A neighborhood for complex job shop scheduling problems with regular objectives

Reinhard Bürgy

Accepted for publication in Journal of Scheduling (April 2017)
The final publication is available at Springer
via http://dx.doi.org/10.1007/s10951-017-0532-2

Abstract

Due to the limited applicability in practice of the classical job shop scheduling problem, many researchers have addressed more complex versions of this problem by including additional process features, such as time lags, setup times, and buffer limitations, and have pursued objectives that are more practically relevant than the makespan, such as total flow time and total weighted tardiness. However, most proposed solution approaches are tailored to the specific scheduling problem studied and are not applicable to more general settings.

This article proposes a neighborhood that can be applied for a large class of job shop scheduling problems with regular objectives. Feasible neighbor solutions are generated by extracting a job from a given solution and reinserting it into a neighbor position. This neighbor generation in a sense extends the simple swapping of critical arcs, a mechanism that is widely used in the classical job shop but that is not applicable in more complex job shop problems.

The neighborhood is embedded in a tabu search, and its performance is evaluated with an extensive experimental study using three standard job shop scheduling problems: the (classical) job shop, the job shop with sequence-dependent setup times, and the blocking job shop, combined with the following five regular objectives: makespan, total flow time, total squared flow time, total tardiness, and total weighted tardiness. The obtained results support the validity of the approach.

Keywords job shop scheduling • general regular objective • sequence-dependent setup times • blocking job shop \cdot job insertion \cdot neighborhood \cdot tabu search

1 Introduction

The classical job shop scheduling problem has attracted the attention of a large number of researchers and has earned the reputation of being one of the most computa-

[^0]tionally stubborn combinatorial optimization problems (Applegate and Cook, 1991). This standard scheduling problem is, however, of limited applicability in practice since real-world scheduling problems possess process features that are not captured by the classical job shop model, such as, for example, sequence-dependent setup times, minimum and maximum time lags between operations, limited buffer capacity, routing flexibility, and transportation tasks. Also, the makespan is not the only relevant performance measure in practice: total (weighted) flow time, total squared tardiness, and other possibly nonlinear measures of earliness and tardiness are equally relevant in applications. This has given rise to active research on job shop scheduling models that better capture real-world scheduling problems (Potts and Strusevich, 2009). Some of these models have established themselves over the years as standard problems in the literature, among them the job shop with total weighted tardiness objective, the job shop with sequence-dependent setup times, the no-wait job shop, and the blocking job shop.

Referring to the general area of scheduling research, Potts and Strusevich (2009) mention that many researchers were motivated by the need to create scheduling models capturing more features that arise in practice. However, they conclude that "In spite of the vast body of research being produced, a large gap still remains between theory and practice." A similar assessment can be found in (Pinedo, 2012, pp. 431 435). This gap has also been widely acknowledged in scheduling problems of the job shop type.

A main reason for the existence of this gap is, in our view, the lack of research into generic job shop scheduling problems that would model a wide range of process features and cover generic objectives. Indeed, most articles study specific job shop problems and include only a few additional features. As a result, the proposed solution approaches are highly specialized, and job shop scheduling research has become fragmented. Bülbül and Kaminsky (2013) concur with this opinion, and point out that, as a result, job shop scheduling software is highly specialized and customized.

The following are some of the few contributions addressing more general job shop scheduling problems. Mati et al (2011) considered the job shop problem with a general regular objective. This class of objectives comprises all functions that are monotone non-decreasing in the completion times. They formulated the problem in a disjunctive graph and developed a local search heuristic where neighbors are built by swapping a critical arc. For future research, they proposed investigating more complex job shop scheduling problems with a general regular objective. Bülbül and Kaminsky (2013) developed a decomposition heuristic for the job shop problem applicable to all linear functions of the operation start (and end) times. This class of objectives makes it possible to consider, for example, intermediate holding costs, which are a relevant performance measure in practice. They formulated the problem in a disjunctive graph and developed a shifting-bottleneck-based solution approach. An interesting and novel component of their method is the integration of dual values from the timing problems (of partial schedules) into the single machine subproblems. Grimes and Hebrard (2015) recently considered a generic disjunctive machine scheduling problem in which various processing features and objectives can be modeled. They proposed a constraint programming approach that combines a number of generic search techniques (restarts, adaptive heuristics, and solution-guided
branching). While the basic approach is generic, some specific knowledge is incorporated to improve its effectiveness in certain problem types. Their numerical tests on some standard job shop problems showed that the approach works well for small and medium-sized instances, but is less suited for solving large instances. In addition, they observe that a good initial upper bound improves the performance of the approach.

In view of the excellent (hybrid) local search approaches developed for specific job shop scheduling problems (see, e.g., Nowicki and Smutnicki, 2005; Zhang et al, 2008; González et al, 2012a), it seems surprising that almost no local search methods have been proposed for a more general job shop scheduling setting. In fact, the applied meta-heuristics are typically generic in nature; however, the neighborhood, a main component of the local search, is in most cases only applicable in a rather narrow setting. The generation of feasible neighbors is a major problem. Indeed, the standard strategy of swapping critical arcs generates a feasible neighbor with certainty in the (classical) job shop, but may lead to an infeasible neighbor in other variants. For the job shop with sequence-dependent setup times, necessary conditions for feasibility have been established (see, e.g., Vela et al, 2010), and a critical arc is only swapped if such a condition is fulfilled. However, in more complex job shop scheduling problems, such as the blocking job shop, swapping a single arc mostly leads to an infeasible solution. Hence, another approach is needed for these complex scheduling problems.

In this paper, we develop a neighborhood that is applicable to a large class of job shop problems and any regular objective. The neighborhood in a sense extends the idea of swapping a critical arc and is based on a neighbor generation scheme that extracts a job from a given solution and reinserts it into a feasible neighbor position. The neighbor generation scheme relies on the job insertion theory developed by Gröflin and Klinkert (2007), and has already been successfully applied in various job shop scheduling problems with the makespan objective, namely, in the (flexible) blocking job shop (Gröflin and Klinkert, 2009; Gröflin et al, 2011), in the blocking job shop with rail-bound transportation (Bürgy and Gröflin, 2016), and in a more general job shop model (Bürgy, 2014). This article casts the neighbor generation scheme in a unifying framework and extends its use to any regular objective. Note that we abstained from dealing with machine flexibility in this work and refer to (Gröflin et al, 2011; Bürgy, 2014) for a possible inclusion of this feature.

The remainder of the article is organized as follows. The next section proposes a generic job shop scheduling problem called the complex job shop with a regular objective (CJS-R). Sect. 3 introduces the job insertion problem, which is an important subproblem of the CJS-R problem. The feasible solutions of this subproblem are characterized as the stable sets (with a prescribed cardinality) of a conflict graph, and structural properties of this conflict graph are established. Based on these results, Sect. 4 provides a generic scheme for deriving feasible neighbor solutions and proposes a specific neighborhood. Sect. 5 casts this neighborhood in a tabu search, whose performance is evaluated with an extensive experimental study on some wellknown, standard job shop scheduling problems. Proofs and detailed numerical results are provided in the Appendix.

The introduction is concluded with some notation and terminology. Unless otherwise stated, the graphs will be directed and simple, and the following standard notation will be used. In a graph $G=(V, E)$, an arc $e=(v, w) \in E$ has a tail $t(e)=v$ and a head $h(e)=w$. For any set $V^{\prime} \subseteq V$, the set of its ingoging arcs is $\delta^{-}\left(V^{\prime}\right)=\{e \in E$: $t(e) \in V \backslash V^{\prime}$ and $\left.h(e) \in V^{\prime}\right\}$, the set of its outgoing arcs is $\delta^{+}\left(V^{\prime}\right)=\left\{e \in E: t(e) \in V^{\prime}\right.$ and $\left.h(e) \in V \backslash V^{\prime}\right\}$, the set of arcs in its cut is $\delta\left(V^{\prime}\right)=\delta^{-}\left(V^{\prime}\right) \cup \delta^{+}\left(V^{\prime}\right)$, and the set of arcs with both ends in V^{\prime} is $\gamma\left(V^{\prime}\right)=\left\{e \in E: t(e) \in V^{\prime}\right.$ and $\left.h(e) \in V^{\prime}\right\}$. If an arc length vector $c \in \mathbb{R}^{E}$ is given, G will be denoted by the triplet $G=(V, E, c)$. In $G=(V, E, c)$, a cycle is called positive if its length is positive.

2 The complex job shop scheduling problem with a regular objective

We first propose a generic job shop scheduling problem called the complex job shop with a regular objective (CJS-R). The CJS-R problem is based on the scheduling model presented in (Gröflin and Klinkert, 2007), which is adapted to incorporate jobs and regular objectives. The CJS-R problem is then formulated as a combinatorial problem in a disjunctive graph. Finally, two standard job shop scheduling problems, the job shop problem with sequence dependent setup times and a regular objective and the blocking job shop with transfer times, setup times, and a regular objective, are specified as CJS-R problems.

2.1 Notation, data, and a problem formulation

Let V be a finite set of events (e.g., start or end of operations), $\sigma \in V$ a dummy start event, and $V^{-}=V \backslash\{\sigma\}$. Let \mathscr{J} be a set of jobs such that \mathscr{J} forms a partition of V^{-}, i.e., a job $J \in \mathscr{J}$ consists of a set of events and each event $v \in V^{-}$belongs to exactly one job. For each job $J \in \mathscr{J}$, the set $V_{J} \subseteq V$ contains all events that belong to J. For ease of notation, introduce function $J o b: V \backslash\{\sigma\} \rightarrow \mathscr{J}$ mapping any event to its job, i.e., if event v belongs to job J then $\operatorname{Job}(v)=J$.

Furthermore, let $A \subseteq V \times V^{-}$and $E \subseteq V^{-} \times V^{-}$be two disjoint sets of precedence constraints and $d \in \mathbb{R}^{A \cup E}$ a weight function. A precedence constraint $(v, w) \in A \cup E$ with weight $d_{v w}$ states that event v must occur at least $d_{v w}$ time units before event w. Elements of set A and E are called conjunctive and disjunctive precedence constraints, respectively. Each conjunctive precedence constraint must be satisfied in any feasible solution while a disjunctive precedence constraint must hold if some other disjunctive constraint in E is violated. To formalize this disjunctive structure, define a family of disjunctive sets $\mathscr{E} \subseteq 2^{E}$ where \mathscr{E} is a partition of E into pairs. Then, for each (unordered) pair $\left\{(v, w),\left(v^{\prime}, w^{\prime}\right)\right\} \in \mathscr{E}$, either precedence constraint (v, w) or $\left(v^{\prime}, w^{\prime}\right)$ must be fulfilled in any feasible solution. Note that a general disjunctive pair is sometimes denoted by $\{e, \bar{e}\}$ and \bar{e} is called the mate of e.

Let $\alpha=\left(\alpha_{v} \in \mathbb{R}: v \in V\right)$ be a vector of the times α_{v} at which events $v \in V$ occur. Vector α specifies a schedule. The objective function $f: \mathbb{R}^{V} \rightarrow \mathbb{R}$ considered here satisfies:

$$
\begin{equation*}
\alpha \leq \alpha^{\prime} \text { implies } f(\alpha) \leq f\left(\alpha^{\prime}\right) \text { for all vectors } \alpha, \alpha^{\prime} \in \mathbb{R}^{V} \tag{1}
\end{equation*}
$$

Objective functions satisfying (1) are called regular (see, e.g., Pinedo, 2012, p. 19).
The CJS-R problem $(V, \mathscr{J}, A, E, \mathscr{E}, d, f)$ can then be formulated as the following disjunctive programming problem:

$$
\begin{equation*}
\operatorname{minimize} f(\alpha), \alpha \in \mathbb{R}^{V} \tag{2}
\end{equation*}
$$

subject to:

$$
\begin{align*}
& \alpha_{w}-\alpha_{v} \geq d_{v w} \text { for all }(v, w) \in A, \tag{3}\\
& \alpha_{w}-\alpha_{v} \geq d_{v w} \text { or } \\
& \alpha_{w^{\prime}}-\alpha_{v^{\prime}} \geq d_{v^{\prime} w^{\prime}} \text { for all }\left\{(v, w),\left(v^{\prime}, w^{\prime}\right)\right\} \in \mathscr{E}, \tag{4}\\
& \alpha_{\sigma}=0 \tag{5}
\end{align*}
$$

Any feasible solution $\alpha \in \mathbb{R}^{V}$ of the CJS-R specifies times α_{v} for all events $v \in V$ so that all conjunctive precedence constraints are satisfied (3), at least one disjunctive precedence constraint of each disjunctive pair is satisfied (4), and the start event occurs at time 0 (5). The objective (2) is to minimize the value $f(\alpha)$.

It can generally be assumed that the solution space $\left\{\alpha \in \mathbb{R}^{V}: \alpha_{\sigma}=0, \alpha_{w}-\alpha_{v} \geq\right.$ $d_{v w}$ for all $\left.(v, w) \in A\right\}$ is nonempty. According to the meaning of event σ, we also assume that $(\sigma, v) \in A$ with weight $d_{\sigma v} \geq 0$ for all $v \in V^{-}$, stipulating together with (5) that any feasible schedule α consists of nonnegative starting times.

In this paper, we further restrict the use of the conjunctive and disjunctive precedence constraints as follows. Each conjunctive precedence constraint considers two events of the same job or involves the dummy start, i.e., for all $(v, w) \in A$ with $v \neq \sigma$:

$$
\begin{equation*}
\operatorname{Job}(v)=\operatorname{Job}(w) . \tag{6}
\end{equation*}
$$

Conversely, each disjunctive precedence constraint considers two events of distinct jobs, i.e., for all $(v, w) \in E$:

$$
\begin{equation*}
\operatorname{Job}(v) \neq \operatorname{Job}(w) . \tag{7}
\end{equation*}
$$

Furthermore, each pair of disjunctive precedence constraints considers events that belong to exactly two distinct jobs. More precisely, for all $\left\{(v, w),\left(v^{\prime}, w^{\prime}\right)\right\} \in \mathscr{E}$:

$$
\begin{equation*}
\operatorname{Job}(v)=\operatorname{Job}\left(w^{\prime}\right) \text { and } \operatorname{Job}(w)=\operatorname{Job}\left(v^{\prime}\right) \tag{8}
\end{equation*}
$$

Moreover, for each disjunctive pair, at most one precedence constraint can be fulfilled in any feasible solution, i.e., for all $\left\{(v, w),\left(v^{\prime}, w^{\prime}\right)\right\} \in \mathscr{E}$:

$$
\begin{equation*}
\left\{\alpha \in \mathbb{R}^{V}: \alpha_{\sigma}=0, \alpha_{q}-\alpha_{p} \geq d_{p q} \text { for all }(p, q) \in A \cup\left\{(v, w),\left(v^{\prime}, w^{\prime}\right)\right\}\right\}=\emptyset \tag{9}
\end{equation*}
$$

Some remarks are in order. While there is no mention of resources in the CJS-R scheduling problem, the most common applications are scheduling problems involving machines with unit capacities. Then, the capacity constraints can easily be captured by the disjunctive constraints (4). Also, there is no prescribed job structure. In many cases, a job is just a sequence of operations, but the CJS-R problem makes it possible to specify other type of structures, such as assembly or disassembly operations.

2.2 A formulation in a disjunctive graph

The CJS-R problem $(V, \mathscr{J}, A, E, \mathscr{E}, d, f)$ is formulated in an associated disjunctive graph $G=(V, A, E, \mathscr{E}, d)$ that is defined as follows. Each event $v \in V$ is represented by a node, and we identify a node with the event it represents. Each precedence constraint $(v, w) \in A \cup E$ is represented by an arc with length $d_{v w}$. Consequently, A is the set of conjunctive arcs, E is the set of disjunctive arcs, \mathscr{E} is the family of disjunctive arcs pairs, and d is the arc length vector. Note that the conjunctive part (V, A, d) of G contains no positive cycle as there exists no feasible solution otherwise.

In order to capture solutions in graph G, we introduce selections of disjunctive arcs.

Definition 1 Any subset of disjunctive arcs $S \subseteq E$ is called a selection. A selection S is positive acyclic if its associated graph $(V, A \cup S, d)$ contains no positive cycle, and is positive cyclic otherwise. A selection S is complete if $S \cap D \neq \emptyset$ for all $D \in \mathscr{E}$.

Given any selection $S \subseteq E$, we have the following timing problem at hand. The space of the feasible times for the events is

$$
\Omega(S)=\left\{\alpha \in \mathbb{R}^{V}: \alpha_{\sigma}=0, \alpha_{w}-\alpha_{v} \geq d_{v w} \text { for all }(v, w) \in A \cup S\right\}
$$

Clearly, $\Omega(S) \neq \emptyset$ if and only if S is positive acyclic. Consequently, a selection S is called feasible if S is complete and positive acyclic. Observe that, in a feasible selection, exactly one disjunctive arc is picked for each pair of arcs. Indeed, for all $D \in \mathscr{E}$, graph $(V, A \cup D, d)$ is positive cyclic by (9), hence $|D \cap S| \leq 1$ if S is positive acyclic, therefore $|D \cap S|=1$ if S is feasible.

For any feasible selection S, earliest times $\alpha(S)=\left(\alpha_{v}(S): v \in V\right)$ can be efficiently calculated by determining the length $\alpha_{v}(S)$ of a longest path from σ to v in graph $(V, A \cup S, d)$ for each node $v \in V$. Then, $\alpha(S) \leq \alpha^{\prime}$ for all $\alpha^{\prime} \in \Omega(S)$. As the objective function f is regular,

$$
f(\alpha(S))=\min \{f(\alpha): \alpha \in \Omega(S)\}
$$

i.e., the earliest time schedule $\alpha(S)$ is an optimal solution in $\Omega(S)$.

The CJS-R problem $(V, \mathscr{J}, A, E, \mathscr{E}, d, f)$ can then be formulated as the following combinatorial problem in disjunctive graph G : "Among all feasible selections, find a selection S minimizing $f(\alpha(S))$."

We conclude this section by schematically illustrating the assumptions (6), (7), and (8) in Fig. 1. The conjunctive and disjunctive arcs are depicted by solid and dashed lines, respectively. Considering all conjunctive arcs not incident to σ, (6) states that both end nodes of these arcs belong to the same job. In contrast, as stated in (7), the two end nodes of a disjunctive arc must belong to different jobs. By (8), a pair of disjunctive arcs links nodes of the same two jobs, and the arcs point in opposite directions, as depicted by e and \bar{e}. Finally, an arc (σ, v) should be present for each $v \in V$. However, (σ, v) may be omitted if there exists a nonnegative length path from σ to v in the conjunctive part (V, A, d) as it ensures that v obtains a nonnegative starting time.

In the sequel of the paper, CJS-R problems are specified by directly constructing their disjunctive graph $G=(V, A, E, \mathscr{E}, d)$.

Fig. 1: Schematic illustration of the assumptions stated in (6), (7), and (8).

2.3 Examples

A large class of job shop problems can be formulated as CJS-R problems. We give two specific examples, which will be used in the sequel of the paper.

2.3.1 The job shop with sequence-dependent setup times and a regular objective

The job shop with sequence-dependent setup times and a regular objective (JSS) is a version of the classical job shop including sequence-dependent setup times and allowing all regular objectives. The problem can be formally described as follows. Given a set of operations I and a set of machines M. Each operation $i \in I$ needs a specific machine, say $m_{i} \in M$, for its non-preemptive execution of duration $p_{i}>0$. The set of operations is structured into jobs: given is a set of jobs $\mathscr{J}^{\prime} \subseteq 2^{I}$ such that \mathscr{J}^{\prime} is a partition of I. For each job $J \in \mathscr{J}^{\prime}$, its set of operations $\{i: i \in J\}$ is ordered $\left(J_{1}, J_{2}, \ldots, J_{|J|}\right)$ specifying in which sequence the operations of J must be executed. Hereby J_{r} denotes the r-th operation of job J. Two operations i and j of some job J are said to be consecutive if $i=J_{r}$ and $j=J_{r+1}$ for some $r, 1 \leq r<|J|$.

We allow for sequence-dependent setup times. If two operations i and j are using the same machine m and j follows i directly on m, then a setup of duration $s_{i j} \geq$ 0 occurs between the completion of i and the start of j. We assume that the setup durations satisfy the so-called weak triangle inequality (see, e.g., Brucker and Knust, 2011, p. 11), i.e., for any distinct operations i, j, k using a same machine, $s_{i j}+p_{j}+$ $s_{j k} \geq s_{i k}$ must hold. (Otherwise setup times between non-adjacent operations on a machine might become active in the problem formulation.)

We also allow to specify a release time $s_{J}^{\mathrm{r}} \geq 0$ and a due date $s_{J}^{\mathrm{d}} \geq 0$ for each job $J \in \mathscr{J}^{\prime}$. While the release times must be satisfied in any feasible solution, violations of the due date are allowed but can be penalized in the objective function.

The problem consists in finding starting times for all operations $i \in I$ so that each machine processes at most one operation at any time and some regular objective is minimized. In the three field notation introduced by Graham et al (1979), the JSS is specified by $J\left|r_{j}, s_{i j}\right|$ reg.

The JSS can be described as a CJS-R problem in disjunctive graph $G=(V, A, E$, $\mathscr{E}, d)$ as follows (see also the example below, which is illustrated in Fig. 2). For each operation $i \in I$, introduce a node $v_{i} \in V$ indicating the start of operation i. For each
job $J^{\prime} \in \mathscr{J}^{\prime}$, introduce a job J in \mathscr{J} containing all nodes of the operations belonging to J^{\prime}.

The set of conjunctive arcs A is built as follows:

- For each job $J \in \mathscr{J}^{\prime}$, add an $\operatorname{arc}\left(\sigma, v_{J_{1}}\right)$ with length s_{J}^{r} reflecting the release time of J.
- For each job $J \in \mathscr{J}^{\prime}$ and each pair of consecutive operations $i, j \in J$, add an arc $\left(v_{i}, v_{j}\right)$ with length p_{i} reflecting the processing order within a job.
- For each job $J \in \mathscr{J}^{\prime}$ and each pair of operations $i=J_{r}, j=J_{r^{\prime}}$, with $r<r^{\prime}$ and $m_{i}=m_{j}$, add an $\operatorname{arc}\left(v_{i}, v_{j}\right)$ with length $p_{i}+s_{i j}$ reflecting the setup between operations of a same job.
The set of disjunctive arcs E is built by adding for each pair of operations $i, j \in I$ from distinct jobs using a same machine an arc $\left(v_{i}, v_{j}\right)$ with length $p_{i}+s_{i j}$ and an arc $\left(v_{j}, v_{i}\right)$ with length $p_{j}+s_{j i}$. The pairs of disjunctive arcs $\left\{\left(v_{i}, v_{j}\right),\left(v_{j}, v_{i}\right)\right\}$ form the disjunctive sets of \mathscr{E}.

For ease of notation, let $\alpha_{J}=\alpha_{J_{|J|}}+p_{J_{|J|}}$ be the time at which job $J \in \mathscr{J}$ is finished. The following five objective functions are considered in the sequel of the paper: makespan $f^{\mathrm{m}}(\alpha)=\max _{J \in \mathscr{J}} \alpha_{J}$, total flow time $f^{\mathrm{f}}(\alpha)=\sum_{J \in \mathscr{J}} \alpha_{J}$, total squared flow time $f^{\text {sf }}(\alpha)=\sum_{J \in \mathscr{J}} \alpha_{J}^{2}$, total tardiness $f^{\mathrm{t}}(\alpha)=\sum_{J \in \mathscr{J}} \max \left\{0, \alpha_{J}-s_{J}^{\mathrm{d}}\right\}$, and total weighted tardiness $f^{\mathrm{wt}}(\alpha)=\sum_{J \in \mathscr{J}} w_{J} \cdot \max \left\{0, \alpha_{J}-s_{J}^{\mathrm{d}}\right\}$ where w_{J} is a given nonnegative weight of job J.

A small example of a JSS instance is illustrated in Fig. 2. It consists of ten operations $I=\{1, \ldots, 10\}$ and four jobs $J=(1,2,3), K=(4,5), L=(6,7)$, and $N=(8,9,10)$. The processing data can be directly read in the solution depicted in the Gantt chart of Fig. 2. For example, operation 2 is executed on machine M_{4} and has duration 2. The setup times between the operations on machine M_{1} are: $s_{1,5}=2$, $s_{1,8}=1, s_{5,1}=2, s_{5,8}=1, s_{8,1}=1, s_{8,5}=3$, and all other setup times are 0 . The release time of job L is 5 and all other release times are 0 . The due date is 20, 30, 20, and 20 for job J, K, L, and N, respectively. Finally, the weight of job J is 3 and all other job weights are 1 .

2.3.2 The blocking job shop with transfer times, setup times, and a regular objective

The blocking job shop problem with transfer times, setup times, and a regular objective (BJS) is a version of the JSS introduced above, characterized by the absence of buffer capacity. This additional feature implies that, after completing an operation, a job waits on its current machine, thus blocking it, until it is transferred to its next machine. While transferring a job, both involved machines are simultaneously occupied. Each operation of a job is then best described by the four consecutive steps: (i) a take-over step in which the job is taken over from its previous machine, (ii) a processing step, (iii) a possible waiting step on its current machine, (iv) a hand-over step in which the job is transferred to its next machine. For the first operation of a job, the take-over step is more appropriately called loading step, and similarly, for the last operation of a job, the hand-over step is called unloading step. We refer to (Gröflin and Klinkert, 2009; Gröflin et al, 2011) for a more detailed description of the BJS. In the three field notation, the BJS is specified by $J \mid$ blocking, $r_{j}, s_{i j} \mid$ reg.

Fig. 2: A JSS instance with four jobs and four machines. (top) Its associated disjunctive graph G. Conjunctive and disjunctive arcs are depicted by solid and dashed lines, respectively. (bottom) A Gantt chart of the earliest time schedule $\alpha(S)$ of selection S consisting of the bold, dotted disjunctive arcs of G. The values of the five introduced objectives are: $f^{\mathrm{m}}(\alpha(S))=27, f^{\mathrm{f}}(\alpha(S))=63, f^{\text {sf }}(\alpha(S))=1169, f^{\mathrm{t}}(\alpha(S))=7$, and $f^{\mathrm{wt}}(\alpha(S))=21$. In the Gantt chart, each operation is depicted by one bar, and the narrow, hatched bars display setups.

In order to formally define the BJS problem, the following additional notation and data is used. Let $t_{i j}$ be the time needed to transfer the job of operation i from machine m_{i} to its next machine m_{j}, where i and j are consecutive operations in a job. Also, let t_{J}^{1} and t_{J}^{u} be the time needed to load job $J \in \mathscr{J}^{\prime}$ on its first machine and unload it from its last machine, respectively. Denote by $I^{\text {first }} \subseteq I$ and $I^{\text {last }} \subseteq I$ the subset of all first and last operations of jobs, respectively.

The BJS can then be described as a CJS-R problem in graph $G=(V, A, E, \mathscr{E}, d)$ as follows (see also the example below, which is illustrated in Fig. 3). For each operation $i \in I$, add four nodes to $V: v_{i}^{1}$ (start of take-over), v_{i}^{2} (end of take-over), v_{i}^{3} (start of hand-over), and v_{i}^{4} (end of hand-over). Note that the end of the take-over step is also the start of the processing step. For each job $J^{\prime} \in \mathscr{J}^{\prime}$, introduce a job J in \mathscr{J} containing all nodes of the operations belonging to J^{\prime}.

The set of conjunctive arcs A is built as follows:

- For each job $J \in \mathscr{J}^{\prime}$, add an $\operatorname{arc}\left(\sigma, v_{J_{1}}^{1}\right)$ with length s_{J}^{r} reflecting the release time of job J.
- For each operation $i \in I$, add three arcs: a take-over $\operatorname{arc}\left(v_{i}^{1}, v_{i}^{2}\right)$ with length $t_{J o b(i)}^{1}$ if $i \in I^{\text {first }}$ and 0 otherwise, a processing arc $\left(v_{i}^{2}, v_{i}^{3}\right)$ with length p_{i}, and a handover $\operatorname{arc}\left(v_{i}^{3}, v_{i}^{4}\right)$ with length $t_{J o b(i)}^{\mathrm{u}}$ if $i \in I^{\text {last }}$ and 0 otherwise.
- For any two consecutive operations i, j of some job $J \in \mathscr{J}^{\prime}$, add two pairs of arcs $\left(v_{i}^{3}, v_{j}^{1}\right),\left(v_{j}^{1}, v_{i}^{3}\right)$ and $\left(v_{i}^{4}, v_{j}^{2}\right),\left(v_{j}^{2}, v_{i}^{4}\right)$ of length 0 synchronizing the start and end of the hand-over step of i with the start and end of the take-over step of j, and add an $\operatorname{arc}\left(v_{i}^{3}, v_{j}^{2}\right)$ of length $t_{i j}$ reflecting the transfer of the job.

Fig. 3: The BJS example. (top) Its associated disjunctive graph G. (bottom) A Gantt chart of the earliest time schedule $\alpha(S)$ of selection S consisting of the bold, dotted disjunctive arcs of G. Its objective values are: $f^{\mathrm{m}}(\alpha(S))=41, f^{\mathrm{f}}(\alpha(S))=95, f^{\text {sf }}(\alpha(S))=2715, f^{\mathrm{t}}(\alpha(S))=21$, and $f^{\mathrm{wt}}(\alpha(S))=63$. In the Gantt chart, the take-over, processing, and hand-over steps are depicted by thick bars. The narrow bars stand for the setups (hatched) and the waiting steps (solid).

- For each job $J \in \mathscr{J}^{\prime}$ and each pair of operations $i=J_{r}, j=J_{r^{\prime}}$ with $r<r^{\prime}$ and $m_{i}=m_{j}$, add an $\operatorname{arc}\left(v_{i}^{4}, v_{j}^{1}\right)$ with length $s_{i j}$ reflecting the setup between operations of a same job.

The set of disjunctive arcs E is built by adding for each pair of operations $i, j \in I$ from distinct jobs using a same machine an $\operatorname{arc}\left(v_{i}^{4}, v_{j}^{1}\right)$ with length $s_{i j}$ and an arc $\left(v_{j}^{4}, v_{i}^{1}\right)$ with length $s_{j i}$. The pairs of disjunctive arcs $\left\{\left(v_{i}^{4}, v_{j}^{1}\right),\left(v_{j}^{4}, v_{i}^{1}\right)\right\}$ form the disjunctive sets of \mathscr{E}.

We consider the same five regular objective functions as in the JSS. Note that the time α_{J} at which a job $J \in \mathscr{J}$ is finished is $\alpha_{J}=\alpha_{v_{i}^{4}}$ with $i=J_{|J|}$.

We reconsider the JSS example introduced in the previous section as BJS instance. Let the durations of all take-over, hand-over, loading, and unloading steps be 1. Fig. 3 depicts the disjunctive graph G of this example and a Gantt chart of a feasible schedule.

Note that the given formulation of the BJS is not the most compact form. It is for instance easy to see that nodes occurring at the same time can be represented by a single node. In our view, the given form is more readable than, for example, the so-called alternative graph formulation presented in (Mascis and Pacciarelli, 2002).

3 A special subproblem: the job insertion problem

We first describe and formulate the job insertion problem and then present some structural properties. These are based on results of Gröflin and Klinkert (2007) and are specialized to the problem under study. Proofs that are similar as those in the referenced work are provided in the appendix.

3.1 The job insertion problem

Informally, job insertion can be thought of as the following problem. Given a job and a feasible selection of all other jobs, insert the job in such a way that the resulting schedule is feasible, and, if an optimal insertion is sought, find a feasible insertion with minimum objective value.

Specifically, given a CJS-R problem $(V, \mathscr{J}, A, E, \mathscr{E}, d, f)$ and a job $J \in \mathscr{J}$, a feasible selection of all other jobs is specified in disjunctive graph $G=(V, A, E, \mathscr{E}, d)$ by a selection R that is positive acyclic and "complete", i.e., $D \cap R \neq \emptyset$ holds for each pair $D=\left\{(v, w),\left(v^{\prime}, w^{\prime}\right)\right\} \in \mathscr{E}$ with $\{v, w\} \cap V_{J}=\emptyset$. We are interested in finding a feasible selection $S=T \cup R$, where T is more appropriately called a feasible insertion of job J.

We study the job insertion problem in the insertion graph $G^{J}=\left(V, A^{J}, E^{J}, \mathscr{E}^{J}, d\right)$ of job J derived from G as follows. Set A^{J} of conjunctive arcs is obtained by adding to A the set R, and set E^{J} is obtained by deleting from E all disjunctive arcs that are not incident to job J. Formally, $A^{J}=A \cup R, E^{J}=E \cap \delta\left(V_{J}\right)$, and $\mathscr{E}^{J}=\left\{D \in \mathscr{E}: D \subseteq E^{J}\right\}$. Note that by (8), if $e \in E^{J}$ then also $\bar{e} \in E^{J}$. Clearly, $T \subseteq E^{J}$ is a (positive acyclic, complete, feasible) insertion in G^{J} if and only if $S=T \cup R$ is a (positive acyclic, complete, feasible) selection in G.

3.2 Structural properties of job insertion

Given is a job insertion problem of job J in its insertion graph $G^{J}=\left(V, A^{J}, E^{J}, \mathscr{E}^{J}, d\right)$. We examine cycles in graph $\left(V, A^{J} \cup E^{J}, d\right)$. The fictive node σ is never part of a cycle as $\left(V, A^{J} \cup E, d\right)$ contains no arcs entering σ. By (6), all conjunctive arcs incident to job J are of the type (σ, v), hence any cycle Z in $\left(V, A^{J} \cup E^{J}, d\right)$ enters job J through disjunctive arcs in $\delta^{-}\left(V_{J}\right)$ and leaves J through disjunctive arcs in $\delta^{+}\left(V_{J}\right)$, and the number of times Z enters and leaves J is the same, i.e., $\left|Z \cap \delta^{-}\left(V_{J}\right)\right|=\left|Z \cap \delta^{+}\left(V_{J}\right)\right|=$ k for some $k \geq 1$. Number k can be seen as the number of times Z visits job J.

Considering any positive cycle Z in $\left(V, A^{J} \cup E^{J}, d\right)$, it is easy to see that Z must visit J at least once. Indeed, the conjunctive part $\left(V, A^{J}, d\right)$ of G^{J} contains no positive cycles since R is a positive acyclic selection in G and $A^{J}=A \cup R$. We now capture all positive cycles visiting job J exactly once in a so-called conflict graph.

Definition 2 The conflict graph of job insertion graph $G^{J}=\left(V, A^{J}, E^{J}, \mathscr{E}^{J}, d\right)$ is the undirected graph $H=\left(E^{J}, U\right)$ where for any two distinct disjunctive arcs $e, f \in E^{J}$, edge $\{e, f\} \in U$ if insertion $\{e, f\}$ is positive cyclic.

Fig. 4: The job insertion graph and its associated conflict graph for the JSS example (above) and the BJS example (below). In both cases, the job insertion problem of job J (consisting of the operations 1, 2, and 3) is considered. The feasible selections of all other jobs are taken from Fig. 2 and 3.

Fig. 4 depicts the job insertion graph and its associated conflict graph for the JSS and BJS examples.

Based on the previous discussion and by (9), it is easy to see that the conflict graph H has the following structural properties.

Proposition 1 Let $G^{J}=\left(V, A^{J}, E^{J}, \mathscr{E}^{J}, d\right)$ be a job insertion graph and $H=\left(E^{J}, U\right)$ its associated conflict graph.
(i) $\{e, \bar{e}\} \in H$ for each disjunctive arc pair $\{e, \bar{e}\} \in \mathscr{E}^{J}$.
(ii) The conflict graph is bipartite with partitions $E^{J-}=E^{J} \cap \delta^{-}\left(V_{J}\right)$ and $E^{J+}=$ $E^{J} \cap \delta^{+}\left(V_{J}\right)$.

We can establish the following relations between the feasible insertions in G^{J} and the stable sets in H.

Proposition 2 Let $G^{J}=\left(V, A^{J}, E^{J}, \mathscr{E}^{J}, d\right)$ be a job insertion graph and $H=\left(E^{J}, U\right)$ its associated conflict graph.
(i) Any feasible insertion in G^{J} corresponds to a stable set in conflict graph H of size $\left|E^{J}\right| / 2$.
(ii) Any stable set in H of size $\left|E^{J}\right| / 2$ corresponds to a complete insertion.

Proof See appendix.
Unfortunately, an insertion T that corresponds to a stable sets of size $\left|E^{J}\right| / 2$ can be positive cyclic as cycles visiting job J more than once may be present in graph
$\left(V, A^{J} \cup T, d\right)$. We introduce a structural property of the job insertion graph preventing the existence of these cycles. It is called the short cycle property (SCP) and was first introduced in (Gröflin and Klinkert, 2007) for general disjunctive graphs.

Definition 3 A job insertion graph G^{J} has the SCP if for any positive cycle with arc set Z^{\prime} in $\left(V, A^{J} \cup E^{J}, d\right)$, there exists a short positive cycle Z in $\left(V, A^{J} \cup E^{J}, d\right)$ with $Z \cap E^{J} \subseteq Z^{\prime} \cap E^{J}$ and $\left|Z \cap E^{J}\right|=2$.

In other words, a job insertion graph has the SCP if for any positive cycle Z^{\prime} visiting J more than once, there exists a positive cycle Z visiting J exactly once entering and leaving J through disjunctive arcs present in Z^{\prime}.

We say that a CJS-R problem has the SCP for job insertion if G^{J} has the SCP for all jobs $J \in \mathscr{J}$ and all feasible selections R of the other jobs.

Theorem 1 Let G^{J} be a job insertion graph with the SCP. There is a one-to-one correspondence between the feasible insertions in G^{J} and the stable sets T in conflict graph H with $|T|=\left|E^{J}\right| / 2$.

Proof See appendix.
Hence, if a CJS-R problem has the SCP for job insertion, a nice characterization of all feasible insertions as stable sets in an associated bipartite conflict graph is at hand for all job insertion subproblems.

3.3 The short cycle property in specific job shop problems

Unfortunately not all, but a large class of CJS-R problems has the SCP for job insertion. We show here that the JSS and BJS problems have the SCP for job insertion. We give a similar proof as in Lemma 8 of Gröflin and Klinkert (2007) and refer the reader to this work for general structural results.

Proposition 3 Let $G^{J}=\left(V, A^{J}, E^{J}, \mathscr{E}^{J}, d\right)$ be a job insertion graph of a JSS instance for some job $J \in \mathscr{J}$. Then G^{J} has the $S C P$.

Proof Given any positive cycle Z^{\prime}, let Z be a "shortest" positive cycle in graph $\left(V, A^{J} \cup E^{J}, d\right)$ with $Z \cap E^{J} \subseteq Z^{\prime} \cap E^{J}$ where the length is measured by the number of disjunctive arcs $\left|Z \cap E^{J}\right|$. If $\left|Z \cap E^{J}\right|=2$, we are done.

Assume $\left|Z \cap E^{J}\right|>2$, and say Z visits job $J k=\left|Z \cap E^{J}\right| / 2$ times. Describe Z by the concatenation $Z=\left(e_{1}, P_{1}, e_{1}^{\prime}, Q_{1}, e_{2}, P_{2}, e_{2}^{\prime}, Q_{2}, \ldots, e_{k}, P_{k}, e_{k}^{\prime}, Q_{k}\right)$ where the e_{i} 's and e_{i}^{\prime} 's are disjunctive arcs entering and leaving J, respectively, the P_{i} 's are paths in $\left(V, \gamma\left(V_{J}\right), d\right)$ and the Q_{i} 's are paths in $\left(V, \gamma\left(V \backslash V_{J}\right), d\right)$.

The following two simple properties of the subgraph $\left(V, \delta\left(A^{J}\right), d\right)$ are used. For any pairs of distinct operations J_{r}, J_{s} : i) If $r<s$, there exists a path from node v_{r} to node v_{s} and such as path is of positive length. Indeed, it must contain arc $\left(v_{r}, v_{r+1}\right)$, which is of length $p_{J_{r}}>0$, and no arc is of negative length. ii) If $r>s$, it is easy to see that there exists no path from v_{r} to v_{s}.

Consider P_{1} and P_{2} of cycle $Z . P_{1}$ starts at node $v_{J_{r}}$ of some operation J_{r} and ends at node $v_{J_{s}}$ of some J_{s}. Similarly, P_{2} starts at some $v_{J_{r^{\prime}}}$ and ends at some $v_{J_{s^{\prime}}}$. By ii),
$r \leq s$ and $r^{\prime} \leq s^{\prime}$ hold, and as Z is a cycle, $r \neq r^{\prime}$ (a cycle does not enter the same node more than once).

Consider the following two cases. a) If $r<r^{\prime}$, let concatenation $W=\left(e_{1}, P^{*}, e_{2}^{\prime}\right.$, $\left.Q_{2}, \ldots, e_{k}, P_{k}, e_{k}^{\prime}, Q_{k}\right)$ where P^{*} is a path from node v_{r} to node $v_{s^{\prime}}$ in $\left(V, \gamma\left(V_{J}\right), d\right)$. By i), path P^{*} exists and is of positive length as $r<r^{\prime}$ and $r^{\prime} \leq s^{\prime}$ implies $r<s^{\prime}$. Then W is of positive length as no arc in G^{J} is of negative length arcs. Clearly, W is a closed walk visiting J less than k times. Therefore, W can be decomposed into cycles (cycle decomposition of integer circulations) where each cycle visits J at least once and less than k times. As W is of positive length, one of these cycles, say $Z^{\prime \prime}$, is also of positive length.
b) If $r>r^{\prime}$ then consider the cycle $Z^{\prime \prime}=\left(e_{2}, P^{*}, e_{1}^{\prime}, Q_{1}\right)$, where P^{*} is a path from node $v_{r^{\prime}}$ to node v_{s} in $\left(V, \gamma\left(V_{J}\right), d\right)$. By i), path P^{*} exists and is of positive length as $r^{\prime}<r$ and $r \leq s$ implies $r^{\prime}<s$. Then $Z^{\prime \prime}$ is of positive length.

In both cases, $Z^{\prime \prime}$ is a positive cycle with $Z^{\prime \prime} \cap E^{J} \subseteq Z^{\prime} \cap E^{J}$ visiting J less than k times, contradicting the choice of Z as being the shortest.

Proposition 4 Let $G^{J}=\left(V, A^{J}, E^{J}, \mathscr{E}^{J}, d\right)$ be a job insertion graph of a BJS instance for some job $J \in \mathscr{J}$. Then G^{J} has the $S C P$.

Proof The proof is similar to the proof given above. The only differences are the properties of subgraph $\left(V_{J}, \delta\left(A^{J}\right), d\right)$ we use, namely: i) For any pair of operations J_{r}, J_{s} with $r \leq s$, there exists a path from node v_{r}^{1} (of operation J_{r}) to node v_{s}^{4} (of J_{s}) and it is of positive length as it must contain the processing arc $\left(v_{r}^{2}, v_{r}^{3}\right)$ and no arc is of negative length. And ii) for any pair of operations J_{r}, J_{s} with $r>s+1$, there exists no path from node v_{r}^{1} (of operation J_{r}) to node v_{s}^{4} (of J_{s}).

Then, as above, take a "shortest" positive cycle and, and, if it visits J more than once, say k times, construct a positive cycle $Z^{\prime \prime}$ visiting J less than k times.

Hence, independent of the choice of the job J and the feasible selection R for all other jobs, G^{J} has the SCP in JSS and BJS problems. Therefore, JSS and BJS problems have the SCP for job insertion.

4 A neighborhood for the CJS-R

In this section, we develop a neighborhood that is applicable to all CJS-R problems possessing the SCP for job insertion.

4.1 A neighbor generation scheme

Given is a CJS-R problem $(V, \mathscr{J}, A, E, \mathscr{E}, d, f)$ with the SCP for job insertion. Let S be some feasible selection. We are interested in extracting some job $J \in \mathscr{J}$ and reinserting J into a position that is "close" to its position described by selection S. For this purpose, we consider the job insertion graph $G^{J}=\left(V, A^{J}, E^{J}, \mathscr{E}^{J}, d\right)$, where the feasible selection of all other jobs R is taken from S, i.e. $R=S \cap\left(E \backslash E^{J}\right)$. We choose a disjunctive arc $g \in E^{J} \backslash S$ that is forced to be in the neighbor insertion. Then
we ask to construct a feasible insertion T_{g} with $g \in T$ that is "close" to the current insertion $T_{S}=S \cap E^{J}$, i.e., we seek to find a feasible insertion T_{g} maximizing $\left|T_{g} \cap T_{S}\right|$. The corresponding neighbor selection S_{g} is then obtained by $S_{g}=T_{g} \cup R$.

Consider the neighbor construction in the conflict graph $H=\left(E^{J}, U\right)$ associated to G^{J}. By Theorem $1, T_{S}$ is stable in H with size $\left|E^{J}\right| / 2$, and any feasible insertion T_{g} is stable in H with size $\left|E^{J}\right| / 2$. We now sketch how to iteratively construct T_{g}. The procedure is based on the following observation. For any $f \in T_{g}$, if there exists an edge $\{f, e\} \in U$, then e cannot be picked, hence its mate \bar{e} must be part of any feasible insertion containing f. We say f implies \bar{e}. Hence, start with $T_{g}=\{g\}$. For each $f \in T_{g}$ and $\{f, e\} \in U$ with $\bar{e} \notin T_{g}$, add \bar{e} to T_{g}. Repeat this step until T_{g} is "closed", i.e., for each $f \in T_{g}$ there exists no $\{f, e\} \in U$ with $\bar{e} \notin T_{g}$. Finally, for each "uncovered" pair $D \in \mathscr{E}$, i.e., $D \cap T_{g}=\emptyset$, add $e \in D \cap T_{S}$ from the current insertion T_{S} to T_{g}.

We formalize this idea by introducing a closure operator and then prove feasibility of the constructed neighbor insertion.

Definition 4 For any $e, f \in E^{J}$ in conflict graph $H=\left(E^{J}, U\right)$, let $e \rightarrow f$ if $\{e, \bar{f}\} \in$ U. A sequence $P=\left(e_{0}, e_{1}, \ldots, e_{n}\right), n \geq 0$, of distinct nodes in $H=\left(E^{J}, U\right)$ is an alternating path from e_{0} to e_{n} if $e_{i} \rightarrow e_{i+1}$ for all $0 \leq i<n$. For any two nodes $e, f \in$ E^{J}, write $e \rightsquigarrow f$ if there exists an alternating path from e to f in H.

Definition 5 For any $Q \in E^{J}$, the closure of Q is the set

$$
\begin{equation*}
\Phi(Q)=\left\{g \in E^{J}: e \rightsquigarrow g \text { for some } e \in Q\right\} . \tag{10}
\end{equation*}
$$

$Q \subseteq E^{J}$ is said to be closed if $Q=\Phi(Q)$.
Observe that $e \rightsquigarrow e$ holds for all $e \in E^{J}$ as $\{e, \bar{e}\} \in U$ by Proposition 1(i). Moreover, $\Phi(Q)$ can be rewritten as $\Phi(Q)=\bigcup_{e \in Q} \Phi(\{e\})$. Then, it is easy to see that Φ is a well-defined closure operator as: i) $Q \subseteq \Phi(Q)$, ii) $\Phi(\Phi(Q))=\Phi(Q)$, and iii) $Q \subseteq R$ implies $\Phi(Q) \subseteq \Phi(R)$.

For any subset of disjunctive arcs $T \in E^{J}$, let the span $[T]$ of T contain all arcs of T together with all their mates, formally, $[T]=\left\{e \in E^{J}:\{e, \bar{e}\} \cap T \neq \emptyset\right\}$.

Theorem 2 Given any job insertion graph $G^{J}=\left(V, A^{J}, E^{J}, \mathscr{E}^{J}, d\right)$ with the $S C P$ and a disjunctive arc $g \in E^{J}$, insertion

$$
\begin{equation*}
T_{g}=\Phi(\{g\}) \cup\left(T^{S} \backslash[\Phi(\{g\})]\right) \tag{11}
\end{equation*}
$$

is feasible.
Proof See appendix.
It is easy to see that the constructed neighbor T_{g} is the "closest" to neighbor T^{S}, i.e. among all neighbor insertions T containing g, it maximizes $\left|T_{g} \cap T_{S}\right|$.

Theorem 2 implies feasibility of the corresponding selection, stated as follows.

Fig. 5: The neighbor schedules obtained by extracting job J (consisting of the operations 1,2 , and 3) from the schedule of Fig. 2 and 3 in the JSS (above) and BJS example (below), respectively, and reinserting this job by forcing operation 3 to be executed before operation 6 on machine M_{3}.

Corollary 1 Given a CJS-R problem $(V, \mathscr{J}, A, E, \mathscr{E}, d, f)$ with the SCP for job insertion, for any feasible selection S, job $J \in \mathscr{J}$, and disjunctive arc $g \in E^{J}$, the neighbor selection

$$
\begin{equation*}
S_{g}^{J}=T_{g} \cup\left(S \backslash E^{J}\right) \tag{12}
\end{equation*}
$$

is feasible.
We illustrate the neighbor generation scheme in the JSS and BJS examples. Starting with the selections given in Fig. 2 and 3, we choose job J to be extracted and reinserted, obtaining the job insertion graphs and conflict graphs depicted in Fig. 4. In both examples, the current insertion $T^{S}=\left\{\bar{e}_{1}, \bar{e}_{2}, \bar{e}_{3}, \bar{e}_{4}, \bar{e}_{5}\right\}$ places job J after all other jobs. We force e_{5} to be part of the neighbor insertion. In the JSS example, we obtain $\Phi\left(\left\{e_{5}\right\}\right)=\left\{e_{3}, e_{4}, e_{5}\right\}$ and $T^{S} \backslash[\Phi(\{g\})]=\left\{\bar{e}_{1}, \bar{e}_{2}\right\}$. Hence, the neighbor insertion is $T_{g}=\left\{\bar{e}_{1}, \bar{e}_{2}, e_{3}, e_{4}, e_{5}\right\}$. In the BJS example, we obtain $\Phi\left(\left\{e_{5}\right\}\right)=\left\{e_{1}, e_{3}, e_{4}, e_{5}\right\}$ and $T^{S} \backslash[\Phi(\{g\})]=\left\{\bar{e}_{2}\right\}$. Hence, the neighbor insertion is $T_{g}=\left\{e_{1}, \bar{e}_{2}, e_{3}, e_{4}, e_{5}\right\}$. The corresponding earliest time schedules are illustrated in Fig. 5.

Note that if an instance of the classical job shop scheduling problem is given and \bar{g} is a critical arc incident to job J in some feasible selection S, then $\Phi(\{g\})=\{g\}$, and the neighbor $S_{g}^{J}=\{g\} \cup(S \backslash\{\bar{g}\})$. Hence S_{g}^{J} is obtained by replacing the critical $\operatorname{arc} \bar{g}$ by its mate g, which is typically called swapping a critical arc. In this sense, the proposed neighbor generation scheme can be seen as a generalization of swapping a critical arc.

4.2 A job-insertion-based neighborhood

Corollary 1 provides a general tool to derive a large set of neighbors for any feasible selection given the possible choices of the job and the "forced" disjunctive arc. In
order to generate neighbors that are potentially improving the current solution, we use and slightly extend the standard concept of critical arcs as follows.

For any given selection S, an operation with latest completion time determines the makespan. With the makespan objective, we call such an operation contributing. In the disjunctive graph, a longest path from the dummy start to a node representing a contributing operation is called a critical path. The disjunctive arcs of a critical path are called critical arcs. With a general regular objective, usually not only an operation with the latest completion time contributes to the objective value, but some subset of (times of) operations determine the objective value for a given selection S. Consequently, we call all of these operations contributing. The definitions of critical paths and critical arcs are the same as in the makespan case.

Formally, this can be specified as follows. Given is some CJS-R problem $(V, \mathscr{J}$, $A, E, \mathscr{E}, d, f)$ with the SCP for job insertion and some feasible selection S. Let $V^{\text {contr }}$ be a (setwise) minimal subset of nodes in V determining the objective value for selection S. For each node $v \in V$, let P_{v} be the arc set of a longest path from σ to v in graph $(V, A \cup S, d)$. For each $v \in V^{\text {contr }}$, path P_{v} is called a critical path. The set of critical $\operatorname{arcs} C_{S}$ of S is given by $C_{S}=\left\{e \in S: e \in P_{v}\right.$ for some $\left.v \in V^{\text {contr }}\right\}$. A job $J \in \mathscr{J}$ is said to be critical if $v \in V_{J}$ or $w \in V_{J}$ for some $(v, w) \in C_{S}$.

In order to move to a better neighbor, we need to replace some arcs of C_{S}. Indeed, by construction of $C_{S}, \alpha\left(S^{\prime}\right) \geq \alpha(S)$ holds for any feasible selection S^{\prime} with $C_{S} \subseteq S^{\prime}$, hence $f\left(\alpha\left(S^{\prime}\right)\right) \geq f(\alpha(S))$ as function f is regular.

In our neighborhood, we build a neighbor selection S_{g}^{J} by (12) for each critical job J and each critical arc $\bar{g} \in C_{S} \cap \delta\left(V_{J}\right)$. The size of the neighborhood is $2\left|C_{S}\right|$ as two neighbors are built for each critical arc. We remark that this size can be related to the number of operations $|I|$ for the JSS and BJS problems. As the setup durations satisfy the weak triangle inequality, we can assume that disjunctive arcs between nonconsecutive operations on some machine are not part of longest paths in $(V, A \cup S, d)$. It is easy to see that the number of disjunctive arcs between consecutive operations on a machine is $|I|-|M|$, where $|M|$ is the number of machines. Then, $\left|C_{S}\right| \leq|I|$ holds, implying that the neighborhood is at most of size $2|I|$.

We illustrate the neighborhood in the BJS example. Consider selection S that corresponds to the solution depicted in Fig. 5 (below). In Fig. 6, the graph $(V, A \cup S, d)$ of selection S is depicted in the upper part, and longest paths from σ to nodes v_{3}^{4}, v_{5}^{4}, v_{7}^{4}, v_{10}^{4} are depicted in the lower part.

With the makespan objective, the set of contributing nodes is $V^{\text {contr }}=\left\{\nu_{5}^{4}\right\}$ as the completion time of operation 5 determines the makespan. Inspecting the longest path from σ to v_{5}^{4} reveals that the set of critical arcs is $C_{S}=\{\bar{a}, \bar{b}, \bar{c}, \bar{d}\}$. With a total flow time objective, all end nodes of the jobs contribute to the objective value, hence $V^{\text {contr }}=\left\{v_{3}^{4}, v_{5}^{4}, v_{7}^{4}, v_{10}^{4}\right\}$. The set of critical arcs is then $C_{S}=\{\bar{a}, \bar{b}, \bar{c}, \bar{d}\}$. By chance, both objectives lead to the same set of critical arcs. Hence, with both objectives, the following eight neighbors are built: $S_{a}^{N}, S_{a}^{J}, S_{b}^{J}, S_{b}^{L}, S_{c}^{L}, S_{c}^{N}, S_{d}^{N}, S_{d}^{K}$. Their earliest time schedules are illustrated in Fig. 7. It can be seen, that the two neighbors generated with the same forced arc result in the same selection for $\operatorname{arcs} a, b$, and c, while the two neighbors are different for arc d.

Fig. 6: (above) Graph $(V, A \cup S, d)$ of selection S that corresponds to the BJS solution of Fig. 5 (below). The arcs of set A and S are depicted by solid and dashed lines, respectively. (below) Longest paths from σ to nodes $v_{3}^{4}, v_{5}^{4}, v_{7}^{4}, v_{10}^{4}$ in graph $(V, A \cup S, d)$.

5 Computational results

In order to evaluate the performance of the proposed neighborhood, we casted it in a tabu search and conducted an extensive experimental study using well-known job shop scheduling problems. This section first sketches the tabu search, then describes the experimental setting, and finally discusses the obtained results.

5.1 A tabu search

In principle, the described neighborhood can be used in any local search scheme. We here apply it in a tabu search with some generic features that proved useful in various local search approaches for job shop scheduling problems. It is similar to the approach taken in (Gröflin et al, 2011; Bürgy, 2014) and will be called JILS (job-insertion-based local search). We describe its main ingredients and refer the reader to Glover and Laguna (1997) for a comprehensive description of tabu search.

A tabu list L is used for storing entries of the last maxL iterations. Initially, list L is empty. In an iteration, i.e., after moving from a selection S to a neighbor S_{g}^{J} by (12), arc \bar{g}, which is the mate of the forced arc g, is added to L at first position and the oldest entry is deleted from L if $|L|>\max L$. A neighbor S^{\prime} is called tabu if $S^{\prime} \cap L \neq \emptyset$.

Fig. 7: An illustration of the neighborhood in the BJS example. For each attained earliest time schedule, we indicate the objective value and the neighbors leading to this schedule.

Given a selection S, the choice of the move to be executed is based on the evaluation of the entire set of neighbors of S. First, the objective value $f\left(S^{\prime}\right)$ is computed for each neighbor S^{\prime}. Some of these values are "corrected" using the tabu list as follows. If a neighbor selection S^{\prime} is tabu and $f\left(S^{\prime}\right)$ is not lower than the objective value of the best selection found so far, then a penalty value of $(\max L-k) \cdot B$ is added to the objective value, where k is the position of the first entry in L making the move tabu and B is a large constant. B should be chosen so that the corrected objective value of the tabu moves are higher than those of non-tabu moves. Finally, we select a neighbor with lowest (corrected) objective value.

In order to improve the search, we implemented the following two additional long term memory structures, which were also used by Nowicki and Smutnicki (1996).

As the tabu search does not prevent being trapped in long cycles, we use a list C that stores the sequence of objective values obtained during the search. Cycles are detected by scanning C for repeated subsequences. Specifically, the search is said to be cycling at iteration k if there exists a period $\delta>\operatorname{maxL}$ such that $C[k]=C[k-a \delta]$ for $a=1, \ldots, \max R$, where $C[j]$ is the objective value obtained in iteration j, max C reflects the maximum length of a cycle and $\max R$ is the number of repetitions we search for.

A list E of so-called elite selections is maintained to diversify the search. Initially, E is empty. A new selection S is added to E at first position if its objective value is lower than the value of the best selection found so far. If the search runs for a given number maxI of iterations without improving the best selection or if a selection has no neighbors or if a cycle is detected, then the current search path is terminated, list C is cleared, and the search is resumed from the first selection of list E. For this purpose, an elite selection S is stored together with its tabu list and the best (w.r.t. the objective value) $\max N$ neighbors that have not yet been directly visited from S. An elite selection is deleted from E if its set of neighbors is empty.

In order to further diversify the search, we make use of the parallel computing capabilities by starting and running maxS independent search paths in parallel threads, each with its own initial selection, tabu list and list C. The maxS search paths share list E of elite selections and the best selection found so far.

5.2 Initial selection

Each of the maxS initial selections is constructed as follows. First, we generate randomly a permutation of all jobs. According to this permutation, we then insert one by one a job into the current (partial) selection $S^{\text {part }}$. For the insertion of a job J into $S^{\text {part }}$, we apply the job insertion procedure to generate a set of feasible selections \mathscr{S}_{J} and choose the best selection among them. Specifically, a first selection S_{J} is obtained by inserting J after all other jobs, i.e. $S_{J}=S^{\text {part }} \cup E^{J-}$. Store S_{J} in \mathscr{S}_{J}. While $E^{J-} \cap S_{J} \neq \emptyset$, execute the following three steps:

1. Determine a critical arc f in $S_{J} \cap E^{J-}$.
2. If no such f exists stop, else build neighbor selection $S_{\bar{f}}^{J}=T_{\bar{f}} \cup\left(S \backslash E^{J}\right)$ according to (12).
3. Store $S_{\bar{f}}^{J}$ in \mathscr{S}_{J} and set S_{J} to $S_{\bar{f}}^{J}$.

Finally, among all selections in set \mathscr{S}_{J}, choose selection S with lowest objective value and update $S^{\text {part }}$ to S.

We illustrate this procedure in the BJS example with job permutation (J, K, L, N) (see Fig. 8). Job J (operations 1, 2, and 3) has only one possible insertion as it is the first job in the permutation, see subfigure 1). In 2), job K (op. 4 and 5) is placed after job J. The next insertion for K is generated by forcing operation 5 to be moved before operation 1 as $\operatorname{arc}\left(v_{1}^{4}, v_{5}^{1}\right)$ is critical, obtaining insertion 3). This is the last insertion considered for job K, and we choose the insertion depicted in 2) for K as it has a lower objective value than 3). In 4), job L (op. 6 and 7) is placed after all other jobs. As arc $\left(v_{3}^{4}, v_{6}^{1}\right)$ is critical, we force operation 6 to be moved before operation 3. Insertion 5) is obtained, which is the last insertion considered for job L. We choose the insertion depicted in 4) as it is better than 5). In 6), job N (op. 8, 9, and 10) is placed after all other jobs. As arc $\left(v_{5}^{4}, v_{8}^{1}\right)$ is critical, we force operation 8 to be moved before operation 5. Insertion 7) is obtained. In this insertion, arc $\left(v_{7}^{4}, v_{10}^{1}\right)$ is critical, and we force operation 10 to be moved before operation 7. Insertion 8) is obtained, in which $\operatorname{arc}\left(v_{1}^{4}, v_{8}^{1}\right)$ is critical. We force operation 8 to be moved before operation 1 and obtain insertion 9). In this insertion, arc $\left(v_{2}^{4}, v_{10}^{1}\right)$ is critical, and we force operation 10 to be moved before operation 2. Thus, we obtain insertion 10). Among the insertions depicted in 6) to 10), insertion 6) is the best, hence we start the tabu search with its corresponding selection.

5.3 Experimental setting

JILS was implemented in Java and run on a PC with 3.3. GHz Intel Core i5-4590 processor (4 threads) and 16 GB memory.

Extensive tests were performed to evaluate JILS using the job shop problems introduced in Sect. 2.3.1 and 2.3.2 with various regular objectives. Specifically, we considered the job shop without setup times (JS), the job shop with sequence-dependent setup times (JSS), and the blocking job shop (BJS) with the five objective functions introduced in the examples: makespan, total flow time, total squared flow time, total tardiness, and total weighted tardiness.

We used standard benchmark instances from the literature: for the JS, la01-40 introduced by Lawrence (1984), orb01-010 by Applegate and Cook (1991), and ta0150 by Taillard (1994); for the JSS, t2-ps $X Y, X Y \in\{01, \ldots, 15\}$ by Brucker and Thiele (1996), t2-la $X Y$ sdst, $X Y \in\{21,24,25,27,29,38,40\}$, and t2-abzZsdst, $Z \in\{7,8,9\}$, by Vela et al (2010); and for the BJS, la01-40 by Lawrence (1984) and we set all transfer and setup times to 0 (obtaining so-called with-swap BJS instances).

In all problem types and instances, the release times are set to 0 . For the three tardiness objectives, the due date s_{J}^{d} of each job $J \in \mathscr{J}$ is set according to the rule introduced by Eilon and Hodgson (1967): $s_{J}^{\mathrm{d}}=\left\lfloor f * \sum_{i \in J} p_{i}\right\rfloor$ where f is referred to as the due date tightness factor. f is set to 1.3 for all JS instances, 1.6 for all JSS instances, and 1.8 for all BJS instances.

The input parameter settings of JILS were carefully analyzed in preliminary tests and set as follows: $\max C=4$, $\max I=50000, \max N=10$, $\max S=8$, and the tabu list size maxL is 10 for all instances with the makespan objective and 16 for all other

1) total flow time: 15

2) total flow time: 37

3) total flow time: 57

4) total flow time: 99

5) total flow time: 93

6) total flow time: 30

7) total flow time: 53

8) total flow time: 82

9) total flow time: 89

Fig. 8: Construction of an initial selection.
objectives. We observed that JILS is quite robust with respect to different parameter settings.

Five independent runs of JILS were executed for each problem type, objective, and instance. The computation time limit of each run was set to 1800 seconds. In order to evaluate the approach also with shorter run times, we recorded the objective value of the best solution found so far by JILS after 60 and 300 seconds. The appendix contains the detailed results: for the JS in Table 5, 6, and 7, for the JSS in Table 8 and 9 , and for the BJS in Table 10 and 11.

While we tried to keep the JILS as generic as possible, we incorporated a slight modification of the neighborhood for the JS with the makespan objective. We observed in preliminary tests that better results can be obtained for this problem type if JILS considers only the critical arcs at the border of so-called critical blocks. Indeed, it is well-known that swapping a critical arc in the "inner part" of a critical block does not improve the makespan. Therefore, we used this smaller neighborhood, called N5 in (Blazewicz et al, 1996), for the JS with the makespan objective.

5.4 Comparison with benchmarks

In order to assess the performance of JILS, we compare the attained results with current benchmarks from the literature when available. As these benchmarks were obtained using different computational settings, especially computing power and run times, we compare the average values of JILS (over the five runs) after 60, 300, and 1800 seconds with the benchmark values. While comparisons of heuristics are intrinsically difficult (see, e.g., Hooker, 1995), this test setting should provide evidence that the quality of the JILS results is comparable to the state-of-the-art for a large class of CJS-R problems. A simple performance measure is used to compare the results of JILS with benchmarks. For each benchmark result, we compute the relative gap of the average result of JILS over the five runs (JILS) with the result of the benchmark (bench), i.e., (JILS - bench)/bench. These gaps are determined for the results of JILS after a run time of 60,300 , and 1800 seconds. While this performance measure is simple to interpret and is widely used, some care should be given to the numbers as large gaps may be obtained if the benchmark value is low even if the absolute difference is small. We use small multiples (see, e.g., Tufte, 2001) to illustrate the relative gaps in a compact way.

We successively consider the JS, JSS, and BJS. In all three problem types, we first deal with the makespan objective and then address all other objectives.

5.4.1 JS with the makespan objective

There is a large collection of benchmark results available for the JS with the makespan objective. We briefly describe the approaches and the basic computational settings of the benchmarks we compare to.

As mentioned in Sect. 1, Grimes and Hebrard (2015) recently proposed a method that is applicable to a broad class of job shop scheduling problems with the makespan objective. We consider their average results (over 10 runs) for the JS obtained by their
general light-weighted approach and abbreviate these results by $G H$. The authors used a Intel Pentium IV 3.0 GHz processor and a time limit of 3600 seconds per run.

Peng et al (2015) developed a specialized heuristic for the JS with the makespan objective. They combined a path relinking strategy with a tabu search, which uses a neighborhood based on swapping critical operations. Their approach is currently among the best heuristics for solving the JS with the makespan objective. We consider their average results over 10 runs (see Peng et al, 2015, Table 8, p. 160) and abbreviate these results by PLC. The authors used an AMD Athlon 3.0 GHz processor, and the run time varied between 1 and 1726 seconds.

We first discuss the results obtained for the instances la01 to la40 and orb01 to orb10. The optimal values are known for these instances (see Brucker et al, 1994; Perregaard and Clausen, 1998; Grimes and Hebrard, 2015). Similar as other state-of-the-art heuristics, JILS finds optimal or near-optimal solutions within a short computation time. Indeed, the overall average relative gap to the optimal values is 0.14%, 0.06%, and 0.03% for the results of JILS obtained after 60, 300, and 1800 seconds, respectively. Also, JILS finds an optimal solution in all the five runs for 41 instances (out of 50), and in at least one of the five runs for 47 instances.

The results of the Taillard instances are now compared with GH. The relative gaps of JILS to GH are illustrated in Fig. 9 (above) using small multiples as follows. The first, second, and third line depicts the relative gaps for the average results of JILS after 60,300 , and 1800 seconds, respectively. The time limit of JILS and the relative gap averaged over all instances is provided on the left. The range of the attained gaps is partitioned into seven intervals: $[a \% ;-6.0 \%],[-6.0 \% ;-2.0 \%],[-2.0 \% ;-0.5 \%]$, $[-0.5 \% ; 0.5 \%],[0.5 \% ; 2.0 \%],[2.0 \% ; 6.0 \%]$, and $[6.0 \% ; b \%]$, where a is the minimum of -10.0% and the minimum attained gap, and similarly, b is the maximum of 10.0% and the maximum attained gap. Each instance is illustrated by drawing a small rectangle above the interval where its corresponding relative gap belongs to. In order to distinguish the instances, the rectangles are always drawn at the same relative position in each interval. For this purpose, an ordering of the instances is specified. To keep it simple, we use the orderings given in the result tables (see Table 5 to 11).

In Fig. 9 (above), we represent the first instance (ta01) at the top left (first row, first column) in each interval, then ta02 on its right (first row, second column), and so forth. Consider, for example, the instance ta42. As 10 instances are depicted per line, its position is in the fifth row and second column. The benchmark value of GH is 2027.5, and the average value obtained by JILS is 2033, 1990, and 1982 for 60, 300, and 1800 seconds, respectively (see Table 5). This gives respective relative gaps of $0.3 \%,-1.8 \%$, and -2.2%. Hence, in the first, second, and third line of Fig. 9, the rectangle of ta42 is drawn in the interval $[-0.5 \% ; 0.5 \%],[-2.0 \% ;-0.5 \%]$, and [$-6.0 \% ;-2.0 \%$], respectively.

Considering the resulting small multiples in Fig. 9 (above), it can be observed that JILS is competitive with GH. Indeed, already after 60 seconds, the quality of JILS is comparable to GH. Furthermore, after 1800 seconds, JILS gives considerably lower results than GH for the largest instances (ta31 to ta50).

The following can be observed when comparing the relative gaps of JILS to PLC in Fig. 9 (below). JILS needs some time to get close to the values of PLC. After 60 seconds, PLC provides better results, especially for the large instances. Quite similar

Fig. 9: Comparison of the results obtained in the JS with the makespan objective with results of Grimes and Hebrard (2015) (above) and Peng et al (2015) (below) in the Taillard instances.
results are attained after 1800 seconds. Indeed, the overall average gap is then 0.8%. Only in some of the largest instances, PLC produces results that are more than 2% lower than the results of JILS. It can be concluded that JILS is quite competitive with PLC.

Table 1 provides a more detailed comparison of the JILS average results after 1800 seconds to the average results of GH and PLC and to the average results of Gonçalves and Resende (2014) (abbreviated by GR) and Zhang et al (2008) (abbreviated by ZRLG). GR and ZRLG also describe state-of-the-art approaches for the JS with the makespan objective. It can be verified that the specialized algorithms of PLC, GR, and ZRLG provide slightly better results than JILS, and JILS gives lower values than generic approach of GH, especially for larger instances. For a more detailed comparison of the state-of-the-art approaches for the JS with the makespan objective, we refer to Peng et al (2015). Altogether, we conclude that JILS performs well in the JS with the makespan objective.

5.4.2 JS with the other objectives

The majority of the JS articles considers the makespan objective. Consequently, there are less benchmark results available for the other objectives. In this section, we successively consider the total flow time, total weighted tardiness, total squared flow time, and total tardiness objectives.

González et al (2010) developed a hybrid solution method for the JS with flow time objective. They combined a tabu search and a genetic algorithm. The tabu search applies a neighborhood in which a critical operation is moved (forward or backward) in its critical block provided that a sufficient condition for feasibility of the move is satisfied. We consider their average results over 20 runs (see González et al, 2010,

Table 1: Comparison of the JILS average results after 1800 seconds (JILS) to current state-of-the-art results. Column one gives the instance name and columns two to six the results of JILS, GH, PLC, GR, and ZRLG. The values in brackets provide the relative gap (in \%) of the JILS result (res) to the benchmark value $(v a l)$, i.e., $(r e s-v a l) / v a l$. The last line presents the overall average relative gaps. All values are rounded to one decimal place.

Instance	JILS	GH	PLC	GR	ZRLG
ta01	1232.2	1231.0 (0.1\%)	1231.0 (0.1\%)	1231.0 (0.1\%)	1231.0 (0.1\%)
ta02	1245.4	1244.0 (0.1\%)	1244.0 (0.1\%)	1244.0 (0.1\%)	1244.1 (0.1\%)
ta03	1222.6	1218.0 (0.4\%)	1218.0 (0.4\%)	1218.0 (0.4\%)	1219.4 (0.3\%)
ta04	1177.4	1175.0 (0.2\%)	1175.0 (0.2\%)	1175.0 (0.2\%)	1176.2 (0.1\%)
ta05	1232.0	1224.0 (0.7\%)	1224.0 (0.7\%)	1224.9 (0.6\%)	1224.0 (0.7\%)
ta06	1242.2	1238.1 (0.3\%)	1238.4 (0.3\%)	1238.9 (0.3\%)	1240.8 (0.1\%)
ta07	1228.0	1227.0 (0.1\%)	1228.0 (0.0\%)	1228.0 (0.0\%)	1228.0 (0.0\%)
ta08	1217.8	1217.0 (0.1\%)	1217.0 (0.1\%)	1217.0 (0.1\%)	1217.1 (0.1\%)
ta09	1283.2	1274.0 (0.7\%)	1274.0 (0.7\%)	1277.0 (0.5\%)	1275.2 (0.6\%)
ta10	1245.0	1241.0 (0.3\%)	1241.0 (0.3\%)	1241.0 (0.3\%)	1246.6 (-0.1\%)
tal1	1374.6	1395.4 (-1.5\%)	1359.9 (1.1\%)	1360.0 (1.1\%)	1367.6 (0.5\%)
ta12	1375.4	1382.5 (-0.5\%)	1369.9 (0.4\%)	1372.6 (0.2\%)	1374.3 (0.1\%)
tal3	1355.2	1350.5 (0.3\%)	1346.0 (0.7\%)	1347.3 (0.6\%)	1355.2 (0.0\%)
ta14	1345.0	1345.1 (0.0\%)	1345.0 (0.0\%)	1345.0 (0.0\%)	1346.7 (-0.1\%)
tal5	1353.0	1371.4 (-1.3\%)	1339.0 (1.0\%)	1348.9 (0.3\%)	1348.4 (0.3\%)
tal6	1368.6	1392.1 (-1.7\%)	1360.0 (0.6\%)	1362.1 (0.5\%)	1366.2 (0.2\%)
ta17	1476.0	1477.0 (-0.1\%)	1473.0 (0.2\%)	1470.5 (0.4\%)	1472.9 (0.2\%)
ta18	1417.8	1435.6 (-1.2\%)	1401.0 (1.2\%)	1400.9 (1.2\%)	1408.7 (0.6\%)
ta19	1344.8	1359.6 (-1.1\%)	1336.6 (0.6\%)	1333.2 (0.9\%)	1340.6 (0.3\%)
ta20	1363.0	1372.6 (-0.7\%)	1351.3 (0.9\%)	1350.4 (0.9\%)	1356.7 (0.5\%)
ta21	1660.2	1656.3 (0.2\%)	1645.2 (0.9\%)	1647.0 (0.8\%)	1650.5 (0.6\%)
ta22	1618.8	1623.8 (-0.3\%)	1603.8 (0.9\%)	1600.0 (1.2\%)	1606.4 (0.8\%)
ta23	1566.4	1574.6 (-0.5\%)	1559.6 (0.4\%)	1562.6 (0.2\%)	1564.5 (0.1\%)
ta24	1660.6	1648.6 (0.7\%)	1647.7 (0.8\%)	1650.6 (0.6\%)	1653.2 (0.4\%)
ta25	1604.2	1613.5 (-0.6\%)	1597.0 (0.5\%)	1602.0 (0.1\%)	1607.7 (-0.2\%)
ta26	1658.8	1671.5 (-0.8\%)	1651.4 (0.4\%)	1652.3 (0.4\%)	1654.9 (0.2\%)
ta27	1694.2	1695.8 (-0.1\%)	1686.7 (0.4\%)	1685.6 (0.5\%)	1688.7 (0.3\%)
ta28	1623.8	1619.0 (0.3\%)	1616.2 (0.5\%)	1611.7 (0.8\%)	1616.6 (0.4\%)
ta29	1632.6	1638.8 (-0.4\%)	1627.4 (0.3\%)	1627.4 (0.3\%)	1630.1 (0.2\%)
ta30	1602.6	1607.4 (-0.3\%)	1588.3 (0.9\%)	1588.5 (0.9\%)	1597.7 (0.3\%)
ta31	1765.6	1826.5 (-3.3\%)	1764.0 (0.1\%)	1764.4 (0.1\%)	1765.8 (0.0\%)
ta32	1828.8	1884.8 (-3.0\%)	1803.5 (1.4\%)	1794.1 (1.9\%)	1811.7 (0.9\%)
ta33	1817.8	1886.9 (-3.7\%)	1794.6 (1.3\%)	1793.7 (1.3\%)	1806.7 (0.6\%)
ta34	1842.6	1910.6 (-3.6\%)	1831.2 (0.6\%)	1832.1 (0.6\%)	1831.8 (0.6\%)
ta35	2007.0	2007.0 (0.0\%)	2007.0 (0.0\%)	2007.0 (0.0\%)	2011.0 (-0.2\%)
ta36	1828.2	1886.6 (-3.1\%)	1819.0 (0.5\%)	1822.9 (0.3\%)	1820.5 (0.4\%)
ta37	1799.6	1831.4 (-1.7\%)	1776.8 (1.3\%)	1777.8 (1.2\%)	1784.4 (0.9\%)
ta38	1687.8	1739.0 (-2.9\%)	1673.0 (0.9\%)	1676.7 (0.7\%)	1678.5 (0.6\%)
ta39	1805.2	1832.4 (-1.5\%)	1795.0 (0.6\%)	1801.6 (0.2\%)	1806.6 (-0.1\%)
ta40	1706.2	1777.2 (-4.0\%)	1676.0 (1.8\%)	1678.1 (1.7\%)	1684.0 (1.3\%)
ta41	2059.8	2117.2 (-2.7\%)	2018.6 (2.0\%)	2018.7 (2.0\%)	2028.5 (1.5\%)
ta42	1981.6	2027.5 (-2.3\%)	1950.3 (1.6\%)	1949.3 (1.7\%)	1964.5 (0.9\%)
ta43	1896.8	1958.0 (-3.1\%)	1865.1 (1.7\%)	1863.1 (1.8\%)	1882.6 (0.8\%)
ta44	2016.6	2100.8 (-4.0\%)	1989.1 (1.4\%)	1992.4 (1.2\%)	1998.2 (0.9\%)
ta45	2020.4	2077.9 (-2.8\%)	2000.5 (1.0\%)	2000.0 (1.0\%)	2006.8 (0.7\%)
ta46	2069.0	2106.4 (-1.8\%)	2022.3 (2.3\%)	2015.5 (2.7\%)	2029.2 (2.0\%)
ta47	1942.4	1994.1 (-2.6\%)	1906.2 (1.9\%)	1902.1 (2.1\%)	1918.2 (1.3\%)
ta48	1987.0	2055.4 (-3.3\%)	1955.5 (1.6\%)	1959.2 (1.4\%)	1968.6 (0.9\%)
ta49	2010.6	2053.9 (-2.1\%)	1971.5 (2.0\%)	1972.6 (1.9\%)	1980.0 (1.5\%)
ta50	1965.6	2039.7 (-3.6\%)	1931.4 (1.8\%)	1927.0 (2.0\%)	1945.6 (1.0\%)
overall average		-1.3\%	0.8\%	0.8\%	0.4\%

GVSV

Fig. 10: Comparison of the results obtained in the JS with total flow time objective with results of González et al (2010).

Table 4, p. 41) and abbreviate these by GVSV. The authors used an Intel Xeon 2.66 GHz processor, and the computation time per run varied between 98 and 895 seconds.

Fig. 10 illustrates the relative gaps of JILS to GVSV for the instances la01 to la20. It can be observed that JILS gives slightly higher values than GVSV after 60 seconds. After 1800 seconds, the performances of JILS and GVSV are similar. Indeed, the average relative gap of JILS to GVSV is then only 0.2%.

A considerable amount of work has been dedicated to study the JS with total weighted tardiness objective, which is a generalization of the JS with total flow time objective. We compare JILS with the following two approaches.

As mentioned in Sect. 1, Mati et al (2011) recently developed a tabu search method that is applicable to the JS with a general regular objective. We consider their results for the JS with total weighted tardiness objective (see Mati et al, 2011, results with $f=1.3$ in Table 3, p.38) and abbreviate these results by $M D L$. The authors used a 2.6 GHz processor. As they set the computation time limit to only 18 seconds per run, we compare the JILS results to their best results over 10 runs.

González et al (2012a) recently addressed the JSS problem with weighted tardiness objective, and they also provide benchmark results for the JS (without setup times). They proposed a hybrid heuristic, combining a tabu search and a genetic algorithm. In the tabu search component, neighbors are built by reversing a single critical arc provided that some feasibility condition is satisfied. We consider their average results over 10 runs (see González et al, 2012a, column GTN with $f=1.3$, Table 2, p. 2108 and Table 3, p. 2110) and abbreviate these results by $G G V V$. They used an Intel Core 2 Duo processor with 2.66 GHz , and the computation time of a run varied between 18 and 1931 seconds.

Fig. 11 (upper part) illustrates the relative gaps of JILS to MDL for the instances la17 to la20 and orb01 to orb10. It can be observed that, after 300 and 1800 seconds, the results of JILS are quite similar as MDL. Hence, we conclude that both methods have a similar performance.

Fig. 11 (lower part) illustrates the relative gaps of JILS to GGVV for the instances la01 to la40 and orb01 to orb10. It can be observed that JILS quickly finds results of a similar quality than GGVV for the small instances. Furthermore, after 1800 seconds, the average relative gap is 0.0%. Interestingly, the relative gaps are quite high for some instances. They are, for example, -7.5% for instance la34 and 7.3% for la29 after 1800 seconds.

For the total squared flow time and total tardiness objectives, no benchmarks results are available. Hence, we resorted to compare the performance of JILS with results obtained via a mixed integer programming (MIP) model that we derived in a

Fig. 11: Comparison of the results obtained in the JS with total weighted tardiness objective with results of Mati et al (2011) (above) and González et al (2012a) (below).

Table 2: Comparison of the MIP results to the JILS results for JS instances with total squared flow time objective (left, in units of 1000) and total tardiness objective (right). Columns avg-1800 provide the results obtained by JILS after 1800 seconds, columns LB; UB give the MIP lower and upper bounds ("opt" if they are the same), and columns diff present the relative difference of the results avg-1800 and UB. The instances are grouped according to their size $n \times m$, where n is the number of jobs and m the number of machines.

objective results	total squared flow time			total tardiness		
	avg-1800	LB ; UB	diff	avg-1800	LB ; UB	diff
10×5						
la01	2599	2599 (opt)	0.0\%	1194	1194 (opt)	0.0\%
la02	2296	2110; 2339	-1.8\%	1065	1065 (opt)	0.0\%
la03	1956	1956 (opt)	0.0\%	1076	1076 (opt)	0.0\%
la04	2060	1916; 2060	0.0\%	1096	1096 (opt)	0.0\%
la05	1862	1862 (opt)	0.0\%	1164	1164 (opt)	0.0\%
15×5						
la06	5953	2193; 6396	-6.9\%	3491	916;3643	-4.2\%
la07	5252	2022; 5651	-7.1\%	3282	713; 3333	-1.5\%
la08	5188	1969; 6135	-15.4\%	3056	735; 3872	-21.1\%
la09	6553	2364; 7340	-10.7\%	3567	786; 3984	-10.5\%
la10	6348	2150; 6916	-8.2\%	3655	818; 4097	-10.8\%

straightforward manner from the disjunctive programming formulation of the CJS-R problem (see Sect. 2.1). As preliminary tests revealed that the simple MIP approach only finds good solutions in small instances, we decided to use the smallest instances la01 to la10 for these experiments. We ran the MIP using the solver Gurobi 6.5 with a time limit of 7200 seconds for each instance. Table 2 reports the obtained results. The following can be observed for the instances of size 10×5. The MIP approach shows that JILS always found an optimal solution for the total tardiness objective. For the total squared flow time objective, the MIP approach could prove optimality of three (out of five) results, and JILS obtained results with a similar quality. For the instances of size 15×5, the optimality gaps of the MIP approach are large. On average, JILS
gives 9.7% and 9.6% lower results than the MIP approach for the total squared flow time and the total tardiness objective, respectively.

In summary, JILS is competitive in the JS with all considered objectives.

5.4.3 JSS with the makespan objective

The JSS has attracted the attention of many researchers. As in the JS, most articles discuss the makespan objective.

A prominent contribution addressing the JSS with the makespan objective is (Balas et al, 2008), in which a shifting bottleneck procedure is proposed. The single machine scheduling subproblems are treated as traveling salesman problems with time windows, which are solved with dynamic programming. We consider the results obtained by the multi-run SB-RGLS10 version (see Balas et al, 2008, Table 6, p. 2108 and Table 3, p. 260) and abbreviate these results by $B S V$. The authors used a UltraSPARC-II processor with 360 MHz , and the computation time of a run varied between 264 and 3033 seconds.

Vela et al (2010) also addressed the JSS with the makespan objective. They proposed a hybrid heuristic, which combines a local search and a genetic algorithm. In the tabu search, neighbors are built by reversing the orders of operations in a critical block. They consider only moves where feasibility is ensured by some sufficient condition. We consider their average results over 30 runs (see Vela et al, 2010, Table 5, p. 161 and Table 6, p. 162) and abbreviate these results by $V V G$. They used an Intel Pentium IV processor with 1.7 GHz , and the computation time of a run varied between 2 and 166 seconds.

González et al (2012b) tackled the JSS with the makespan objective. They proposed a genetic algorithm with a local search component. We consider their average results (over 30 runs) obtained by Lamarckian evolution (see González et al, 2012b, Table 1, p. 157) and abbreviate these results by GVV. They used an Intel Core 2 Duo processor with 2.6 GHz , and the computation time of a run varied between 35 and 180 seconds.

Fig. 12 (upper part) illustrates the relative gaps of JILS to BSV for the instances t2-ps01 to t2-ps15. We observe that the average gaps are small and conclude that the results of JILS are of a similar quality than BSV.

Fig. 12 (middle part) illustrates the relative gaps of JILS to VVG for the instances t2-ps01 to t2-ps15 and t2-la $X Y$ sdst, $X Y \in\{21,24,25,27,29,38,40\}$. It can be observed that the results of JILS are slightly better than VVG, even after a short run time.

Fig. 12 (lower part) illustrates the relative gaps of JILS to GVV for the instances t2-ps11 to t2-ps15, t2-la $X Y$ sdst, $X Y \in\{21,24,25,27,29,38,40\}$, t2-abzZsdst, $Z \in$ $\{7,8,9\}$. It can be seen that GVV provides better results than JILS, especially when compared to the JILS results obtained after 60 and 300 seconds. Nevertheless, the average gap is only about 1.8% after 1800 seconds.

In summary, JILS has a quite good performance in the JSS with the makespan objective.

Fig. 12: Comparison of the results obtained in the JSS with the makespan objective to the results of Balas et al (2008); Vela et al (2010); González et al (2012b).

GGVV2

Fig. 13: Comparison of the results obtained in the JSS with total weighted tardiness objective to the results of González et al (2012a).

5.4.4 JSS with the other objectives

Only few papers address the JSS with other objectives than the makespan.
González et al (2012a) tackle the JSS with total weighted tardiness objective. The approach was already described in Sect. 5.4.2. We consider their average results over 10 runs (González et al, 2012a, column GTN with $f=1.6$ in Table 1, p. 2106) and abbreviate these results by GGVV2. They used an Intel Core 2 Duo processor with 2.66 GHz , and the computation time of a run varied between 45 and 810 seconds.

Fig. 13 illustrates the relative gaps of JILS to GGVV2 for the instances t2-ps01 to t2-ps15, t2-la $X Y$ sdst, $X Y \in\{21,24,25,27,29,38,40\}$, and t2-abzZsdst, $Z \in\{7,8,9\}$. It can be seen that GGVV2 provides substantially lower values when compared to the average results of JILS after 60 and 300 seconds. Also, when compared to the results obtained after 1800 seconds, GGVV2 gives 2.9% lower results on average. However, as illustrated in the last row, the best results of JILS (over the five runs) meet the performance of GGVV2. We recognized in preliminary tests that JILS can be made

Table 3: Comparison of the MIP results to the results of JILS for JSS instances with total flow time (top left), total squared flow time (top right, in units of 1000), and total tardiness objective (bottom). See Table 2 for a detailed explanation.

objective results	total flow time			total squared flow time		
	avg-1800	LB; UB	diff	avg-1800	LB; UB	diff
10×5						
t2-ps01	6050	6050 (opt)	0.0\%	4053	3753; 4210	-3.7\%
t2-ps02	5505	5220; 5522	-0.3\%	3479	2511; 3479	0.0\%
t2-ps03	5092	4773; 5171	-1.5\%	2973	2467; 2973	0.0\%
t2-ps04	5478	4793; 5549	-1.3\%	3375	2449;3467	-2.7\%
t2-ps05	5041	5041 (opt)	0.0\%	2874	2173; 3054	-5.9\%
15×5						
t2-ps06	10706	6522; 11261	-4.9\%	8685	2756; 10690	-18.8\%
t2-ps07	10144	5936; 11211	-9.5\%	7912	2458;9349	-15.4\%
t2-ps08	10193	6231; 11074	-8.0\%	8019	2620; 9937	-19.3\%
t2-ps09	10879	6578; 12253	-11.2\%	9346	2849; 10564	-11.5\%
t2-ps10	10828	6324; 11709	-7.5\%	8950	2731; 10433	-14.2\%

objective results	total tardiness		
	LB ; UB	diff	
10×5			
t2-ps01	1623	1623 (opt)	0.0%
t2-ps02	1395	1395 (opt)	0.0%
t2-ps03	1361	1361 (opt)	0.0%
t2-ps04	1583	$1020 ; 1620$	-2.3%
t2-ps05	1545	$1190 ; 1553$	-0.5%
15×5			
t2-ps06	4379	$591 ; 5241$	-16.4%
t2-ps07	4180	$747 ; 4521$	-7.5%
t2-ps08	4083	$537 ; 4966$	-17.8%
t2-ps09	4155	$976 ; 4672$	-11.1%
t2-ps10	4305	$807 ; 4897$	-12.1%

more robust for the JSS with total weighted tardiness if a specialized neighborhood is used. A further investigation is left for future work.

No benchmarks results are available for the total flow time, total squared flow time, and total tardiness objectives. Hence, as for the JS, we compare the performance of JILS with results obtained by a MIP approach (see also Sect. 5.4.2). For this purpose, we considered the smallest JSS instances ts-ps01 to ts-ps10, and ran the MIP with the solver Gurobi 6.5 using a time limit of 7200 seconds per instance. Table 3 reports the obtained results. The following can be observed for the instances of size 10×5. The average results of JILS are equal as or lower than the MIP results. Also, for the instances where the MIP approach could prove optimality, JILS always found an optimal solution. For the instances of size 15×5, JILS gives substantially lower results than the MIP approach. Indeed, the average relative gap is $-8.2 \%,-15.8 \%$, and -13.0% for the total flow time, total squared flow time, and total tardiness objective, respectively.

Altogether, we conclude that JILS performs well in the JSS with all considered objectives.

Fig. 14: Comparison of the results obtained in the BJS with the makespan objective to results of Oddi et al (2012); Pranzo and Pacciarelli (2015).

5.4.5 BJS with the makespan objective

A considerable amount of work has been dedicated to the BJS with the makespan objective. The benchmarks are taken from the following two recently published articles.

Oddi et al (2012) developed a constraint programming approach for the BJS with the makespan objective. They proposed an improvement algorithm based on iterative flattening search, and they performed tests with the IBM ILOG CP optimizer. We consider their results obtained by the CP optimizer (see Oddi et al, 2012, Table 3, p. 7) and abbreviate these results by $O R C S$. They used an AMD Phenom II X4 Quad processor with 3.5 GHz , and executed one run of 1800 seconds for each instance.

Pranzo and Pacciarelli (2015) developed an iterated greedy algorithm for the BJS with the makespan objective. Their approach is based on a repetition of a destruction phase, which is deleting a part of the solution, and a construction phase, which starts from a partial solution and applies a greedy approach to construct a new solution. We consider their results from (Pranzo and Pacciarelli, 2015, Table 7, p. 21) and abbreviate them by $P P$. They used an Intel Core 2 Duo processor with 2.6 GHz . As they set the computation time limit to only 60 seconds per run, we compare the average results of JILS with their best results over 10 runs.

Fig. 14 illustrates the relative gaps of JILS to ORCS (above) and PP (below) for the instances la01 to la40. It can be observed that JILS is substantially better than ORCS. Indeed, the average gap is $-4.5 \%,-6.0 \%$, and -7.6% after 60,300 , and 1800 seconds, respectively. Especially in the large instances, JILS gives substantially better results than ORCS. The average gap is, for example, -12.0% for the instances of size 15×15 (i.e., la36 to la40).

Considering the results of PP, it can be seen that JILS gives substantially lower values. Indeed, the average gap is $-2.0 \%,-3.6 \%$, and -5.2% after 60,300 , and 1800 seconds, respectively. JILS is at a particular advantage in large instances. The results of JILS are, on average, 13.3% lower than PP for the instances of size 30×10 (i.e., la31 to la35).

We conclude that JILS is substantially improving the best results of the literature in the BJS with the makespan objective.

Note that we proposed a tabu search in (Gröflin et al, 2011) for the BJS with machine flexibility and the makespan objective, and a refined version for more general complex job shops with the makespan criterion in (Bürgy, 2014). These methods formed the basis for the development of JILS, and the attained results in (Bürgy, 2014) are of a similar quality than the present results.

5.4.6 BJS with the other objectives

To the best our knowledge, no benchmark results are available for all other objectives. Therefore, we compare the performance of JILS to the results obtained by the same MIP approach that was applied for the JS and JSS (see Sect. 5.4.2). For this purpose, we considered the smallest BJS instances la01 to la10, and ran the MIP with the solver Gurobi 6.5 using a time limit of 7200 seconds per instance. Table 4 reports the obtained results.

The following can be observed for the instances of size 10×5. The MIP approach shows that JILS always found an optimal solution for the total flow time, total tardiness, and total weighted tardiness objectives. In addition, the JILS results are of the same quality or slightly better than the MIP results for the total squared flow time objective. Similar as in the JS and JSS, the optimality gaps of the MIP results are large for the instances of size 15×5 for all four objectives, and JILS gives substantially lower results.

In summary, JILS has a good performance for the BJS with all considered objectives.

6 Concluding remarks

We developed a neighborhood that can be applied to a wide range of job shop scheduling problems with regular objectives. By casting the neighborhood in a tabu search, we evaluated its performance with an extensive experimental study using three wellknown job shop scheduling problems and five regular objectives. The obtained results show that the proposed approach has a good, robust performance. Indeed, it is quite competitive with the state-of-the-art for all considered objectives in the job shop and in the job shop with sequence-dependent setup times, it substantially improves the state-of-the-art results in the blocking job shop with the makespan objective, and it establishes first results in the blocking job shop with the other considered objectives.

The class of regular objectives is certainly valuable in practice. The total squared tardiness objective makes it possible, for example, to keep the maximum tardiness low while maintaining an acceptable level for the total tardiness, which cannot be accomplished by a linear (weighted) penalization of the tardiness. In further research, it could be interesting to investigate non-regular objectives, which, for example, penalize earliness and tardiness. This type of objectives is especially relevant in a just-in-time scheduling context.

Table 4: Comparison of the MIP results to JILS for the BJS instances with total flow time objective (top left), total squared flow time objective (top right, in units of 1000), total tardiness objective (bottom left), and total weighted tardiness objective (bottom right). See Table 2 for a detailed explanation.

objective results	total flow time			total squared flow time		
	avg-1800	LB; UB	diff	avg-1800	O LB ; UB	diff
10×5						
la01	5152	5152 (opt)	0.0\%	3123	2928; 3123	0.0\%
la02	4937	4937 (opt)	0.0\%	2982	2313; 2982	0.0\%
la03	4605	4605 (opt)	0.0\%	2574	2108; 2682	-4.0\%
la04	4764	4764 (opt)	0.0\%	2663	2318; 2663	0.0\%
la05	4447	4447 (opt)	0.0\%	2309	1816; 2309	0.0\%
15×5						
la06	9715	5705; 10721	-9.4\%	7769	2356; 10296	-24.5\%
la07	9136	5301; 10310	-11.4\%	6715	1899; 8944	-24.9\%
la08	9042	5716;11051	-18.2\%	6722	2080; 9840	-31.7\%
la09	10237	6001; 11169	-8.3\%	8690	2276; 14300	-39.2\%
la10	9758	5881; 10684	-8.7\%	7986	2417; 10650	-25.0\%
objective results	total tardiness			total weighted tardiness		
	avg-1800	LB; UB	diff	avg-1800	LB ; UB	diff
10×5						
la01	743	743 (opt)	0.0\%	1486	1486 (opt)	0.0\%
la02	700	700 (opt)	0.0\%	1251	1251 (opt)	0.0\%
la03	736	736 (opt)	0.0\%	1461	1461 (opt)	0.0\%
la04	716	716 (opt)	0.0\%	1236	1236 (opt)	0.0\%
la05	796	796 (opt)	0.0\%	1244	1244 (opt)	0.0\%
15×5						
1 a 06	3075	165;3475	-11.5\%	5469	680; 7069	-22.6\%
la07	2946	402; 3764	-21.7\%	4727	748; 6634	-28.7\%
la08	2831	387; 3260	-13.1\%	4951	872; 6049	-18.1\%
la09	3127	212;3762	-16.9\%	5685	942; 7656	-25.7\%
1a10	2994	291; 3953	-24.3\%	5785	561; 6275	-7.8\%

The proposed neighbor generation scheme provides a general tool to derive a large set of feasible neighbors. It may be interesting to consider other types of neighbors than those used in the proposed neighborhood. Introducing larger moves of operations within a critical block may be promising. It could also be interesting to consider the optimal (re-) insertion of a job instead of searching for a neighbor close to the current solution. This optimal job insertion problem may be used, for example, to construct a good initial solution and in a large neighborhood search approach. Although the optimal job insertion problem is already NP-hard for the classical job shop, the nice characterization of all feasible insertions given in Sect. 3 may help to develop an efficient method that inserts a job in a near-optimal fashion.

Acknowledgements The author gratefully acknowledges the constructive remarks of three anonymous referees which led to several improvements in the presentation. This research is partially funded by the Swiss National Science Foundation Grant P2FRP2 161720.

7 Appendix

7.1 Proofs of job insertion properties

Hereafter, we provide proofs of Proposition 2, Theorem 1, and Theorem 2. Although they can easily be derived from Gröflin and Klinkert (2007), we give them for convenience and completeness

Proof (of Proposition 2) (i) Observe that any acyclic insertion T is stable in H by construction of H. If insertion T is also complete hence feasible, it is of size $\left|E^{J}\right| / 2$ as $|T \cap\{e, \bar{e}\}|=1$ for each pair $\in \mathscr{E}^{J}$ by (9). Then $|T|=\left|\mathscr{E}^{J}\right|$, and \mathscr{E}^{J} is a partition of E^{J} into pairs, so $|T|=\left|\mathscr{E}^{J}\right|=\left|E^{J}\right| / 2$.
(ii) In view of Proposition 1 (i), any stable set T in H picks at most one node of each pair $\{e, \bar{e}\} \in \mathscr{E}^{J}$, hence $|T| \leq\left|E^{J}\right| / 2$. Asking $|T|=\left|E^{J}\right| / 2$ implies that exactly one node is picked from each pair $\{e, \bar{e}\} \in \mathscr{E}^{J}$, hence insertion T is complete.

Proof (of Theorem 1) In view of Proposition 2, we just need to show that any stable set T of size $\left|E^{J}\right| / 2$ corresponds to a positive acyclic insertion. Assume the contrary, i.e., insertion T is positive cyclic, and let Z^{\prime} be a positive cycle in $\left(V, A^{J} \cup T, d\right)$. By the SCP there exists a short positive cycle Z with $Z \cap E^{J} \subseteq Z^{\prime} \cap E^{J} \subseteq T$ and $\left|Z \cap E^{J}\right|=2$, so $\{e, f\}=Z \cap E^{J}$ for some $e \in E^{J-}, f \in E^{J+}$. Then $\{e, f\}$ is a positive cyclic insertion, hence $\{e, f\} \in U$ contradicting the stability of T in H.

Proof (of Theorem 2) We show that i) $\Phi(\{g\})$ is stable in H, ii) T_{g} is stable in H, iii) T_{g} is complete.
i) By definition of the closure and the bipartition of $H, \Phi(\{g\}) \subseteq E^{J+}$ if $g \in E^{J+}$ and $\Phi(\{g\}) \subseteq E^{J-}$ if $g \in E^{J-} . E^{J+}$ and E^{J-} are the partitions of the bipartite conflict graph H by Proposition 1 ii), so $\Phi(\{g\})$ is stable.
ii) T_{g} is stable in H. Assuming the contrary, there exists some pair $e, f \in T_{g}$ so that $\{e, f\} \in U$. By i) $\Phi(\{g\})$ is stable in H. T^{S} is a feasible insertion, hence it is stable in H by Theorem 1, then $T^{S} \backslash[\Phi(\{g\})]$ is stable in H. Therefore, we can assume that $e \in \Phi(\{g\})$ and $f \in T^{S} \backslash[\Phi(\{g\})]$. But by definition $e \rightsquigarrow \bar{f}$, so $\bar{f} \in \Phi(\{g\})$, contradicting $f \in T^{S} \backslash[\Phi(\{g\})]$.
iii) As T^{S} is complete and by construction of $\Phi(\{g\})$ and $T^{S} \backslash[\Phi(\{g\})],\{e, \bar{e}\} \cap$ $T_{g} \neq \emptyset$ for all pairs $\{e, \bar{e}\} \in \mathscr{E}^{J}$ implying completeness of T_{g}.

7.2 Detailed results

The detailed results of the JILS are recorded in Table 5 to 11 . All values are rounded to the nearest integer.

Table 5: Objective values obtained with JILS for the Taillard benchmark instances in the JS with makespan objective. For each instance, the four columns display the average results (over the five runs) after 60, 300, and 1800 seconds and the best results after 1800 seconds. The instances are grouped according to their size $n \times m$, where n is the number of jobs and m the number of machines.

objective time	makespan					makespan			
	60	300	1800	best		60	300	1800	best
15×15									
ta01	1239	1233	1232	1231	ta26	1671	1661	1659	1654
ta02	1256	1248	1245	1244	ta27	1711	1697	1694	1687
ta03	1225	1224	1223	1221	ta28	1633	1626	1624	1620
ta04	1182	1181	1177	1175	ta29	1643	1637	1633	1629
ta05	1234	1233	1232	1231	ta30	1623	1608	1603	1590
ta06	1246	1244	1242	1240	$30 \times$				
ta07	1228	1228	1228	1228	ta31	1788	1767	1766	1764
ta08	1224	1219	1218	1217	ta32	1861	1832	1829	1821
ta09	1287	1286	1283	1281	ta33	1858	1823	1818	1808
tal0	1262	1249	1245	1244	ta34	1881	1845	1843	1837
20×15					ta35	2007	2007	2007	2007
tal1	1387	1377	1375	1369	ta36	1849	1834	1828	1820
tal2	1381	1377	1375	1373	ta37	1830	1803	1800	1795
tal3	1364	1355	1355	1352	ta38	1715	1693	1688	1685
ta14	1352	1346	1345	1345	ta39	1816	1806	1805	1797
tal5	1366	1357	1353	1343	ta40	1730	1707	1706	1697
tal6	1378	1371	1369	1362	$30 \times$				
ta17	1489	1483	1476	1470	ta41	2110	2068	2060	2053
tal8	1429	1418	1418	1412	ta42	2033	1990	1982	1974
tal9	1358	1349	1345	1344	ta43	1943	1900	1897	1889
ta20	1376	1367	1363	1356	ta44	2061	2029	2017	2006
20×20					ta45	2068	2031	2020	2007
ta21	1673	1664	1660	1657	ta46	2108	2072	2069	2060
ta22	1636	1624	1619	1609	ta47	1983	1952	1942	1932
ta23	1579	1570	1566	1560	ta48	2047	1993	1987	1975
ta24	1671	1663	1661	1658	ta49	2054	2018	2011	2000
ta25	1630	1615	1604	1599	ta50	2021	1977	1966	1947

Table 6: Objective values obtained with JILS in the JS with makespan, total flow time, and total squared flow time objective. Results for the total squared flow time objective are provided in units of 1000 .

objective time	makespan			total flow time				total squared flow time				
	60	300	1800	best	60	300	1800	best	60	300	1800	best
10×5												
la01	666	666	666	666	4834	4832	4832	4832	2602	2599	2599	2599
la02	655	655	655	655	4481	4468	4463	4459	2298	2297	2296	2296
la03	597	597	597	597	4152	4151	4151	4151	1956	1956	1956	1956
la04	590	590	590	590	4259	4259	4259	4259	2060	2060	2060	2060
la05	593	593	593	593	4074	4072	4072	4072	1862	1862	1862	1862
15×5												
la06	926	926	926	926	8725	8649	8629	8626	6038	5967	5953	5941
la07	890	890	890	890	8166	8122	8081	8069	5364	5287	5252	5240
la08	863	863	863	863	8130	7989	7958	7946	5279	5216	5188	5093
la09	951	951	951	951	9215	9069	9050	9043	6669	6571	6553	6520
la10	958	958	958	958	9068	8885	8866	8818	6461	6399	6348	6309
20×5												
la11	1222	1222	1222	1222	14530	14249	14053	13936	13060	12727	12505	12441
la12	1039	1039	1039	1039	12454	12031	11870	11759	9709	9489	9420	9265
la13	1150	1150	1150	1150	13945	13564	13410	13358	11864	11544	11350	11254
la14	1292	1292	1292	1292	15072	14781	14644	14622	13980	13783	13596	13274
la15	1207	1207	1207	1207	15007	14544	14316	14216	13368	13033	12884	12754
10×10												
la16	945	945	945	945	7383	7376	7376	7376	5771	5771	5771	5771
la17	784	784	784	784	6565	6547	6537	6537	4594	4565	4557	4556
la18	848	848	848	848	6993	6971	6970	6970	5153	5132	5127	5117
la19	842	842	842	842	7248	7227	7217	7217	5351	5335	5335	5335
la20	902	902	902	902	7403	7371	7354	7345	5840	5808	5792	5764
orb01	1061	1059	1059	1059	8187	8093	8044	8023	6980	6881	6858	6856
orb02	888	888	888	888	7344	7333	7316	7308	5616	5611	5606	5606
orb03	1005	1005	1005	1005	8202	8085	8056	8032	7072	6898	6865	6865
orb04	1005	1005	1005	1005	7897	7893	7893	7893	6744	6744	6744	6744
orb05	889	889	888	887	6989	6983	6983	6983	5153	5148	5141	5135
orb06	1012	1010	1010	1010	8179	8137	8130	8127	7065	7003	6984	6982
orb07	397	397	397	397	3293	3259	3257	3257	1146	1111	1108	1108
orb08	899	899	899	899	6981	6951	6944	6931	5276	5234	5209	5198
orb09	934	934	934	934	7452	7433	7433	7433	6068	6040	6016	6008
orb10	944	944	944	944	7905	7850	7846	7846	6461	6365	6364	6364
15×10												
la21	1051	1048	1047	1046	13024	12473	12353	12208	11613	11265	11207	11010
la22	932	932	929	927	12457	11919	11825	11720	10291	9955	9798	9711
la23	1032	1032	1032	1032	13063	12822	12692	12650	11606	11329	11210	11112
la24	943	940	938	935	12686	12137	12058	11936	10460	10279	10153	9846
la25	978	977	977	977	12383	11952	11868	11818	10385	10076	9911	9802
20×10												
la26	1218	1218	1218	1218	23842	21428	20271	19614	21671	20942	20477	19838
la27	1240	1237	1235	1235	25710	22158	20232	19939	22908	22498	21674	21517
la28	1216	1216	1216	1216	24534	22262	20425	20000	21573	21106	20696	20237
la29	1173	1170	1166	1164	22521	20641	18657	17992	19357	18533	18006	17731
la30	1355	1355	1355	1355	23328	21020	19486	19249	22579	21839	21014	20784
30×10 l												
la31	1784	1784	1784	1784	57420	54393	49893	45168	55463	54369	53638	51998
la32	1850	1850	1850	1850	64989	60314	55884	51938	62797	61517	60394	58639
la33	1719	1719	1719	1719	61882	56276	49519	45454	51619	50801	49765	48622
la34	1721	1721	1721	1721	63195	58745	54917	49862	55660	54501	53440	52042
la35	1888	1888	1888	1888	60661	57369	51645	46655	57721	56895	56239	55458
15×15												
la36	1272	1268	1268	1268	18871	17428	16806	16620	20474	19873	19607	19331
la37	1410	1405	1403	1401	19467	18404	17765	17670	22479	21776	21647	21321
la38	1201	1199	1196	1196	18238	16524	16040	15717	17309	16899	16669	16233
la39	1234	1234	1234	1233	18345	16589	16198	15922	18193	17866	17460	16985
la40	1229	1227	1226	1226	18712	16995	16466	16069	18378	17886	17537	17234

Table 7: Objective values obtained with JILS in the JS with total tardiness and total weighted tardiness objective.

objective time	total tardiness				total weighted tardiness			
	60	300	1800	best	60	300	1800	best
10×5								
la01	1194	1194	1194	1194	2299	2299	2299	2299
la02	1076	1071	1065	1065	1762	1762	1762	1762
la03	1076	1076	1076	1076	1951	1951	1951	1951
la04	1096	1096	1096	1096	1917	1917	1917	1917
la05	1165	1164	1164	1164	1878	1878	1878	1878
15×5								
la06	3541	3495	3491	3488	6026	5883	5813	5810
la07	3359	3309	3282	3272	5952	5855	5769	5765
$1 \mathrm{la8}$	3105	3083	3056	3027	5532	5475	5475	5475
la09	3699	3598	3567	3567	5811	5608	5608	5608
1 l 10	3805	3688	3655	3604	6795	6687	6618	6618
20×5								
la11	7301	7136	7032	6929	12474	12355	12043	11885
la12	5801	5750	5702	5668	11009	10862	10737	10542
la13	6756	6692	6659	6618	11878	11652	11539	11475
la14	7838	7771	7758	7675	13453	13345	13244	13107
la15	7306	7166	7109	7089	13016	12668	12595	12354
10×10								
la16	616	612	612	612	1169	1169	1169	1169
la17	711	694	694	694	927	899	899	899
la18	484	484	484	484	935	929	929	929
la19	486	486	486	486	973	949	948	948
la20	555	546	538	536	831	820	805	805
orb01	1414	1262	1246	1246	2625	2578	2568	2568
orb02	707	693	676	656	1423	1416	1408	1408
orb03	1381	1320	1271	1271	2186	2112	2111	2111
orb04	829	823	823	823	1635	1623	1623	1623
orb05	825	809	806	806	1742	1688	1667	1667
orb06	982	973	959	959	1821	1790	1790	1790
orb07	286	284	284	284	591	590	590	590
orb08	1240	1237	1216	1211	2534	2466	2436	2429
orb09	857	856	844	844	1316	1316	1316	1316
orb10	891	863	863	863	1795	1748	1709	1679
15×10								
la21	2263	2163	2120	2098	3974	3670	3608	3560
la22	2599	2448	2392	2264	4909	4638	4579	4356
la23	2522	2359	2267	2244	4133	4073	3922	3777
la24	2356	2262	2148	2113	3945	3804	3759	3579
la25	2297	2186	2162	2092	3862	3586	3527	3313
20×10								
la26	6082	5766	5540	5417	10756	10607	10074	9803
la27	6023	5927	5658	5480	10158	9725	9570	9226
la28	6088	5888	5566	5302	10572	10208	9810	9606
la29	5412	5132	4867	4637	10577	10377	10041	9556
la30	5672	5509	5243	5150	9864	9594	9268	8981
30×10								
la31	17329	17065	16521	16158	31072	30809	30200	29039
la32	18077	17861	17265	16846	33380	32851	32544	32258
la33	16440	16253	15746	15554	28996	28441	28098	26931
la34	16576	16323	16010	15465	30128	29461	28806	28352
1935	17481	17214	16636	16397	32288	31945	31259	30730
15×15								
la36	1988	1842	1797	1792	3578	3286	3196	2981
la37	2128	1884	1753	1565	3053	2726	2608	2290
la38	1484	1348	1278	1101	2795	2496	2400	2159
la39	1200	1040	971	907	2341	1912	1820	1676
1 la 40	1530	1318	1148	1107	2811	2561	2347	2159

Table 8: Objective values obtained with JILS in the JSS with makespan, total flow time, and total squared flow time objective. Results for the total squared flow time objective are provided in units of 1000 .

objective time	makespan			total flow time				total squared flow time				
	60	300	1800	best	60	300	1800	best	60	300	1800	best
10×5												
t2-ps01	798	798	798	798	6057	6053	6050	6050	4083	4060	4053	4053
t2-ps02	784	784	784	784	5509	5505	5505	5505	3479	3479	3479	3479
t2-ps03	749	749	749	749	5113	5092	5092	5092	2988	2973	2973	2973
t2-ps04	732	730	730	730	5521	5485	5478	5478	3406	3375	3375	3375
t2-ps05	691	691	691	691	5050	5041	5041	5041	2885	2876	2874	2874
15×5												
t2-ps06	1026	1026	1026	1025	11017	10773	10706	10608	9035	8870	8685	8610
t2-ps07	970	970	970	970	10332	10187	10144	10039	8188	7982	7912	7851
t2-ps08	975	967	965	963	10428	10255	10193	10140	8403	8121	8019	7816
t2-ps09	1060	1060	1060	1060	11303	11045	10879	10835	9936	9503	9346	9329
t2-ps10	1018	1018	1018	1018	11040	10924	10828	10785	9311	9027	8950	8800
20×5												
t2-ps11	1506	1504	1489	1460	21185	20506	20180	19666	28742	27633	25810	24650
t2-ps 12	1334	1333	1324	1319	19682	19176	18783	18534	22397	22069	21055	20285
t2-ps13	1437	1437	1434	1430	21315	21044	20666	20162	26512	25750	24805	24011
t2-ps14	1489	1489	1480	1469	21738	21378	21015	20595	28982	27816	26097	24860
t2-ps 15	1531	1526	1524	1518	21977	21438	21065	20657	29371	27908	26871	26338
15×10												
t2-LA21sdst	1279	1273	1273	1273	15529	15233	15116	15009	17543	17137	16993	16644
t2-LA24sdst	1163	1157	1155	1154	15317	14899	14780	14630	16538	15854	15658	15380
t2-LA25sdst	1198	1192	1188	1184	14964	14693	14590	14441	16079	15713	15485	15234
20×10												
t2-LA27sdst	1826	1812	1791	1767	30471	30005	29445	28705	52949	51839	50598	47885
t2-LA29sdst	1720	1698	1691	1678	28663	28384	27571	27231	46925	46267	44236	42311
15×15												
t2-LA38sdst	1471	1463	1456	1447	19283	18853	18733	18521	25947	25412	25024	24265
t2-LA40sdst	1499	1492	1488	1480	20051	19615	19458	19267	28114	26915	26464	26002
20×15												
t2-ABZ7sdst	1359	1305	1299	1287	23536	23376	22916	22446	30374	29786	29566	28321
t2-ABZ8sdst	1367	1343	1329	1307	23754	23500	23173	22630	31503	31185	30423	28890
t2-ABZ9sdst	1343	1306	1296	1286	23366	23176	22753	22388	30955	30445	30331	29121

Table 9: Objective values obtained with JILS in the JSS with total tardiness and total weighted tardiness objective.

objective time	total tardiness				total weighted tardiness			
	60	300	1800	best	60	300	1800	best
10×5								
t2-ps01	1659	1631	1623	1623	2868	2852	2852	2852
t2-ps02	1395	1395	1395	1395	2312	2301	2301	2301
t2-ps03	1376	1361	1361	1361	2689	2677	2677	2677
t2-ps04	1594	1583	1583	1583	2538	2538	2538	2538
t2-ps05	1546	1545	1545	1545	2636	2602	2570	2570
15×5								
t2-ps06	4531	4441	4379	4361	7727	7493	7359	7359
t2-ps07	4406	4262	4180	4143	7587	7418	7407	7358
t2-ps08	4378	4164	4083	4062	8153	7823	7627	7524
t2-ps09	4391	4215	4155	4147	7619	7411	7314	7303
t2-ps10	4602	4473	4305	4237	8330	7975	7872	7837
20×5								
t2-ps11	12884	12446	11947	11561	22873	22506	22110	21365
t2-ps12	12378	11907	11510	10918	21935	21674	21171	20937
t2-ps13	12766	12565	12224	11904	22068	21684	21364	20929
t2-ps14	13197	12937	12511	12365	24423	23776	23140	22446
t2-ps15	12977	12586	12179	12023	24099	23200	22721	22127
15×10								
t2-LA21sdst	2961	2772	2674	2609	4851	4597	4454	4347
t2-LA24sdst	2911	2661	2490	2300	5457	5114	4920	4492
t2-LA25sdst	3181	2918	2831	2763	5645	4880	4683	4454
20×10								
t2-LA27sdst	12939	12566	12022	11592	23105	22605	21631	20368
t2-LA29sdst	12723	12449	11648	11360	23395	22973	22149	21493
15×15								
t2-LA38sdst	1925	1689	1445	1282	3642	3118	2632	2417
t2-LA40sdst	2421	2100	1828	1637	4651	3844	2912	2137
20×15								
t2-ABZ7sdst	12019	11716	11175	10804	20452	20210	19336	18378
t2-ABZ8sdst	11613	11293	10818	10331	20453	19986	19168	18759
t2-ABZ9sdst	11291	11013	10664	10473	19877	19470	19091	18710

Table 10: Objective values obtained with JILS in the BJS with makespan, total flow time, and total squared flow time objective. Results for the total squared flow time objective are provided in units of 1000 .

objective time	makespan				total flow time				total squared flow time			
	60	300	1800	best	60	300	1800	best	60	300	1800	best
10×5												
la01	793	793	793	793	5174	5152	5152	5152	3123	3123	3123	3123
la02	793	793	793	793	4937	4937	4937	4937	2982	2982	2982	2982
la03	715	715	715	715	4605	4605	4605	4605	2574	2574	2574	2574
la04	743	743	743	743	4781	4773	4764	4764	2663	2663	2663	2663
la05	664	664	664	664	4447	4447	4447	4447	2309	2309	2309	2309
15×5												
la06	1099	1085	1066	1060	10035	9860	9715	9683	8113	7963	7769	7689
la07	1054	1038	1025	1016	9349	9264	9136	9083	7141	6920	6715	6684
la08	1091	1064	1044	1040	9338	9138	9042	9042	7503	7091	6722	6604
la09	1181	1167	1145	1141	10590	10312	10237	10185	9273	8958	8690	8613
la10	1143	1120	1111	1096	9966	9840	9758	9735	8376	8166	7986	7920
20×5												
la11	1497	1478	1461	1446	16778	16258	16073	15787	17973	17811	17146	16444
la12	1295	1273	1254	1239	14242	13897	13634	13464	13808	13292	12843	12098
la13	1461	1428	1399	1361	16083	15791	15379	15243	17090	16486	16189	15912
la14	1512	1498	1473	1464	16869	16569	16295	16180	18376	18247	17796	17521
la15	1533	1512	1492	1477	17072	16772	16575	16315	20066	18935	18517	18264
10×10												
la16	1078	1066	1060	1060	8222	8166	8123	8109	7378	7218	7187	7187
la17	932	930	929	929	7385	7224	7159	7159	5677	5581	5570	5529
la18	1039	1033	1025	1025	7744	7652	7525	7525	6455	6366	6350	6350
la19	1065	1049	1045	1043	8216	8165	8086	8030	7204	7009	6919	6919
la20	1089	1067	1060	1060	8132	8020	7978	7951	7125	7062	7054	7054
15×10												
la21	1486	1467	1425	1396	15312	14914	14665	14483	18985	16899	16601	15967
la22	1340	1328	1309	1293	14411	14117	13946	13479	15612	15110	14697	14490
la23	1481	1451	1426	1417	15682	15494	15229	15108	18426	17706	17268	16809
la24	1410	1390	1378	1366	15038	14698	14406	14209	17441	16124	15640	15107
la25	1413	1380	1330	1311	14466	14244	13937	13797	16543	15615	14918	14396
la26	1957	1908	1860	1848	25374	25124	24152	23437	38682	36714	35168	34597
la27	2031	1971	1934	1920	26045	25587	24884	24444	40974	39169	37271	36006
la28	1969	1926	1842	1829	25577	25208	24624	24023	39600	37149	36199	35492
1a29	1799	1789	1749	1721	23578	23277	22398	22348	32782	30903	30211	29731
la30	1980	1927	1888	1869	24637	24292	23634	23190	37990	35864	35607	34754
30×10												
la31	2841	2756	2694	2677	50773	49859	49444	48552	106731	104192	99488	96030
la32	3077	2979	2911	2860	55042	54271	53200	52092	126460	121433	116269	110294
la33	2747	2682	2615	2590	49697	49646	49163	47260	102757	98181	94674	91772
la34	2852	2773	2652	2619	51516	51301	50931	50251	111042	106008	101361	96075
la35	2887	2777	2717	2682	52149	51629	51095	50573	109471	103423	99284	97650
15×15												
la36	1731	1719	1670	1639	19768	19588	19406	19059	28934	27923	27511	26621
la37	1871	1835	1804	1761	21588	21175	20790	20537	34209	31780	30889	29660
la38	1680	1635	1607	1593	18992	18854	18381	18199	25288	24826	23972	22757
la39	1749	1723	1659	1634	19415	19216	18889	18602	28135	26616	25605	24938
la40	1749	1699	1645	1609	19527	19300	19006	18810	28666	28068	26502	24132

Table 11: Objective values obtained with JILS in the BJS with total tardiness and total weighted tardiness objective.

objective time	total tardiness				total weighted tardiness			
	60	300	1800	best	60	300	1800	best
10×5								
la01	757	743	743	743	1486	1486	1486	1486
la02	705	700	700	700	1251	1251	1251	1251
la03	736	736	736	736	1461	1461	1461	1461
la04	720	716	716	716	1240	1236	1236	1236
la05	796	796	796	796	1245	1244	1244	1244
15×5								
1a06	3349	3192	3075	2994	5723	5569	5469	5339
la07	3088	3034	2946	2929	4920	4809	4727	4727
1 a 08	3040	2878	2831	2813	4991	4956	4951	4949
la09	3379	3239	3127	3127	5800	5704	5685	5685
la10	3144	3060	2994	2984	5996	5950	5785	5514
20×5								
la11	7289	7169	6873	6572	12943	12733	12077	11627
la12	5980	5909	5557	5417	11304	10618	10132	9789
la13	7300	6898	6566	6317	12650	11992	11483	11310
la14	7660	7533	7182	7089	12869	12486	12245	12129
la15	7739	7464	7109	6985	13550	12749	12321	12223
10×10								
la16	63	25	22	20	96	56	44	40
la17	153	114	104	98	274	215	144	132
la18	94	53	11	3	91	71	24	6
la19	179	103	63	43	364	229	169	86
1 l 20	36	0	0	0	42	4	0	0
15×10								
la21	2181	2066	1856	1764	3639	3123	2787	2688
la22	2616	2360	2045	1862	4061	3798	3511	3318
la23	2701	2457	2200	2120	4942	4128	3642	3537
la24	2344	2227	1975	1882	4265	3915	3398	3268
la25	2129	2038	1766	1655	3742	3162	2738	2598
20×10								
1 l 26	8053	7117	6377	6163	13191	11945	11180	10260
la27	8533	7447	6584	6347	13281	12790	11453	10769
la28	7418	6718	6340	6217	12965	12169	10973	9621
la29	6898	5821	5496	5246	12067	11367	9746	9315
la30	6453	5856	5337	5224	10617	9783	8770	7379
30×10								
la31	28484	25177	23913	21857	41804	41747	41090	39088
la32	38955	32441	27292	25136	45338	44723	44251	42510
la33	37945	35852	32246	28101	40062	39894	39164	36088
la34	43523	41059	36426	33874	42488	41882	41381	40125
la35	27341	25163	24507	23735	42060	41296	40418	38181
15×15								
la36	1556	986	717	602	2302	1754	1338	1078
la37	1744	1184	932	822	2555	1978	1664	1377
la38	1451	1069	903	726	1984	1639	1099	726
la39	1467	813	561	405	1383	1075	786	630
la40	3458	1211	983	943	2195	1768	1204	1113

References

Applegate D, Cook W (1991) A computational study of the job-shop scheduling problem. ORSA Journal on Computing 3(2):149-156
Balas E, Simonetti N, Vazacopoulos A (2008) Job shop scheduling with setup times, deadlines and precedence constraints. Journal of Scheduling 11(4):253-262
Blazewicz J, Domschke W, Pesch E (1996) The job shop scheduling problem: conventional and new solution techniques. European Journal of Operational Research 93(1):1-33
Brucker P, Knust S (2011) Complex Scheduling, 2nd edn. Springer
Brucker P, Thiele O (1996) A branch \& bound method for the general-shop problem with sequence dependent setup-times. OR Spectrum 18(3):145-161
Brucker P, Jurisch B, Sievers B (1994) A branch and bound algorithm for the job-shop scheduling problem. Discrete Applied Mathematics 49(1):107-127
Bülbül K, Kaminsky P (2013) A linear programming-based method for job shop scheduling. Journal of Scheduling 16(2):161-183
Bürgy R (2014) Complex Job Shop Scheduling: A General Model and Method. PhD thesis, Department of Informatics, University of Fribourg
Bürgy R, Gröflin H (2016) The blocking job shop with rail-bound transportation. Journal of Combinatorial Optimization 31(1):151-181
Eilon S, Hodgson R (1967) Job shops scheduling with due dates. International Journal of Production Research 6(1):1-13
Glover FW, Laguna M (1997) Tabu search. Kluwer
Gonçalves JF, Resende MGC (2014) An extended Akers graphical method with a biased random-key genetic algorithm for job-shop scheduling. International Transactions in Operational Research 21(2):215-246
González MA, Vela CR, Sierra M, Varela R (2010) Tabu search and genetic algorithm for scheduling with total flow time minimization. In: COPLAS 2010: ICAPS Workshop on Constraint Satisfaction Techniques for Planning and Scheduling Problems, pp 33-41
González MÁ, González-Rodríguez I, Vela CR, Varela R (2012a) An efficient hybrid evolutionary algorithm for scheduling with setup times and weighted tardiness minimization. Soft Computing 16(12):2097-2113
González MA, Vela CR, Varela R (2012b) A competent memetic algorithm for complex scheduling. Natural Computing 11(1):151-160
Graham RL, Lawler EL, Lenstra JK, Rinnooy Kan AHG (1979) Optimization and approximation in deterministic sequencing and scheduling: a survey. Annals of Discrete Mathematics 5:287-326
Grimes D, Hebrard E (2015) Solving variants of the job shop scheduling problem through conflict-directed search. INFORMS Journal on Computing 27(2):268-284
Gröflin H, Klinkert A (2007) Feasible insertions in job shop scheduling, short cycles and stable sets. European Journal of Operational Research 177(2):763-785
Gröflin H, Klinkert A (2009) A new neighborhood and tabu search for the blocking job shop. Discrete Applied Mathematics 157(17):3643-3655
Gröflin H, Pham DN, Bürgy R (2011) The flexible blocking job shop with transfer and set-up times. Journal of Combinatorial Optimization 22(2):121-144

Hooker JN (1995) Testing heuristics: We have it all wrong. Journal of Heuristics 1(1):33-42
Lawrence S (1984) Supplement to resource constrained project scheduling: an experimental investigation of heuristic scheduling techniques. GSIA, Carnegie Mellon University, Pittsburgh, PA
Mascis A, Pacciarelli D (2002) Job-shop scheduling with blocking and no-wait constraints. European Journal of Operational Research 143(3):498-517
Mati Y, Dauzère-Pérès S, Lahlou C (2011) A general approach for optimizing regular criteria in the job-shop scheduling problem. European Journal of Operational Research 212(1):33-42
Nowicki E, Smutnicki C (1996) A fast taboo search algorithm for the job shop problem. Management Science 42(6):797-813
Nowicki E, Smutnicki C (2005) An advanced tabu search algorithm for the job shop problem. Journal of Scheduling 8(2):145-159
Oddi A, Rasconi R, Cesta A, Smith SF (2012) Iterative improvement algorithms for the blocking job shop. In: Twenty-Second International Conference on Automated Planning and Scheduling
Peng B, Lü Z, Cheng TCE (2015) A tabu search/path relinking algorithm to solve the job shop scheduling problem. Computers and Operations Research 53:154-164
Perregaard M, Clausen J (1998) Parallel branch-and-bound methods for the job-shop scheduling problem. Annals of Operations Research 83(0):137-160
Pinedo ML (2012) Scheduling: Theory, Algorithms, and Systems, 4th edn. Springer
Potts CN, Strusevich VA (2009) Fifty years of scheduling: a survey of milestones. Journal of the Operational Research Society 60:S41-S68
Pranzo M, Pacciarelli D (2015) An iterated greedy metaheuristic for the blocking job shop scheduling problem. Journal of Heuristics
Taillard E (1994) Parallel taboo search techniques for the job shop scheduling problem. ORSA Journal on Computing 6:108-108
Tufte ER (2001) The Visual Display of Quantitative Information, 2nd edn. Bertrams
Vela C, Varela R, González M (2010) Local search and genetic algorithm for the job shop scheduling problem with sequence dependent setup times. Journal of Heuristics 16:139-165
Zhang CY, Li P, Rao Y, Guan Z (2008) A very fast TS/SA algorithm for the job shop scheduling problem. Computers and Operations Research 35(1):282-294

[^0]: R. Bürgy

 GERAD \& Department of Mathematics and Industrial Engineering, Polytechnique Montréal, Montréal (Québec), Canada H3C 3A7, E-mail: reinhard.burgy@gerad.ca

