 0.0%

la05 4447 4447 (opt) 0.0% 2309 1816 ; 2309 0.0%

15×5

la06 9715 5705 ; 10721 -9.4% 7769 2356 ; 10296 -24.5%

la07 9136 5301 ; 10310 -11.4% 6715 1899 ; 8944 -24.9%

la08 9042 5716 ; 11051 -18.2% 6722 2080 ; 9840 -31.7%

la09 10237 6001 ; 11169 -8.3% 8690 2276 ; 14300 -39.2%

la10 9758 5881 ; 10684 -8.7% 7986 2417 ; 10650 -25.0%

objective total tardiness total weighted tardiness

results avg-1800 LB ; UB diff avg-1800 LB ; UB diff

10×5

la01 743 743 (opt) 0.0% 1486 1486 (opt) 0.0%

la02 700 700 (opt) 0.0% 1251 1251 (opt) 0.0%

la03 736 736 (opt) 0.0% 1461 1461 (opt) 0.0%

la04 716 716 (opt) 0.0% 1236 1236 (opt) 0.0%

la05 796 796 (opt) 0.0% 1244 1244 (opt) 0.0%

15×5

la06 3075 165 ; 3475 -11.5% 5469 680 ; 7069 -22.6%

la07 2946 402 ; 3764 -21.7% 4727 748 ; 6634 -28.7%

la08 2831 387 ; 3260 -13.1% 4951 872 ; 6049 -18.1%

la09 3127 212 ; 3762 -16.9% 5685 942 ; 7656 -25.7%

la10 2994 291 ; 3953 -24.3% 5785 561 ; 6275 -7.8%

The proposed neighbor generation scheme provides a general tool to derive a

large set of feasible neighbors. It may be interesting to consider other types of neigh-

bors than those used in the proposed neighborhood. Introducing larger moves of op-

erations within a critical block may be promising. It could also be interesting to con-

sider the optimal (re-) insertion of a job instead of searching for a neighbor close

to the current solution. This optimal job insertion problem may be used, for exam-

ple, to construct a good initial solution and in a large neighborhood search approach.

Although the optimal job insertion problem is already NP-hard for the classical job

shop, the nice characterization of all feasible insertions given in Sect. 3 may help to

develop an efficient method that inserts a job in a near-optimal fashion.
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7 Appendix

7.1 Proofs of job insertion properties

Hereafter, we provide proofs of Proposition 2, Theorem 1, and Theorem 2. Although

they can easily be derived from Gröflin and Klinkert (2007), we give them for conve-

nience and completeness

Proof (of Proposition 2) (i) Observe that any acyclic insertion T is stable in H by

construction of H. If insertion T is also complete hence feasible, it is of size |EJ|/2

as |T ∩{e,e}| = 1 for each pair ∈ E J by (9). Then |T | = |E J|, and E J is a partition

of EJ into pairs, so |T |= |E J |= |EJ|/2.

(ii) In view of Proposition 1 (i), any stable set T in H picks at most one node of

each pair {e,e} ∈ E J , hence |T | ≤ |EJ|/2. Asking |T |= |EJ|/2 implies that exactly

one node is picked from each pair {e,e} ∈ E J , hence insertion T is complete. ⊓⊔

Proof (of Theorem 1) In view of Proposition 2, we just need to show that any stable

set T of size |EJ |/2 corresponds to a positive acyclic insertion. Assume the contrary,

i.e., insertion T is positive cyclic, and let Z′ be a positive cycle in (V,AJ ∪ T,d).
By the SCP there exists a short positive cycle Z with Z ∩ EJ ⊆ Z′ ∩ EJ ⊆ T and

|Z∩EJ|= 2, so {e, f}= Z∩EJ for some e ∈ EJ−, f ∈ EJ+. Then {e, f} is a positive

cyclic insertion, hence {e, f} ∈U contradicting the stability of T in H. ⊓⊔

Proof (of Theorem 2) We show that i) Φ({g}) is stable in H, ii) Tg is stable in H, iii)

Tg is complete.

i) By definition of the closure and the bipartition of H, Φ({g})⊆ EJ+ if g ∈ EJ+

and Φ({g})⊆ EJ− if g ∈ EJ−. EJ+ and EJ− are the partitions of the bipartite conflict

graph H by Proposition 1 ii), so Φ({g}) is stable.

ii) Tg is stable in H. Assuming the contrary, there exists some pair e, f ∈ Tg so that

{e, f} ∈ U . By i) Φ({g}) is stable in H. T S is a feasible insertion, hence it is stable

in H by Theorem 1, then T S \ [Φ({g})] is stable in H. Therefore, we can assume

that e ∈ Φ({g}) and f ∈ T S \ [Φ({g})]. But by definition e f , so f ∈ Φ({g}),
contradicting f ∈ T S \ [Φ({g})].

iii) As T S is complete and by construction of Φ({g}) and T S \ [Φ({g})], {e,e}∩
Tg 6= /0 for all pairs {e,e} ∈ E J implying completeness of Tg. ⊓⊔

7.2 Detailed results

The detailed results of the JILS are recorded in Table 5 to 11. All values are rounded

to the nearest integer.
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Table 5: Objective values obtained with JILS for the Taillard benchmark instances in the JS with makespan

objective. For each instance, the four columns display the average results (over the five runs) after 60, 300,

and 1800 seconds and the best results after 1800 seconds. The instances are grouped according to their

size n×m, where n is the number of jobs and m the number of machines.

objective makespan makespan

time 60 300 1800 best 60 300 1800 best

15×15

ta01 1239 1233 1232 1231 ta26 1671 1661 1659 1654

ta02 1256 1248 1245 1244 ta27 1711 1697 1694 1687

ta03 1225 1224 1223 1221 ta28 1633 1626 1624 1620

ta04 1182 1181 1177 1175 ta29 1643 1637 1633 1629

ta05 1234 1233 1232 1231 ta30 1623 1608 1603 1590

ta06 1246 1244 1242 1240 30×15

ta07 1228 1228 1228 1228 ta31 1788 1767 1766 1764

ta08 1224 1219 1218 1217 ta32 1861 1832 1829 1821

ta09 1287 1286 1283 1281 ta33 1858 1823 1818 1808

ta10 1262 1249 1245 1244 ta34 1881 1845 1843 1837

20×15 ta35 2007 2007 2007 2007

ta11 1387 1377 1375 1369 ta36 1849 1834 1828 1820

ta12 1381 1377 1375 1373 ta37 1830 1803 1800 1795

ta13 1364 1355 1355 1352 ta38 1715 1693 1688 1685

ta14 1352 1346 1345 1345 ta39 1816 1806 1805 1797

ta15 1366 1357 1353 1343 ta40 1730 1707 1706 1697

ta16 1378 1371 1369 1362 30×20

ta17 1489 1483 1476 1470 ta41 2110 2068 2060 2053

ta18 1429 1418 1418 1412 ta42 2033 1990 1982 1974

ta19 1358 1349 1345 1344 ta43 1943 1900 1897 1889

ta20 1376 1367 1363 1356 ta44 2061 2029 2017 2006

20×20 ta45 2068 2031 2020 2007

ta21 1673 1664 1660 1657 ta46 2108 2072 2069 2060

ta22 1636 1624 1619 1609 ta47 1983 1952 1942 1932

ta23 1579 1570 1566 1560 ta48 2047 1993 1987 1975

ta24 1671 1663 1661 1658 ta49 2054 2018 2011 2000

ta25 1630 1615 1604 1599 ta50 2021 1977 1966 1947
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Table 6: Objective values obtained with JILS in the JS with makespan, total flow time, and total squared

flow time objective. Results for the total squared flow time objective are provided in units of 1000.

objective makespan total flow time total squared flow time

time 60 300 1800 best 60 300 1800 best 60 300 1800 best

10×5

la01 666 666 666 666 4834 4832 4832 4832 2602 2599 2599 2599

la02 655 655 655 655 4481 4468 4463 4459 2298 2297 2296 2296

la03 597 597 597 597 4152 4151 4151 4151 1956 1956 1956 1956

la04 590 590 590 590 4259 4259 4259 4259 2060 2060 2060 2060

la05 593 593 593 593 4074 4072 4072 4072 1862 1862 1862 1862

15×5

la06 926 926 926 926 8725 8649 8629 8626 6038 5967 5953 5941

la07 890 890 890 890 8166 8122 8081 8069 5364 5287 5252 5240

la08 863 863 863 863 8130 7989 7958 7946 5279 5216 5188 5093

la09 951 951 951 951 9215 9069 9050 9043 6669 6571 6553 6520

la10 958 958 958 958 9068 8885 8866 8818 6461 6399 6348 6309

20×5

la11 1222 1222 1222 1222 14530 14249 14053 13936 13060 12727 12505 12441

la12 1039 1039 1039 1039 12454 12031 11870 11759 9709 9489 9420 9265

la13 1150 1150 1150 1150 13945 13564 13410 13358 11864 11544 11350 11254

la14 1292 1292 1292 1292 15072 14781 14644 14622 13980 13783 13596 13274

la15 1207 1207 1207 1207 15007 14544 14316 14216 13368 13033 12884 12754

10×10

la16 945 945 945 945 7383 7376 7376 7376 5771 5771 5771 5771

la17 784 784 784 784 6565 6547 6537 6537 4594 4565 4557 4556

la18 848 848 848 848 6993 6971 6970 6970 5153 5132 5127 5117

la19 842 842 842 842 7248 7227 7217 7217 5351 5335 5335 5335

la20 902 902 902 902 7403 7371 7354 7345 5840 5808 5792 5764

orb01 1061 1059 1059 1059 8187 8093 8044 8023 6980 6881 6858 6856

orb02 888 888 888 888 7344 7333 7316 7308 5616 5611 5606 5606

orb03 1005 1005 1005 1005 8202 8085 8056 8032 7072 6898 6865 6865

orb04 1005 1005 1005 1005 7897 7893 7893 7893 6744 6744 6744 6744

orb05 889 889 888 887 6989 6983 6983 6983 5153 5148 5141 5135

orb06 1012 1010 1010 1010 8179 8137 8130 8127 7065 7003 6984 6982

orb07 397 397 397 397 3293 3259 3257 3257 1146 1111 1108 1108

orb08 899 899 899 899 6981 6951 6944 6931 5276 5234 5209 5198

orb09 934 934 934 934 7452 7433 7433 7433 6068 6040 6016 6008

orb10 944 944 944 944 7905 7850 7846 7846 6461 6365 6364 6364

15×10

la21 1051 1048 1047 1046 13024 12473 12353 12208 11613 11265 11207 11010

la22 932 932 929 927 12457 11919 11825 11720 10291 9955 9798 9711

la23 1032 1032 1032 1032 13063 12822 12692 12650 11606 11329 11210 11112

la24 943 940 938 935 12686 12137 12058 11936 10460 10279 10153 9846

la25 978 977 977 977 12383 11952 11868 11818 10385 10076 9911 9802

20×10

la26 1218 1218 1218 1218 23842 21428 20271 19614 21671 20942 20477 19838

la27 1240 1237 1235 1235 25710 22158 20232 19939 22908 22498 21674 21517

la28 1216 1216 1216 1216 24534 22262 20425 20000 21573 21106 20696 20237

la29 1173 1170 1166 1164 22521 20641 18657 17992 19357 18533 18006 17731

la30 1355 1355 1355 1355 23328 21020 19486 19249 22579 21839 21014 20784

30×10

la31 1784 1784 1784 1784 57420 54393 49893 45168 55463 54369 53638 51998

la32 1850 1850 1850 1850 64989 60314 55884 51938 62797 61517 60394 58639

la33 1719 1719 1719 1719 61882 56276 49519 45454 51619 50801 49765 48622

la34 1721 1721 1721 1721 63195 58745 54917 49862 55660 54501 53440 52042

la35 1888 1888 1888 1888 60661 57369 51645 46655 57721 56895 56239 55458

15×15

la36 1272 1268 1268 1268 18871 17428 16806 16620 20474 19873 19607 19331

la37 1410 1405 1403 1401 19467 18404 17765 17670 22479 21776 21647 21321

la38 1201 1199 1196 1196 18238 16524 16040 15717 17309 16899 16669 16233

la39 1234 1234 1234 1233 18345 16589 16198 15922 18193 17866 17460 16985

la40 1229 1227 1226 1226 18712 16995 16466 16069 18378 17886 17537 17234
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Table 7: Objective values obtained with JILS in the JS with total tardiness and total weighted tardiness

objective.

objective total tardiness total weighted tardiness

time 60 300 1800 best 60 300 1800 best

10×5

la01 1194 1194 1194 1194 2299 2299 2299 2299

la02 1076 1071 1065 1065 1762 1762 1762 1762

la03 1076 1076 1076 1076 1951 1951 1951 1951

la04 1096 1096 1096 1096 1917 1917 1917 1917

la05 1165 1164 1164 1164 1878 1878 1878 1878

15×5

la06 3541 3495 3491 3488 6026 5883 5813 5810

la07 3359 3309 3282 3272 5952 5855 5769 5765

la08 3105 3083 3056 3027 5532 5475 5475 5475

la09 3699 3598 3567 3567 5811 5608 5608 5608

la10 3805 3688 3655 3604 6795 6687 6618 6618

20×5

la11 7301 7136 7032 6929 12474 12355 12043 11885

la12 5801 5750 5702 5668 11009 10862 10737 10542

la13 6756 6692 6659 6618 11878 11652 11539 11475

la14 7838 7771 7758 7675 13453 13345 13244 13107

la15 7306 7166 7109 7089 13016 12668 12595 12354

10×10

la16 616 612 612 612 1169 1169 1169 1169

la17 711 694 694 694 927 899 899 899

la18 484 484 484 484 935 929 929 929

la19 486 486 486 486 973 949 948 948

la20 555 546 538 536 831 820 805 805

orb01 1414 1262 1246 1246 2625 2578 2568 2568

orb02 707 693 676 656 1423 1416 1408 1408

orb03 1381 1320 1271 1271 2186 2112 2111 2111

orb04 829 823 823 823 1635 1623 1623 1623

orb05 825 809 806 806 1742 1688 1667 1667

orb06 982 973 959 959 1821 1790 1790 1790

orb07 286 284 284 284 591 590 590 590

orb08 1240 1237 1216 1211 2534 2466 2436 2429

orb09 857 856 844 844 1316 1316 1316 1316

orb10 891 863 863 863 1795 1748 1709 1679

15×10

la21 2263 2163 2120 2098 3974 3670 3608 3560

la22 2599 2448 2392 2264 4909 4638 4579 4356

la23 2522 2359 2267 2244 4133 4073 3922 3777

la24 2356 2262 2148 2113 3945 3804 3759 3579

la25 2297 2186 2162 2092 3862 3586 3527 3313

20×10

la26 6082 5766 5540 5417 10756 10607 10074 9803

la27 6023 5927 5658 5480 10158 9725 9570 9226

la28 6088 5888 5566 5302 10572 10208 9810 9606

la29 5412 5132 4867 4637 10577 10377 10041 9556

la30 5672 5509 5243 5150 9864 9594 9268 8981

30×10

la31 17329 17065 16521 16158 31072 30809 30200 29039

la32 18077 17861 17265 16846 33380 32851 32544 32258

la33 16440 16253 15746 15554 28996 28441 28098 26931

la34 16576 16323 16010 15465 30128 29461 28806 28352

la35 17481 17214 16636 16397 32288 31945 31259 30730

15×15

la36 1988 1842 1797 1792 3578 3286 3196 2981

la37 2128 1884 1753 1565 3053 2726 2608 2290

la38 1484 1348 1278 1101 2795 2496 2400 2159

la39 1200 1040 971 907 2341 1912 1820 1676

la40 1530 1318 1148 1107 2811 2561 2347 2159
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Table 8: Objective values obtained with JILS in the JSS with makespan, total flow time, and total squared

flow time objective. Results for the total squared flow time objective are provided in units of 1000.

objective makespan total flow time total squared flow time

time 60 300 1800 best 60 300 1800 best 60 300 1800 best

10×5

t2-ps01 798 798 798 798 6057 6053 6050 6050 4083 4060 4053 4053

t2-ps02 784 784 784 784 5509 5505 5505 5505 3479 3479 3479 3479

t2-ps03 749 749 749 749 5113 5092 5092 5092 2988 2973 2973 2973

t2-ps04 732 730 730 730 5521 5485 5478 5478 3406 3375 3375 3375

t2-ps05 691 691 691 691 5050 5041 5041 5041 2885 2876 2874 2874

15×5

t2-ps06 1026 1026 1026 1025 11017 10773 10706 10608 9035 8870 8685 8610

t2-ps07 970 970 970 970 10332 10187 10144 10039 8188 7982 7912 7851

t2-ps08 975 967 965 963 10428 10255 10193 10140 8403 8121 8019 7816

t2-ps09 1060 1060 1060 1060 11303 11045 10879 10835 9936 9503 9346 9329

t2-ps10 1018 1018 1018 1018 11040 10924 10828 10785 9311 9027 8950 8800

20×5

t2-ps11 1506 1504 1489 1460 21185 20506 20180 19666 28742 27633 25810 24650

t2-ps12 1334 1333 1324 1319 19682 19176 18783 18534 22397 22069 21055 20285

t2-ps13 1437 1437 1434 1430 21315 21044 20666 20162 26512 25750 24805 24011

t2-ps14 1489 1489 1480 1469 21738 21378 21015 20595 28982 27816 26097 24860

t2-ps15 1531 1526 1524 1518 21977 21438 21065 20657 29371 27908 26871 26338

15×10

t2-LA21sdst 1279 1273 1273 1273 15529 15233 15116 15009 17543 17137 16993 16644

t2-LA24sdst 1163 1157 1155 1154 15317 14899 14780 14630 16538 15854 15658 15380

t2-LA25sdst 1198 1192 1188 1184 14964 14693 14590 14441 16079 15713 15485 15234

20×10

t2-LA27sdst 1826 1812 1791 1767 30471 30005 29445 28705 52949 51839 50598 47885

t2-LA29sdst 1720 1698 1691 1678 28663 28384 27571 27231 46925 46267 44236 42311

15×15

t2-LA38sdst 1471 1463 1456 1447 19283 18853 18733 18521 25947 25412 25024 24265

t2-LA40sdst 1499 1492 1488 1480 20051 19615 19458 19267 28114 26915 26464 26002

20×15

t2-ABZ7sdst 1359 1305 1299 1287 23536 23376 22916 22446 30374 29786 29566 28321

t2-ABZ8sdst 1367 1343 1329 1307 23754 23500 23173 22630 31503 31185 30423 28890

t2-ABZ9sdst 1343 1306 1296 1286 23366 23176 22753 22388 30955 30445 30331 29121
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Table 9: Objective values obtained with JILS in the JSS with total tardiness and total weighted tardiness

objective.

objective total tardiness total weighted tardiness

time 60 300 1800 best 60 300 1800 best

10×5

t2-ps01 1659 1631 1623 1623 2868 2852 2852 2852

t2-ps02 1395 1395 1395 1395 2312 2301 2301 2301

t2-ps03 1376 1361 1361 1361 2689 2677 2677 2677

t2-ps04 1594 1583 1583 1583 2538 2538 2538 2538

t2-ps05 1546 1545 1545 1545 2636 2602 2570 2570

15×5

t2-ps06 4531 4441 4379 4361 7727 7493 7359 7359

t2-ps07 4406 4262 4180 4143 7587 7418 7407 7358

t2-ps08 4378 4164 4083 4062 8153 7823 7627 7524

t2-ps09 4391 4215 4155 4147 7619 7411 7314 7303

t2-ps10 4602 4473 4305 4237 8330 7975 7872 7837

20×5

t2-ps11 12884 12446 11947 11561 22873 22506 22110 21365

t2-ps12 12378 11907 11510 10918 21935 21674 21171 20937

t2-ps13 12766 12565 12224 11904 22068 21684 21364 20929

t2-ps14 13197 12937 12511 12365 24423 23776 23140 22446

t2-ps15 12977 12586 12179 12023 24099 23200 22721 22127

15×10

t2-LA21sdst 2961 2772 2674 2609 4851 4597 4454 4347

t2-LA24sdst 2911 2661 2490 2300 5457 5114 4920 4492

t2-LA25sdst 3181 2918 2831 2763 5645 4880 4683 4454

20×10

t2-LA27sdst 12939 12566 12022 11592 23105 22605 21631 20368

t2-LA29sdst 12723 12449 11648 11360 23395 22973 22149 21493

15×15

t2-LA38sdst 1925 1689 1445 1282 3642 3118 2632 2417

t2-LA40sdst 2421 2100 1828 1637 4651 3844 2912 2137

20×15

t2-ABZ7sdst 12019 11716 11175 10804 20452 20210 19336 18378

t2-ABZ8sdst 11613 11293 10818 10331 20453 19986 19168 18759

t2-ABZ9sdst 11291 11013 10664 10473 19877 19470 19091 18710
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Table 10: Objective values obtained with JILS in the BJS with makespan, total flow time, and total squared

flow time objective. Results for the total squared flow time objective are provided in units of 1000.

objective makespan total flow time total squared flow time

time 60 300 1800 best 60 300 1800 best 60 300 1800 best

10×5

la01 793 793 793 793 5174 5152 5152 5152 3123 3123 3123 3123

la02 793 793 793 793 4937 4937 4937 4937 2982 2982 2982 2982

la03 715 715 715 715 4605 4605 4605 4605 2574 2574 2574 2574

la04 743 743 743 743 4781 4773 4764 4764 2663 2663 2663 2663

la05 664 664 664 664 4447 4447 4447 4447 2309 2309 2309 2309

15×5

la06 1099 1085 1066 1060 10035 9860 9715 9683 8113 7963 7769 7689

la07 1054 1038 1025 1016 9349 9264 9136 9083 7141 6920 6715 6684

la08 1091 1064 1044 1040 9338 9138 9042 9042 7503 7091 6722 6604

la09 1181 1167 1145 1141 10590 10312 10237 10185 9273 8958 8690 8613

la10 1143 1120 1111 1096 9966 9840 9758 9735 8376 8166 7986 7920

20×5

la11 1497 1478 1461 1446 16778 16258 16073 15787 17973 17811 17146 16444

la12 1295 1273 1254 1239 14242 13897 13634 13464 13808 13292 12843 12098

la13 1461 1428 1399 1361 16083 15791 15379 15243 17090 16486 16189 15912

la14 1512 1498 1473 1464 16869 16569 16295 16180 18376 18247 17796 17521

la15 1533 1512 1492 1477 17072 16772 16575 16315 20066 18935 18517 18264

10×10

la16 1078 1066 1060 1060 8222 8166 8123 8109 7378 7218 7187 7187

la17 932 930 929 929 7385 7224 7159 7159 5677 5581 5570 5529

la18 1039 1033 1025 1025 7744 7652 7525 7525 6455 6366 6350 6350

la19 1065 1049 1045 1043 8216 8165 8086 8030 7204 7009 6919 6919

la20 1089 1067 1060 1060 8132 8020 7978 7951 7125 7062 7054 7054

15×10

la21 1486 1467 1425 1396 15312 14914 14665 14483 18985 16899 16601 15967

la22 1340 1328 1309 1293 14411 14117 13946 13479 15612 15110 14697 14490

la23 1481 1451 1426 1417 15682 15494 15229 15108 18426 17706 17268 16809

la24 1410 1390 1378 1366 15038 14698 14406 14209 17441 16124 15640 15107

la25 1413 1380 1330 1311 14466 14244 13937 13797 16543 15615 14918 14396

20×10

la26 1957 1908 1860 1848 25374 25124 24152 23437 38682 36714 35168 34597

la27 2031 1971 1934 1920 26045 25587 24884 24444 40974 39169 37271 36006

la28 1969 1926 1842 1829 25577 25208 24624 24023 39600 37149 36199 35492

la29 1799 1789 1749 1721 23578 23277 22398 22348 32782 30903 30211 29731

la30 1980 1927 1888 1869 24637 24292 23634 23190 37990 35864 35607 34754

30×10

la31 2841 2756 2694 2677 50773 49859 49444 48552 106731 104192 99488 96030

la32 3077 2979 2911 2860 55042 54271 53200 52092 126460 121433 116269 110294

la33 2747 2682 2615 2590 49697 49646 49163 47260 102757 98181 94674 91772

la34 2852 2773 2652 2619 51516 51301 50931 50251 111042 106008 101361 96075

la35 2887 2777 2717 2682 52149 51629 51095 50573 109471 103423 99284 97650

15×15

la36 1731 1719 1670 1639 19768 19588 19406 19059 28934 27923 27511 26621

la37 1871 1835 1804 1761 21588 21175 20790 20537 34209 31780 30889 29660

la38 1680 1635 1607 1593 18992 18854 18381 18199 25288 24826 23972 22757

la39 1749 1723 1659 1634 19415 19216 18889 18602 28135 26616 25605 24938

la40 1749 1699 1645 1609 19527 19300 19006 18810 28666 28068 26502 24132
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Table 11: Objective values obtained with JILS in the BJS with total tardiness and total weighted tardiness

objective.

objective total tardiness total weighted tardiness

time 60 300 1800 best 60 300 1800 best

10×5

la01 757 743 743 743 1486 1486 1486 1486

la02 705 700 700 700 1251 1251 1251 1251

la03 736 736 736 736 1461 1461 1461 1461

la04 720 716 716 716 1240 1236 1236 1236

la05 796 796 796 796 1245 1244 1244 1244

15×5

la06 3349 3192 3075 2994 5723 5569 5469 5339

la07 3088 3034 2946 2929 4920 4809 4727 4727

la08 3040 2878 2831 2813 4991 4956 4951 4949

la09 3379 3239 3127 3127 5800 5704 5685 5685

la10 3144 3060 2994 2984 5996 5950 5785 5514

20×5

la11 7289 7169 6873 6572 12943 12733 12077 11627

la12 5980 5909 5557 5417 11304 10618 10132 9789

la13 7300 6898 6566 6317 12650 11992 11483 11310

la14 7660 7533 7182 7089 12869 12486 12245 12129

la15 7739 7464 7109 6985 13550 12749 12321 12223

10×10

la16 63 25 22 20 96 56 44 40

la17 153 114 104 98 274 215 144 132

la18 94 53 11 3 91 71 24 6

la19 179 103 63 43 364 229 169 86

la20 36 0 0 0 42 4 0 0

15×10

la21 2181 2066 1856 1764 3639 3123 2787 2688

la22 2616 2360 2045 1862 4061 3798 3511 3318

la23 2701 2457 2200 2120 4942 4128 3642 3537

la24 2344 2227 1975 1882 4265 3915 3398 3268

la25 2129 2038 1766 1655 3742 3162 2738 2598

20×10

la26 8053 7117 6377 6163 13191 11945 11180 10260

la27 8533 7447 6584 6347 13281 12790 11453 10769

la28 7418 6718 6340 6217 12965 12169 10973 9621

la29 6898 5821 5496 5246 12067 11367 9746 9315

la30 6453 5856 5337 5224 10617 9783 8770 7379

30×10

la31 28484 25177 23913 21857 41804 41747 41090 39088

la32 38955 32441 27292 25136 45338 44723 44251 42510

la33 37945 35852 32246 28101 40062 39894 39164 36088

la34 43523 41059 36426 33874 42488 41882 41381 40125

la35 27341 25163 24507 23735 42060 41296 40418 38181

15×15

la36 1556 986 717 602 2302 1754 1338 1078

la37 1744 1184 932 822 2555 1978 1664 1377

la38 1451 1069 903 726 1984 1639 1099 726

la39 1467 813 561 405 1383 1075 786 630

la40 3458 1211 983 943 2195 1768 1204 1113
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Vela C, Varela R, González M (2010) Local search and genetic algorithm for the job

shop scheduling problem with sequence dependent setup times. Journal of Heuris-

tics 16:139–165

Zhang CY, Li P, Rao Y, Guan Z (2008) A very fast TS/SA algorithm for the job shop

scheduling problem. Computers and Operations Research 35(1):282–294

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 


