Mise en réserve d’éléments de vitraux
pour la Römisch-katholische Kirchgemeinde de Soleure

Mémoire présenté par :

Vuignier Julie

Pour l’obtention du

Bachelor of Arts HES-SO en Conservation
Objets archéologiques et ethnographiques

Année académique : 2019 - 2020

Remise du travail : 31.08.2020

Jury : 9.10.2020

Nombre de pages : 89
Engagement

« J’atteste que ce travail est le résultat de ma propre création et qu’il n’a été présenté à aucun autre jury que ce soit en partie ou entièrement. J’atteste également que dans ce texte toute affirmation qui n’est pas le fruit de ma réflexion personnelle est attribuée à sa source et que tout passage recopié d’une autre source est en outre placé entre guillemets. »

Neuchâtel, le 31 août 2020.
Remerciements

Je souhaite remercier toutes les personnes qui ont contribué de près ou de loin à ce projet de Bachelor et m’ont soutenu tout au long du processus. Dans ce cadre, je remercie particulièrement :

Mme Kathrin Kocher curatrice des biens paroissiaux de la Römisch-katholische Kirchgemeinde de Soleure, restauratrice textile à la retraite et responsable, pour son temps, son aide précieuse, sa confiance et son investissement dans ce projet. Elle a su rendre ce stage agréable et me mettre à disposition les moyens nécessaires au bon déroulement de mon travail.

Le Vitrocentre de Romont, en particulier Mme Astrid Kaiser, historienne de l’art et responsable des inventaires des collections du Vitromusée et Mme Sophie Wolf, géologue-minéralogiste, spécialisée en conservation et technologie du vitrail, pour leur accueil toujours chaleureux, leur aide précieuse, le temps accordé, leur partage de connaissances, l’accessibilité à la documentation spécifique et la relecture de certaines parties de ce travail.

Dr Stefan Trümpler, ancien directeur du Vitrocentre et du Vitromusée de Romont, pour le temps accordé, son partage d’expérience, ses avis et ses conseils avisés.

M. Guido Schenker, ancien chef de la protection des biens culturels du canton de Soleure et photographe pour les monuments historiques de Soleure, pour la campagne photographique des vitraux et les recherches effectuées dans les archives des monuments historiques de Soleure.

Le Collège des enseignants, M. Valentin Boissonnas, référent de ce travail de Bachelor, Dr Régis Bertholon, M. Thierry Jacot et M. Tobias Schenkel, pour leur disponibilité, la mise à disposition d’appareils, leurs avis et conseils avisés.

Mme Hortense de Corneillan, conservatrice-restauratrice, chargée de cours et coordinatrice de la formation continue à la HE Arc CR et Mme Bluenn Boulangé, conservatrice-restauratrice d’objets métalliques et chargée de cours à la HE Arc CR pour leurs conseils avisés et leur expertise.

M. Thomas Köstinger, responsable commercial de l’entreprise Fillistorf à Bulle et M. Sylvain Richard, employé Serex construction plastiques SA à Puidoux pour leur expertise et conseils concernant certains produits mentionnés dans ce travail.

M. Pascal Moret, peintre verrier à Cugy (fribourg), pour son expertise sur des questions pratiques concernant les vitraux.

Les nombreux relecteurs de ce travail pour leur aide précieuse.

Les étudiants en conservation-restauration de l’HE Arc pour l’entraide et le soutien manifeste tout au long de ces trois années de Bachelor et en particulier lors de ce travail.

Mon entourage, famille et amis pour leur soutien infaillible et leur patience.
Table des matières

Résumés .. 4
Zusammenfassung .. 4
Abstract .. 5
1. Introduction .. 6
2. Méthodologie .. 7
3. Aspects théoriques ... 7
 3.1. Technologie du vitrail ... 7
 3.2. Verre .. 8
 3.3. Plomb ... 10
4. Contexte patrimonial ... 10
5. Objets étudiés ... 11
 5.1. Histoire matérielle .. 11
 5.2. Valeurs culturelles associées .. 13
 5.3. Constats d’état ... 13
 5.3.1. Diagnostic ... 17
 5.3.2. Pronostic ... 18
6. Conditionnement ... 19
 6.1. Rappel du mandat ... 19
 6.2. Problématique des polluants .. 19
 6.2.1. Plateau en bois .. 19
 6.2.2. Pare-vapeurs .. 21
 6.2.3. Étude des pare-vapeurs .. 22
6.3. Conceptualisation ... 24
 6.3.1. Recherches ... 24
 6.3.2. Réflexions .. 25
6.4. Proposition .. 27
6.5. Réalisation ... 29
7. Évaluation des conditions de conservation .. 30
 7.1. Agents de dégradations et sensibilités .. 30
 7.2. Contexte de conservation ... 30
 7.3. Analyse des conditions de conservation ... 31
 7.4. Recommandations .. 32
8. Discussion ... 34
9. Conclusion ... 36
10. Bibliographie .. 37
11. Sources auxiliaires .. 40
12. Liste des figures .. 40
13. Liste des schémas ... 42
14. Liste des tableaux ... 43
15. Acronymes et abréviations ... 43
16. Glossaire .. 44
17. Liste des produits mentionnés .. 45
18. Listes des fournisseurs mentionnés ... 46
19. Annexes .. 47
 19.1. Sécurité lors des interventions .. 47
 19.2. Objets étudiés ... 49
 19.2.1. Campagne photographique ... 49
 19.2.2. Histoire matérielle .. 55
 19.2.3. Attribution des numéros d’inventaire ... 56
 19.2.4. Constats d’état .. 57
 19.3. Étude des pare-vapeurs ... 71
 19.3.1. Test d’acidité du bois ... 71
 19.3.2. Test d’acidité des produits volatils .. 72
 19.3.3. Test d’Oddy ... 72
 19.4. Conditionnement .. 77
 19.4.1. Conceptualisation ... 77
 19.4.2. Réalisation .. 79
 19.5. Contexte de conservation ... 85
 19.6. Recommendations .. 86
 19.6.1. Récapitulatif de l’évaluation des conditions de conservation .. 88
Résumés

La Römisch-katholische Kirchgemeinde de Soleure a mis au jour une série d’éléments de vitraux, entreposés jusqu’alors à l’intérieur d’une caisse en bois, dans un lieu de stockage paroissial. Le mandant souhaite leur mise en réserve dans des conditions permettant de favoriser leur conservation à long terme. Les vitraux sont actuellement entreposés sur des plateaux en bois dont le mandant demande qu’ils soient intégrés dans le conditionnement futur.

Ce travail propose tout d’abord d’élaborer une proposition de mise en réserve prenant en compte la situation et les contraintes actuelles de l’institution. Ceci se traduit en l’élaboration d’un système de fixation des vitraux sur leur support en bois. Une étude est menée en parallèle concernant la problématique des polluants inhérente à l’emploi d’un produit du bois comme support. En effet, les composés organiques volatils pouvant émaner du support peuvent, sur le long terme, causer des dommages importants aux vitraux. Dans ce même cadre, des essais de potentiels pare-vapeurs ont été effectués. Ce projet aboutit sur une analyse des conditions de conservation obtenues. Ainsi, sur la base de cette évaluation, des recommandations pour l’amélioration potentielle des conditions de conservation ont été établies.

Conséquemment au projet, la proposition de conditionnement a pu être appliquée au corpus de vitraux. Cette dernière prend en compte l’état de conservation des objets et permet le déplacement des objets au sein des réserves, et ce dans de bonnes conditions. La solution de fixation apportée est simple, aisément adaptable et entièrement démontable. L’analyse des conditions de conservation a principalement mis en évidence la nécessité d’une réflexion supplémentaire de la part de l’institution concernant la localisation et l’entreposage des plateaux au sein des réserves. La nécessité d’une surveillance des objets, permettant d’identifier les signes de dégradation liés à l’action des polluants, a aussi été soulignée afin de réagir de manière appropriée.

Zusammenfassung

Abstract

The *Römisch-katholische Kirchgemeinde* in Solothurn has found a series of stained-glass elements that were previously kept inside of a wooden case in a parish storage. The principal wishes to store them under conditions that will ensure their long-term preservation. The stained-glass windows are currently stored on a wooden plate. The principal requests that the wooden plate be included in future packaging.

This work first puts forth a storage proposal that considers the institution’s current situation and constraints. It results in the elaboration of a system that consists in wedging the stained-glass windows on their wooden support while addressing the problem of pollutants inherent to its use. In fact, volatile organic compounds can emanate from the wooden support and cause significant damage to stained glass in the long term. In this context, a study of wood and various vapour barriers is conducted. This project leads to an analysis of the resulting conservation conditions. Based on this evaluation, recommendations for the potential improvement of the conservation conditions were established.

As a result of this project, the packaging proposal has been applied to the stained-glass corpus. The latter considers the state of conservation of the objects and allows them to be moved within the reserves under good conditions. The fixing solution provided is simple, easily adaptable and completely dismountable. The analysis of the conservation conditions has mainly highlighted the need for further thought on behalf of the institution handling the location and storage of the plate within the reserves, as well as the need for monitoring of the objects to identify signs of deterioration linked to the action of pollutants, which would help reacting appropriately.
1. Introduction

La Römisch-katholische Kirchgemeinde de Soleure (RKSO) a mis au jour une série d’éléments de vitraux (32 vitraux, 165 fragments de verre et 14 fragments de plombs) entreposés jusqu’alors à l’intérieur d’une caisse en bois dans un lieu de stockage paroissial. Le mandant souhaite leur mise en réserve dans des conditions permettant de favoriser leur conservation à long terme.

22 vitraux sont actuellement entreposés sur des plateaux en bois créés spécialement pour l’occasion par M. Ulrich Bucher-Remund, menuisier-ébéniste (fig. 1). Le mandant demande que les plateaux en bois soient intégrés dans le conditionnement futur. Les 22 objets doivent dans la mesure du possible être stockés sur les seize plateaux existants. Le conditionnement proposé doit aussi permettre le transport sécurisé des objets. Les plateaux mesurant 85 x 85 cm, leur passage dans les réserves implique une inclinaison du plateau de 39° par rapport à l’horizontal (sch. 1). L’emplacement défini pour leur entreposage se trouve sur le haut d’un module de rangement.

Toutefois, l’emploi des supports en bois peut, par les émanations potentielles de composés organiques volatils (COV) provenant de ces derniers, causer des dommages importants aux vitraux. Dans ce cadre, une étude du bois et de différents pare-vapeurs est menée en parallèle de l’élaboration d’un système de fixation des vitraux sur leur support. La localisation future envisagée pour le stockage est aussi une source potentielle de dommages principalement liés aux risques de chute et de manipulation inadéquate.

Les principales difficultés liées à ce projet sont les contraintes spatiales, organisationnelles et budgétaires. Cependant, ces contraintes sont celles de nombreux musées et institutions. Ce projet est donc très représentatif d’une réalité professionnelle dans le domaine de la conservation préventive.

Ce travail propose tout d’abord d’élaborer une proposition de mise en réserve pour les vitraux prenant en compte la situation et les contraintes actuelles. Subséquemment à cela, une analyse des conditions de conservation est projetée. Elle permettra de mettre en évidence les problèmes demeurant. Sur la base de cette évaluation, des recommandations pour l’amélioration potentielle des conditions de conservation pourront alors être établies.
2. Méthodologie

Après s’être penché sur les aspects théoriques généraux entourant le sujet du vitrail (sa technologie de fabrication, ses matériaux constitutifs et les processus de dégradations spécifiques), le cas du corpus de vitraux de Soleure est étudié. Cette étude se traduit par l’établissement de leur contexte patrimonial, des recherches concernant leur histoire matérielle et les valeurs culturelles pouvant leur être associées. Le constat d’état est effectué afin de définir l’état de conservation du corpus et les possibilités de conditionnement pouvant être envisagées. Successivement à cela, se développe le chapitre de la problématique de conditionnement. Il s’articule autour d’une étude contextuelle liée aux polluants, des recherches littéraires sur les solutions de conditionnement existantes, une réflexion aboutissant sur la conceptualisation d’une proposition adaptée à la situation. Dans le cadre de l’étude contextuelle liée aux polluants, le bois des plateaux et différents pare-vapeurs sont mis à l’épreuve à l’aide de différents tests proposés dans la littérature comme un test d’acidité du bois\(^1\), un test d’acidité des composés volatils\(^2\) ou un test de vieillissement artificiel accéléré (test d’Oddy)\(^3\). Cette étude est menée afin de mieux cerner les tenants et aboutissants liés à l’emploi des plateaux en bois comme support et d’évaluer les risques lui étant inhérents. Tout ceci afin d’avoir une vision la plus objective possible de la situation. À la suite de ce travail, une analyse des conditions de conservation alors obtenues est entreprise dans la perspective d’élaborer des recommandations d’améliorations à l’attention de la paroisse. Une discussion des résultats obtenus clôture ce dossier.

3. Aspects théoriques

3.1. Technologie du vitrail

La technique du vitrail est restée pratiquement inchangée depuis le moyen-âge\(^4\). Ces objets à caractère architectural se composent de verres plats colorés sertis dans un réseau de plomb. Le verre est découpé selon des gabarits établis par le carton. Le carton est une représentation papier à l’échelle du vitrail final. Des décors peints peuvent être ajoutés à l’aide de grisaille et émaux généralement sur la face interne et de rehauts à l’aide de jaune d’argent sur la face externe. La grisaille, ainsi que les émaux, sont des peintures vitrifiables, composées d’un mélange de fondant souvent obtenu par broyage de verre plombifère en poudre fine et d’oxydes métalliques destinés à colorer le mélange\(^5\). Elles sont mélangées dans un liant avant l’application au pinceau. Le décor peint est ensuite fixé par cuisson. Le jaune d’argent est une couleur fixée, lui aussi, par cuisson. Elle est obtenue par l’application d’un

\(^1\) Tétreault, 1999, p.36.
\(^2\) Tétreault, 1999, p.36
\(^3\) Tétreault, 1999, p.39.
\(^5\) Pallot-Frossard, 2006, p.11.
mélange de sel d’argent et d’argile servant de substrat en surface du verre. Les verres sont ensuite assemblés à l’aide de baguettes de plomb qui sont brasées à l’étain en leur intersection. Les plombs de sertissage peuvent, dans certains cas, être étamés afin d’augmenter leur résistance à la corrosion. À la suite du sertissage, un masticage peut être effectué au niveau de la jointure entre le verre et le plomb afin de rendre la structure étanche et rigide. Cette étape n’est pas systématique. Le mastic, matériau pâteux et adhésif durcissant à l’air, est principalement composé de carbonate de calcium et d’huile de lin. De l’oxyde de plomb peut aussi entrer dans sa composition.

3.2. Verre

Le verre est un matériau dur et fragile. Le principal composant du verre est la silice (SiO$_2$) correspondant à environ 70 % de la masse. Elle connaît un point de fusion élevé, à environ 1720 °C. Afin d’abaisser le point de fusion, des fondants sous forme d’oxydes alcalins sont ajoutés, facilitant ainsi les possibilités technologiques. L’oxyde de sodium (Na$_2$O) et l’oxyde de potassium (K$_2$O) sont utilisés comme fondants. Il est à noter que des mélanges des deux types de fondants ont pu être utilisés. Pour augmenter la résistance chimique du verre, des stabilisants sont ajoutés. L’oxyde de calcium (CaO), aussi connu sous la désignation de chaux, est le plus utilisé. D’autres modificateurs peuvent être encore ajoutés à la composition du verre comme les colorants. Les couleurs du verre sont obtenues par l’ajout d’oxydes métalliques. La composition du verre va avoir un impact important sur sa stabilité. Par exemple, le choix de la nature du fondant impacte la résistance chimique du verre. Les verres sodiques sont en général plus résistants chimiquement que les verres potassiques. Ce mélange est porté à fusion. Il est ensuite refroidi de manière à empêcher la cristallisation de la matière. Le verre est donc un solide amorphe, c’est-à-dire sans structure régulière ou ordonnée, ce qui lui offre, entre autres, sa propriété physique de transparence.

Les altérations du verre connaissent deux facteurs principaux : la composition du verre et les impacts environnementaux. L’eau est un facteur environnemental majeur dans la détérioration du verre. La présence de cet agent de dégradation peut être due, par exemple, à une humidité relative (HR) trop élevée ou des fluctuations de températures engendrant la formation de condensation à la surface du verre. Une réaction chimique de lixiviation va pouvoir se mettre en place. Celle-ci correspond à la

6 Trümpler, 2004, p.3.
7 Trümpler, 2020 [Entretien].
10 Trümpler, 2004, p.3.
11 de Corneillan, 2020 [Courriel].
12 Koob, 2006, p.11.
13 Davison, 2003 p.3.
17 Robinet, 2006, p. 23.
dissolution sélective des éléments alcalins du verre sous forme d’ions qui sont ramenés en surface. Ceux-ci sont remplacés par des ions d’hydrogène dans la structure du verre. L’hydrogène étant moins volumineux que le sodium ou encore moins que le potassium, cet échange d’ions va fragiliser la structure du verre\(^\text{18}\). Ceci explique pourquoi les verres potassiques sont plus vulnérables que les verres sodiques. À la surface du verre, une couche composée de silice hydratée et appauvrie en alcalins va se former à la suite de cette migration d’ions. Les ions se retrouvant sur la surface peuvent se combiner avec des COV et former des sels solubles ou insolubles. Certains de ces sels sont hygroscopiques et favorisent la présence d’eau en surface du verre, ce qui promeut la lixiviation du verre\(^\text{19}\). Cet enchaînement de réactions peut aboutir à la dissolution du réseau siliceux et à l’effondrement de la structure\(^\text{20}\). Les sels insolubles peuvent former des « croûtes » diminuant la transparence du verre\(^\text{21}\). Ces croûtes constituent une zone tampon empêchant d’autres attaques du verre\(^\text{22}\). C’est pourquoi il est important de réfléchir à la pertinence d’un dégagement. En effet, le dégagement de ces croûtes permet à l’altération de reprendre, si le vitrail n’est pas protégé des agents d’altérations atmosphériques\(^\text{23}\). Ces altérations chimiques sont accompagnées d’altérations visuelles témoignant de divers niveaux de dégradations tels que l’exsudation, l’opacification, l’irisation, la microfissuration, la délamination.

Dans le cadre des vitraux, ces phénomènes touchaient jusqu’alors surtout la face externe, car lors de sa période d’usage celle-ci était directement exposée aux facteurs environnementaux externes comme les intempéries et l’air pollué\(^\text{24}\). Toutefois, depuis l’introduction du chauffage dans les églises, ce sont plutôt les surfaces internes des vitraux qui sont les plus touchées, car les différences de température entre l’extérieur et l’intérieur augmentent le risque de condensation sur ces surfaces\(^\text{25}\).

Au-delà des altérations dues à des réactions chimiques, le verre est aussi particulièrement sensible aux dommages physiques provenant des chocs ou des contraintes mécaniques. Ceux-ci peuvent résulter de défauts de fabrication, d’impacts, de manipulations inadéquates, de chocs thermiques, d’abrasions, des interventions de dépose*\(^\text{26}\) ou de traitements de restauration passés\(^\text{27}\).

\(^{18}\) Davison, 2003, p.175.
\(^{19}\) Davison, 2003, p.190.
\(^{20}\) Davison, 2003, p.176.
\(^{21}\) Robinet, 2006, p.25.
\(^{22}\) Pallot-Frossard, 2006, p.31.
\(^{23}\) Pallot-Frossard, 2006, p.31.
\(^{24}\) Pallot-Frossard, 2006, p.12.
\(^{25}\) Wolf, 2020 [Relecture].
\(^{26}\) Les mots suivis d’un astérisque sont définis dans le glossaire à la page 44.
\(^{27}\) Davison, 2003, p.170.
3.3. Plomb

Le plomb est un métal lourd de couleur gris-bleuâtre. Avec une densité de 11,35 g/cm³, il est le métal le plus lourd commun. Le plomb est très mou et malléable. Cette caractéristique le rend vulnérable aux altérations mécaniques. Dans le cadre de la technique du vitrail, les réseaux de plomb peuvent subir des modifications au niveau de leurs formes d’autant plus s’il y a des manques de pièces en verre. Ces déformations peuvent provoquer des altérations allant de la fente à la rupture du réseau si le domaine plastique du plomb est dépassé lors de la déformation.

Le plomb est assez résistant à la corrosion. Cette résistance résulte d’une passivation de la surface par la formation d’une couche d’oxyde de plomb. Cette couche d’oxyde protège ainsi contre toute oxydation supplémentaire. En effet, la couche de corrosion formée est superficielle, adhérante, compacte et insoluble dans la plupart des environnements. Elle joue alors un rôle protecteur contre des attaques.

Toutefois, dans les milieux contaminés par des acides organiques volatiles comme l’acide acétique (CH₃COOH) et l’acide formique (HCOOH), des dépôts superficiels pulvérulents blancs sont susceptibles d’apparaître. Ces derniers caractérisent une corrosion active. Les concentrations amorçant ce type de corrosion sont très faibles dans le cas du plomb, pour l’acide acétique 0.2 partie par million (ppm) suffisent. La corrosion active est attribuable à la formation de sels de plomb, dans la plupart des cas du carbonate de plomb basique (cérase, Pb(OH)₂ · 2 PbCO₃). Tant que les concentrations d’acides organiques et que l’HR nécessaire à la formation de ces sels demeurent, le plomb continue de se corroder. Ce processus est donc destructif et autocatalytique, car lors de la formation de ces sels des acides organiques sont relâchés ce qui nourrit la réaction chimique.

4. Contexte patrimonial

Le contexte patrimonial de ce projet est particulier dans le sens où ce dernier n’est pas muséal, mais paroissial. La RKSO gère six églises et chapelles de la ville de Soleure. Le cœur des collections se compose d’objets et parements liturgiques historiques constituant le trésor d’église. Les objets présent dans les réserves ont dans ce sens pour la majorité une valeur d’usage qui justifie leur conservation.

28 Selwyn, 2004, p.127.
32 Selwyn, 2010, p. 3.
33 Selwyn, 2004, p.39.
34 Wolf, 2020 [Relecture].
peuvent encore être utilisés lors d’occasions spécifiques. Les réserves rassemblent et centralisent les objets provenant de différents lieux de cultes soleurois hors de ces événements. Mme Kathrin Kocher, restauratrice textile à la retraite, est la curatrice responsable des collections paroissiales. Bien que la valeur d’usage joue un rôle primordial, la politique d’acquisition de Mme Kocher dépasse ce critère. Elle collecte aussi des témoins historiques divers ayant un lien avec l’histoire de la paroisse passée ou actuelle. Elle veille à la conservation de ces objets et à leur accessibilité autant au niveau de la paroisse que pour des intéressés externes comme des chercheurs ou des musées. Elle crée le lien entre la RKSO et les deux institutions que sont le service cantonal des monuments historiques (KDSO) et la protection des biens culturels. L’inventorisation de biens mobiliers paroissiaux fait partie intégrante des tâches effectuées par Mme Kocher. Cette inventoriisation se fait de manière digitale sous forme de base de données.

5. Objets étudiés

Le projet présenté dans ce dossier se concentre sur un corpus de vitraux provenant de la ville de Soleure. Ce corpus se compose de 22 éléments de vitraux. Ils ont été retrouvés avec 10 écoinçons*, 165 fragments de verre et 14 fragments de plomb. Les 32 éléments de vitraux peuvent être classifiés selon deux types : les vitraux de remplacements* (25) et les vitraux de lancettes* (7). Les 10 écoinçons susmentionnés sont inclus dans les vitraux de remplacements, mais ils ne seront pas conditionnés sur les plateaux. Une campagne photographique des objets a été effectuée en collaboration avec le KDSO (fig. 2)37.

5.1. Histoire matérielle

Les vitraux ont été mis au jour en juin 2018 selon l’horodatage des photographies. Ils ont été retrouvés à l’intérieur d’une caisse en bois dans un lieu de stockage paroissial correspondant à une remise (fig. 3)38. Lors de leur découverte, aucune information sur l’origine n’est connue. Toutefois, un certain nombre d’informations a pu être mis en lien avec ces vitraux dans le cadre de

37 Cf. Annexes : 19.2.1, p.49 à 54.
ce travail, en collaboration avec le KDSO et le Vitrocentre de Romont.
La forme particulière de certains panneaux a ouvert l’hypothèse que ces derniers pourraient provenir de la Sankt Peterskapelle (PKSO). Une visite est alors organisée sur place le 26 mai 2020 afin de prendre des photos des remplacements. La comparaison des formes des ajours de remplacements et des vitraux a renforcé cette hypothèse.

40 Cf. Annexes : fig. 44 et 45, p.55.
Grâce aux informations recueillies, des numéros d’inventaire respectant la logique établie par le Corpus Vitrearum, organisme international rassemblant des historiens de l’art du vitrail, ont pu être attribués aux vitraux des remplages.

5.2. Valeurs culturelles associées

5.3. Constats d’état

Précédemment à cette étape de travail, une recherche de concordance entre les fragments et les vitraux a été effectuée. 104 fragments de verre ont pu être reliés à leur vitrail d’origine. Les constats d’états effectués en mai 2020 dans le cadre de ce travail ont été orientés conditionnement. À l’aide de schémas, les principales dégradations structurelles de l’objet ont pu être mises en évidence (sch. 2). Ce

41 Cf. Annexes : 19.2.3, p.56 à 57.
42 De Vis et al., 2015, p.68.
43 Cf. Annexes : 19.2.4, p.57 à 70.

Les principales altérations structurales présentent sur ce corpus d’objet sont les cassures, les manques, les déformations et les déchaussements des verres. Ces altérations fragilisent grandement la stabilité structurelle des objets. Elles ont souvent une incidence l’une sur l’autre comme pour la déformation des plombs de sertissage qui peut mener à la perte d’une pièce en verre, au déchaussement ou au bris d’une autre. Des éléments de montage sont encore présents sur certains vitraux sous forme de vergette* ou d’attaches métalliques témoignant de la présence ultérieure d’une vergette. Les verres ne présentent pas de signes de corrosion. Les plombs des vitraux sont étamés. Une couche d’étain a été appliquée sur ces derniers afin d’augmenter leur rigidité et leur résistance contre les processus de corrosion44. Ils ne présentent généralement pas de traces d’oxydation.

En ce qui concerne l’état de surface des objets, le corpus d’objet connaît un encrassement général important. Les objets ont déjà fait l’objet d’une intervention de dépoussiérage sommaire lors de leur découverte effectuée par Mme Kocher. Des éclaboussures et des coulures de produits exogènes sont sur l’ensemble des vitraux ayant été identifiés comme provenant de la Sankt Peterskapelle. Les décors peints sont majoritairement en bon état sans perte d’adhérence, pulvérulence ou lacune. La grisaille des panneaux PKSO_2054a et PKSO_2054b est pulvérulente par endroits caractérisées par des couches importantes de grisaille. Des marques d’abrasion ont aussi été relevées au niveau de certains décors. Des traces de rouille sont visibles sur quelques panneaux. Certains panneaux ont d’ores et déjà fait l’objet d’intervention dans le passé comme en témoigne la présence de plomb de casse au niveau de lignes de cassures de certaines pièces en verre. Certaines différences dans le décor peint ou la couleur des verres laissent supposer le remplacement de plusieurs verres dans le passé.

Un glossaire visuel des altérations est constitué afin de mieux décrire les altérations observées sur le corpus (tab. 1). Les altérations observées par vitrail sont aussi résumées dans un tableau (tab. 2, p.18).

44 Trümpler, 2020 [Entretien].
<table>
<thead>
<tr>
<th>Altération</th>
<th>Description</th>
<th>Exemple visuel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Altérations structurelles</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manque</td>
<td>Verres manquants, plombs manquants</td>
<td>RKSO_2065a</td>
</tr>
<tr>
<td>Pièces mobiles</td>
<td>Verres mobiles ayant gardé leur localisation lors de la découverte ou replacés à la suite de la recherche de correspondance</td>
<td>PKSO_2053a</td>
</tr>
<tr>
<td>Déformation</td>
<td>Déformation du réseau de plomb. Ce type de déformation s’accentue dans le cas où la pièce de verre est manquante</td>
<td>RKSO_2065a</td>
</tr>
<tr>
<td></td>
<td>Le vitrail n’est plus plat. Des bombements issus de la déformation des plombs sont visibles</td>
<td>PKSO_2057a</td>
</tr>
<tr>
<td>Cassure</td>
<td>Verres brisés</td>
<td>PKSO_2059a</td>
</tr>
<tr>
<td>Déchaussement</td>
<td>Déchaussement du verre, réseaux de plomb faibles</td>
<td>RKSO_2067a</td>
</tr>
</tbody>
</table>
HE-Arc CR, Bachelor of Arts HES-SO en Conservation
Vuignier Julie, mise en réserve d’éléments de vitraux, 31.08.2020

<table>
<thead>
<tr>
<th>Altération</th>
<th>Description</th>
<th>Exemple visuel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Altérations structurelles</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Éléments de montage</td>
<td>Vergettes, baguettes en alliage ferreux servant à renforcer le vitrail</td>
<td>PKSO_2058c</td>
</tr>
<tr>
<td>Attaches métalliques</td>
<td>Attaches métalliques servant à maintenir la vergette en place</td>
<td>PKSO_2059a</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Altérations de surface</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Encrassement</td>
<td>Accumulation de dépôts exogènes plus ou moins adhérents</td>
<td>RKSO_2067a</td>
</tr>
<tr>
<td>Traces de rouille</td>
<td>Traces témoignant de la présence d’une vergette par déposition de produit d’oxydation du fer à la surface de l’objet</td>
<td>RKSO_2064a</td>
</tr>
<tr>
<td>Éclaboussures / coulures</td>
<td>Dépôts issus d’éclaboussures ou de coulures d’une matière exogène (mastic, ciment)</td>
<td>PKSO_2058c</td>
</tr>
<tr>
<td>Abrasion</td>
<td>Marque d’abrasion sur les décors peints ou les pièces en verre</td>
<td>RKSO_2068a</td>
</tr>
</tbody>
</table>
Altérations de surface

<table>
<thead>
<tr>
<th>Altération</th>
<th>Description</th>
<th>Exemple visuel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pulvérulence</td>
<td>Perte d’adhérence de la grisaille sous forme de poussière</td>
<td>PKSO_2054a</td>
</tr>
</tbody>
</table>

Interventions antérieures

<table>
<thead>
<tr>
<th>Altération</th>
<th>Description</th>
<th>Exemple visuel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remaniement</td>
<td>Pièces suspectées d’être issues d’interventions antérieures</td>
<td>RKSO_2067a</td>
</tr>
<tr>
<td>Plomb de casse</td>
<td>Baguette de plomb s’ajoutant au réseau de plomb d’origine pour sertir une pièce en verre brisée</td>
<td>RKSO_2068a</td>
</tr>
</tbody>
</table>

5.3.1. Diagnostic

La majorité des altérations observées peuvent être attribuées aux précédentes conditions de conservation des vitraux à la suite de leur dépose. La plupart des altérations structurelles semblent avoir été causées par l’enchevêtrement connu par les vitraux dans la caisse en bois. Toutefois, il n’est pas impossible que certaines d’entre elles aient été subies par les vitraux avant ou lors des interventions de dépose.

Les dépôts exogènes présents sur les vitraux, sous forme d’éclaboussures ou de coulures, proviennent sans doute de produits utilisés lors de travaux de restauration ou de maintenance de la chapelle comme divers mastics ou mortiers. Le manque d’adhérence observé sur deux vitraux peut être causé par un défaut de cuisson lors de la création des pièces. Les abrasions de décor sont quant à elles sans doute causées par l’enchevêtrement des vitraux issu des conditions ultérieures de conservation. Les traces de rouille témoignent de la présence préalable d’éléments de montage en alliage ferreux telles que des vergettes aujourd’hui disparues.
5.3.2. Pronostic

La mise àplat des objets sur les plateaux a d’ores et déjà amélioré les conditions de conservation des objets. En effet, les conditions de conservation obtenues dans le cas de leur entreposage dans la caisse en bois étaient mauvaises et ont vraisemblablement engendré, comme présenté lors du diagnostic, la majorité des altérations. Les déchaussements observés pourraient mener à la perte et à la casse d’autres pièces en verre lors de la manipulation des objets.

L’accumulation de poussière sur la surface de l’objet peut par son caractère hygroscopique, favoriser certains processus de dégradations liés à l’humidité relative. La présence de dépôts exogènes en surface des vitraux pourrait aussi mener à des réactions chimiques indésirables. Un nettoyage de surface pourrait assurer de meilleures conditions de conservation aux objets.
6. Conditionnement

6.1. Rappel du mandat

6.2. Problématique des polluants

Les polluants sont des composés qui peuvent provoquer des altérations en rentrant en réactions chimiques avec les composants de l’objet. Le plomb étant un matériau particulièrement sensible aux COV, les auteurs s’accordent à dire que l’emploi de bois dans le stockage ou l’exposition d’objets comprenant du plomb est à éviter. En effet, l’acide acétique est un des principaux COV émanant du bois. Il est formé par l’hydrolyse des groupements acétyle de l’hémicellulose45. Toutefois, il est à noter que l’essence de bois utilisée joue un rôle important46. Le bois peut être plus ou moins acide selon sa nature. Plus le bois est acide, plus il est susceptible de dégager des acides organiques. Paradoxalement, il semblerait que l’acidité du bois joue un rôle sur les émissions de formaldéhyde dans les dérivés du bois qui seraient moins élevées pour les produits du bois composés de bois plus acide47. D’autres facteurs doivent être pris en compte afin d’évaluer les risques liés à l’emploi d’un produit du bois en particulier, comme la résine utilisée lors de la fabrication pouvant être la cause de la présence d’autres COV. Il est donc important de rassembler de plus amples informations sur les plateaux.

6.2.1. Plateau en bois

Lors de la découverte des vitraux, l’institution mandate M. Bucher-Remund pour la création de plateaux en bois afin de faciliter le transport et le stockage des objets. Ces plateaux sont composés d’un panneau de contreplaqué* 7 plis de 85 x 85 x 1.2 cm et de deux listes en pin de 85 x 4 x 3 cm (sch. 3) qui sont vissées au panneau. La confection de ces derniers a coûté 820 CHF.

Le contreplaqué est composé de diverses couches de peuplier. Ce produit du bois est labellisé « E1 ». Ce label concerne le taux de dégagement de formaldéhyde des dérivés du bois. Les dérivés du bois de la classe d’émission E1 ne doivent pas dépasser une concentration d’équilibre de formaldéhyde de

46 Hatchfield, 2002, p.68.
47 Korenberg et Bertolotti, 2019, p.252.
0.1 ppm\(^48\). Cette valeur de référence correspond aux recommandations données par l’Office fédéral de la santé publique\(^49\). Ce label assure donc un dégagement égal ou inférieur à 0.1 ppm. Il est toutefois essentiel de comprendre que ce label ne garantit pas l’absence d’autres substances volatiles telles que l’acide acétique.

Les tests d’acidité du bois effectués ont mesuré un pH* de 4.3 pour le contreplaqué utilisé\(^50\). Les pH répertoriés dans les tableaux de référence pour les différentes espèces de peuplier sont moins acides\(^51\). Les adhésifs utilisés lors de la fabrication ont sûrement une incidence sur ce résultat. Le même test a été effectué sur les listes en pin. Le pH de ce dernier s’élève à 5.6. Ce pH est légèrement plus basique que le pH de référence pour le \textit{Pinus banksiana}, pin gris, qui est évalué à 5.4\(^52\). Des papiers pH ont aussi été utilisés pour évaluer le pH du bois. Les résultats obtenus sont légèrement différents\(^53\). Le contreplaqué est indiqué comme ayant un pH de 5 et la liste en pin un pH de 6. « En règle générale, les bois ayant un pH inférieur à 4.0 sont probablement très corrosifs et ceux ayant un pH supérieur à 5.0 seraient acceptables »\(^54\).

Les résultats obtenus, lors du test d’Oddy pour le contreplaqué utilisé pour la confection des plateaux, ne sont pas catastrophiques, en comparaison à des résultats obtenus par certains bois et produits du bois lors de précédents tests faits dans des conditions similaires (\textit{tab. 3}). Selon l’essence de bois, d’importantes efflorescences* de corrosion peuvent apparaître sur les échantillons, comme avec le chêne qui est particulièrement acide. Comme autre élément de comparaison, Mme Alice Gerber, étudiante à l’HE Arc CR, avait obtenu des résultats bien plus préoccupants pour l’échantillon de panneau de fibres à densité moyenne (MDF) lors de son travail de Bachelor\(^55\). Ce dernier avait été identifié comme étant la principale cause avec l’importante étanchéité de la vitrine des efflorescences blanches et grises observées sur le sertissage de deux vitraux du 16e siècle. Dans le cas présent, les plaquettes de plomb présentent que de légères marques de corrosion. L’emploi de ce produit du bois en particulier est évalué comme pouvant convenir à une utilisation temporaire\(^56\).

\(^{50}\) Cf. Annexes : 19.3.1, p.71.
\(^{51}\) Tétreault, 1999, p.8.
\(^{52}\) Tétreault, 1999, p.8.
\(^{53}\) Cf. Annexes : tab. 8, p.71.
\(^{54}\) Tétreault, 1999, p.36.
\(^{55}\) Gerber, 2018, p.45.
\(^{56}\) Cf. tab. 4, p.23.
6.2.2. Pare-vapeurs

Les risques liés aux émanations de COV, issues de l’emploi d’un support en bois, peuvent être réduits par l’utilisation de pare-vapeurs. Les pare-vapeurs peuvent prendre plusieurs formes.

Ils peuvent être une barrière physique comme le scellement du support à l’aide d’un film-barrière comme le Melinex™. Cette approche a été évaluée comme étant l’une des plus efficaces d’après une batterie de tests effectuée en relation avec du MDF. Ceux-ci peuvent être scellés à chaud, collés ou scotchés. Toutefois, cette méthode prend du temps et est plus onéreuse que l’emploi d’un revêtement liquide. De plus, il a été démontré lors de tests que de défauts minimes dans le film de l’ordre de trous de 1 mm peuvent affecter la performance de ce dernier.

La littérature fournit un certain nombre d’indications quant au choix des pare-vapeurs liquides dans un contexte muséal. La formation d’un film par polymérisation oxydative est par exemple vivement déconseillée. Les réactions intervenant dans ce type de polymérisation libèrent une diversité de contaminants volatils par l’oxydation de certains composés en acide carboxylique. Les huiles siccatives, les alkydes et les résines époxy à un composant font par exemple partie de cette catégorie. Les revêtements à base d’acétate sont aussi susceptibles de dégager de l’acide acétique lors de leur vieillissement. Dans le cas de subjectiles en bois, Jean Tétreault recommande, par exemple, l’emploi de résine époxy deux composantes par polymérisation catalysée ou des films obtenus par coalescence, comme les acryliques. De manière générale, la résine époxy est meilleure dans la réduction d’émissions de COV que peut l’être une émulsion acrylique à base d’eau. Toutefois, les additifs et les autres composants dans la composition des produits peuvent considérablement impacter l’émission de COV. C’est pourquoi il est toujours conseillé d’effectuer une batterie de tests, afin de trouver le meilleur...

57 Korenberg et Bertolotti, 2019, p.256.
58 Korenberg et Bertolotti, 2019, p.256.
59 Korenberg et Bertolotti, 2019, p.256.
60 Tétreault, 1999, p.4.
61 Tétreault, 1999, p.4.
64 Korenberg et Bertolotti, 2019, p.257.
compromis entre les potentiels émanations de COV provenant du produit lui-même et son efficacité en tant que pare-vapeurs.

6.2.3. Étude des pare-vapeurs

Choix des pare-vapeurs testés

Quatre produits ont été sélectionnés dans le cadre de ce travail pour être testés : un vernis acrylique, une résine époxy, un film en polyester et un film aluminium.

À la suite d’une conversation avec M. Bucher-Remund, il s’est avéré que deux couches de vernis acrylique ont été appliquées au rouleau sur les plateaux 10 jours avant leur livraison. Ce produit est connu sous le nom de « Lascaux Acryl Transparentlack 1-UV glanz ». Cette émulsion acrylique à base d’eau a selon le fabricant des propriétés de protection contre les UV par absorption des rayons. Ce produit est le premier produit sélectionné pour les tests. Il est en effet intéressant d’évaluer l’efficacité de ce produit d’ores et déjà appliqué. Celui-ci pourrait avoir des propriétés intéressantes et ne demanderait pas au mandant des frais supplémentaires.

Tests

Les échantillons ont été préparés le vendredi 5 juin 2020 (fig. 6). L’application des produits a pris fin à 15h47. Deux couches de produit ont été appliquées sur chaque échantillon. Dans le cadre de ces tests, le film polyester est collé à l’aide de la résine époxy testée dans ce travail. Ce choix a été pris, car il sera plus aisé d’émettre des hypothèses sur l’impact de ce collage vis-à-vis de la performance du film en tant que pare-vapeur en mettant en parallèle les résultats obtenus lors des tests avec la résine époxy comme pare-vapeur. La période de séchage de 4 jours, préconisée par Tétreault dans le cas d’enceinte ouverte, a été respectée.

65 Korenberg et Bertolotti, 2019, p.257.
66 Tétreault, 2003, p.56.
Un test d’acidité des composés volatils a été effectué\(^{68}\). Aucune différence est observable entre les papiers indicateurs pH témoins et ceux de la résine époxy et du film polyester. Ceci tendrait à dire que leur emploi est acceptable. Une différence de résultat est cependant visible au niveau des échantillons de peinture acrylique. Ces derniers sont plus basiques que les trois précédents. « Les composés volatils se dégageant des films formés par coalescence sont habituellement alcalins à cause de la présence d’ammoniac et ils devraient s’évaporer en quelques jours »\(^{69}\). Ceci pourrait potentiellement expliquer cette différence de résultat. La présence de ce type de composés dans les peintures acryliques avait été soulevée par M. Köstinger lors de nos échanges. C’est pourquoi il favorisait l’emploi d’une résine époxy sans solvant.

Un test d’Oddy a aussi été effectué en lien avec cette étude (\textit{tab. 4})\(^{70}\). Il démontre que l’application de deux couches d’acrylique ne représente pas un pare-vapeur efficace. Les plateaux, tels qu’ils sont à ce jour, semblent convenir à une utilisation temporaire. Les résultats obtenus pour la résine époxy sont les meilleurs. Les résultats obtenus par le film polyester sont bons hormis une des plaquettes qui est sans doute un faux positif. Les résultats obtenus pour l’aluminium sont bons. Toutefois, une teinte jaune est visible sur les plaquettes de plomb.

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline
\textbf{Échantillon} & \textbf{Argent} & \textbf{Cuivre} & \textbf{Plomb} \\
\hline
Contreplaqué & I & II & I & II & II & I \\
Peinture acrylique & I & I & II & I & II & I \\
Résine époxy & I & I & I & I & I & I \\
Film polyester & I & I & I & I & II* & I \\
Film aluminium & I & I & I & I & I & I \\
\hline
\end{tabular}

I : utilisation permanent
II : utilisation temporaire
III : utilisation proscrite

* Ce résultat est sans doute dû à un nettoyage insuffisant d’un bocal ayant été utilisé précédemment.

Le déroulement des différents tests et le détail des résultats sont consultables en annexe 19.3 de la page 71 à la page 77.

\(^{68}\) Cf. Annexes : 19.3.2, p.72.
\(^{69}\) Tétreault, 1999, p.36.
\(^{70}\) Cf. Annexes : 19.3.3, p.72 à 77.
6.3. Conceptualisation

6.3.1. Recherches

Lors de son travail de mémoire Bachelor en 2010, Mme Cécile Schlaeppi s’est penchée sur la problématique de l’exposition et la conservation des vitraux lors de leur dépose. Dans le cadre de cette étude, elle s’est approchée de cinq institutions suisses conservant et exposant des vitraux : Le Vitromusée et Vitrocentre de Romont, le musée Ariana de Genève, le musée national de Zurich, le musée historique de Bâle et le musée historique de Lausanne. Elle constate que deux systèmes de rangement sont utilisés, soit à la verticale dans des meubles à casiers, soit à l’horizontale le plus souvent dans des meubles à plans. Le bois a souvent été utilisé pour la construction de ces structures d’accueil selon le budget de l’institution. Les objets sont maintenus en place à l’aide le plus souvent de cales élaborées à l’aide de morceau de mousse en polyéthylène ou en bois. Une isolation entre l’objet et le support est obtenue par la présence d’une couche intercalaire comme du carton non acide, d’un tissu en coton, d’une fine mousse en polyéthylène ou une plaque de verre. Aucune mention d’un conditionnement particulier n’est mentionnée dans ce travail hormis pour les caisses de transport. Toutefois, l’existence de conditionnements élaborés spécifiquement pour accueillir les éléments de vitraux de la rosace de Lausanne est indiquée par M. Trümpler lors d’un entretien (fig. 7). Leur élaboration est issue d’un vaste projet de conservation-restaurations de cette rosace. « Les caisses pour l’entreposage étaient composées d’un cadre en aluminium et de parois en bois de sapin ; les vitraux [...] étaient fixés sur l’une des parois avec des taquets en bois vissées, l’autre paroi servant de couvercle. Aucun produit synthétique ou colle n’a été utilisé pour la fabrication des caisses. » Ce système de fixation peu onéreux a pour avantage d’être facilement adaptable. Les taquets peuvent être de plusieurs dimensions avec des battues plus ou moins profondes permettant de s’adapter à l’état de conservation de l’objet et être répartis aux besoins autant au niveau du pourtour de l’objet ou dans des zones lacunaires (sch. 4).

71 Schlaeppi, 2010, p.35.
73 Gentile et al., 1999, p.79.
6.3.2. Réflexions

Fragments de verre

Il a été décidé de conserver les fragments de verre séparément des plateaux, en raison du manque de place et l’impossibilité de les remettre à leur place d’origine à cause des déformations importantes des plombs. Ces facteurs pourraient engendrer des casses supplémentaires rendant difficile le conditionnement dans de bonnes conditions des fragments sur les plateaux. Le conditionnement conçu pour les fragments doit garder le lien ayant pu être fait entre ces derniers et le vitrail auquel ils appartiennent. Il pourrait être constitué de plateaux superposables rentrant dans une caisse gerbable. Un numéro d’inventaire concordant avec celui du vitrail peut ainsi être donné au plateau. De plus, l’emplacement supposé des pièces peut être notifié sur les constats d’états.

Vitraux du corpus

Si l’option d’un meuble à plan est considérée dans notre contexte, quatorze tiroirs de format A0 (84.1 x 118.9 cm) seraient nécessaires au stockage des vitraux. Dans cette option, les fragments de verre pourront être rangés avec les vitraux dans les tiroirs. Une couche intercalaire entre le fond du tiroir et les objets doit être envisagée. La surface à recouvrir dans ce contexte est équivalente à 14 m². Il est à noter toutefois que cette option de rangement rend la manipulation des objets peu aisée et par le système de tiroir ne connaît pas de réelle ventilation. Pour les vitraux les plus endommagés, leur stockage dans un meuble à plans demanderait leur placement sur une plaque en verre pour permettre leur manipulation. D’autres inconvénients liés au meuble à plans sont l’investissement de départ et la surface au sol que celui-ci nécessite pour son installation 74.

Dans l’idéal, l’emploi d’un support transparent pour le conditionnement serait choisi. Il limiterait considérablement les manipulations lors de l’étude des objets permettant d’être directement posé sur une table lumineuse. Dans ce cadre, le polyméthacrylate de méthyle (PMMA) serait préféré au verre, car ce dernier est usinable. Cette propriété permettrait la mise en place de cales ponctuelles pouvant être vissées ou collées sur le support. M. Sylvain Richard, employé de Serex construction plastique à Puidoux, conseille pour ce type d’utilisation un PMMA extrudé de 1 cm d’épaisseur. Toutefois, ce matériau est onéreux. Le remplacement des plateaux en bois pour des plateaux équivalents en PMMA chez Serex construction plastique reviendrait, par exemple, à un coût matériel de 2349 CHF. Avec l’emploi des plateaux existants, comme exigé par dans le mandat, deux types de conditionnement peuvent être envisagés. Le premier est un système de calage épousant la forme de l’objet. Ce dernier prend en compte les déformations des vitraux. Il peut être obtenu par exemple par creusement dans une mousse ou par la création d’un support mou agissant comme un coussin sous l’objet. Toutefois, ce type de calage rend quasiment impossible la manipulation des objets les plus abîmés en compliquant la saisie de l’objet. De plus, il y a un risque d’accentuer certaines déformations préexistantes.

Le second est un conditionnement à plat. Celui-ci nécessiterait un système de fixation du vitrail sur son support. Dans ce cadre, il est important d’identifier les points de contact envisageables sur l’objet permettant de caler et soutenir le poids de l’objet lors de l’inclinaison du plateau pour passer les portes. Ils doivent être placés sur des parties de l’objet structurellement stables. Il est aussi indispensable de prendre note des zones de faiblesses ne devant pas subir de contraintes de pression. La répartition de ces points est aussi essentielle pour répartir les contraintes physiques lors de l’inclinaison du plateau. L’emploi d’un profil en mousse permettrait une répartition plus équilibrée des contraintes de poids sur une zone entière que lors d’une fixation ponctuelle concentrant les contraintes sur des points spécifiques. Cette répartition serait particulièrement intéressante au niveau du côté sur lequel repose le poids lors de l’inclinaison. En ce qui concerne les possibilités d’une fixation ponctuelle, l’emploi de clous pour l’immobilisation de l’objet sur son support réduit de manière importante les possibilités de manipulation a posteriori particulièrement pour les vitraux en mauvais état de conservation. De plus, la soustraction du support de ces derniers pourrait engendrer des dégâts supplémentaires aux objets. Le choix d’une vis plutôt que d’un clou pourrait réduire ces risques en facilitant la soustraction de l’élément. Il facilite le montage et le démontage du système de fixation de l’objet sur son support. Ceci permet une manipulation avec moins de contraintes. Les taquets en bois utilisés dans le projet touchant à la rosace de Lausanne ont comme avantage sur les vis simples de répartir la pression sur une plus grande surface tout en restant ponctuels. Toutefois, il implique la présence de bois dans le système de fixation. Bien que l’emploi de certaines essences de bois spécifiques limite les risques liés aux polluants, il ne les élimine pas. Il est à noter que la démultiplication des points de contact peut aussi être une solution, afin de mieux répartir la pression.

Le conditionnement n’est pas envisagé directement sur le support en bois. En effet, il est recommandé de positionner une couche intercalaire entre le bois et l’objet afin d’assurer une sécurité optimale vis-à-vis des contaminations de polluants par contact. Le matériau choisi doit être stable et ne pas représenter de risque pour l’objet. Cet intercalaire peut prendre plusieurs formes comme de la mousse en polyéthylène, d’un carton non acide ou d’un film polyester. La surface à recouvrir est de 10.75 m².

6.4. Proposition

La proposition initiale envisage deux systèmes de fixation différents. La diversification du système de fixation pourrait permettre la mise en évidence du sens d’inclinaison du plateau.

Dans cette proposition, il est nécessaire d’identifier le côté le moins endommagé du vitrail en se basant sur le constat d’état. Ce sera sur ce côté que le poids du vitrail sera principalement réparti lors de l’inclinaison du plateau pour passer les portes. De ce côté, un profil en mousse de polyéthylène de la marque Ethafoam® d’une épaisseur de 3 cm est placé. Une batte de 2 cm est envisagée afin d’assurer la sécurité de l’objet lors de l’inclinaison (sch. 5). Une couche de non-tissé en polyéthylène de type Tyvek® est mise en interface entre la mousse et l’objet pour éviter toute forme d’abrasion.

Des points de fixation ponctuelle sont ensuite répartis sur les autres côtés afin de permettre la stabilisation du vitrail sur son support et éviter tout glissement. Un système de vis est privilégié facilitant les actes de démontage ou de remontage, si nécessaire. Diverses tailles de vis équerres ont été choisies (fig. 8). Elles permettent de tenir en place le profil en mousse et de créer les points de fixation ponctuelle.

Les points de fixation ponctuelle seront obtenus par l’application d’un taquet en carton cannelé de conservation de 4 cm de long maintenu par deux vis équerre. La présence de ce carton permet de répartir la pression appliquée par les vis et sécurise le serrage en créant une surface intermédiaire entre la pince et l’objet.

Un carton cannelé de conservation a été choisi comme couche intermédiaire entre l’objet et le plateau en bois. Le choix du carton a été principalement motivé par sa qualité de facilitation de la manipulation de l’objet hors de son plateau en bois. Lors de la consultation, l’objet peut-être facilement glisser hors de son support en bois et être amené sur une autre surface sans manipulation directe de l’objet, qui peut s’avérer ardue.
Le choix d’un système de fixation totalement démontable est privilégié, car il permet, si un remplacement du support est envisagé, d’être réutilisé sur le nouveau support. Ceci représente alors une économie de temps et d’argent pour l’institution.

Il est important de spécifier que dans cette proposition, le vitrail est posé sur sa face la plus plate indépendamment de la face externe ou interne.

Ci-dessous, une représentation schématique de la proposition de conditionnement (sch. 6). Pour ce conditionnement spécifique, un montant de 62.60 CHF de coût matériel, incluant le coût du support en bois, a été estimé. Les coûts matériels pour l’application de cette proposition sur l’ensemble du corpus sont estimés à 327.65 CHF sans compter le coût initial des plateaux de 820 CHF. Ce montant ne prend pas en compte les frais liés à la livraison et à la main d’œuvre.

sch. 6 proposition initiale pour le conditionnement des panneaux en vitrail exemple PKSO_2059a, mesures en [cm]

77 Cf. Annexes : tab. 15, p.78.
78 Cf. Annexes : tab. 16, p.79.
6.5. Réalisation

Lors de l’application de la proposition, le système de fixation s’est montré aisément adaptable aux différents états de conservation des vitraux et aux différentes dispositions des vitraux sur les plateaux et est simple dans sa réalisation. Certaines variations ont été toutefois nécessaires. Une marche à suivre de la réalisation du système de fixation est consultable en annexe.79

Les vitraux, sans compter les écoinçons de plus petites tailles, ont été conditionnés sur les 16 plateaux existants selon la demande du mandant (fig. 9). Cette contrainte de travail a nécessité le conditionnement de plusieurs vitraux sur le même plateau à 5 reprises. De fait, la prise d’appui sur la liste en pin n’était parfois pas possible pour l’ensemble des vitraux. Dans ce cas, un renfort sous forme d’une bande de carton a été positionné sous le profil en mousse. L’ensemble est maintenu en place par plusieurs vis équerre de 4 cm.

Les points de fixation ponctuelle ont été répartis afin d’assurer la stabilisation de l’objet sur la planche. Ils prennent appui sur des zones de solidité structurelle caractérisée par la présence d’un plomb de sertissage et d’une pièce en verre encore en place. Dans le cas où une telle zone n’a pas pu être identifiée, comme ce fut le cas pour le vitrail PKSO_2060b où le plomb de sertissage est manquant sur l’ensemble d’un côté, une cale en mousse a été positionnée afin de mieux répartir la pression sur cette zone.

Une signalétique du sens d’inclinaison a été apposée sur le conditionnement au niveau du bois et du carton. Cette duplication d’emplacement permet aussi d’identifier le sens du carton sur son plateau. Une étiquette comportant une image et le numéro d’inventaire de l’objet a été placée sur le côté du conditionnement. Ceci permet de déterminer où se trouve quel objet sans avoir à déplacer les plateaux pour avoir un accès visuel (fig. 10). Le numéro d’inventaire est répété sur le profil en mousse.

79 Cf. Annexes : tab. 17, p.79 à 82.
80 Cf. Annexes : fig. 47 à 62, p.83 à 85.
7. Évaluation des conditions de conservation

7.1. Agents de dégradations et sensibilités

Dans le cadre de la conservation des objets patrimoniaux, dix agents de dégradations principaux vont être rencontrés : forces physiques, vol et vandalisme, incendie, eau, biocontaminants (microorganismes, insectes, rongeurs), polluants, lumière, température inadéquate, HR inadéquate et dissociation.

Comme présenté dans le chapitre de présentation des processus de dégradations des matériaux constitutifs des vitraux, l’eau, l’HR inadéquate, les polluants et les forces physiques peuvent jouer un rôle important. Ces matériaux étant de nature inorganique, ils peuvent être classés comme étant peu sensibles aux agents de dégradations température inadéquate, lumière et biocontaminant. Le feu représente un agent de dégradation potentiel. L’augmentation de température issue d’un événement tel qu’un incendie pourrait amener à d’importantes déformations des plombs pouvant aller jusqu’à leur fonte si la température dépasse les 327 °C correspondant au point de fusion du plomb81. Toutefois, aucun événement de ce type n’est survenu dans les réserves depuis leur aménagement en 2014. Les numéros d’inventaire étant directement apposés sur l’objet et les vitraux faisant l’objet d’une documentation photographique, les risques liés à l’agent dissociation sont très fortement limités. Le statut de ces vitraux et la localisation des réserves n’étant connus que par un nombre restreint de personnes, les risques liés à la criminalité sont également très faibles.

7.2. Contexte de conservation

Il est pour l’instant envisagé de ranger les vitraux sur le haut de quatre rayonnages fixes FOREG® 2000 dans la réserve 1. Cette réserve se trouve en sous-sol d’un bâtiment. Cette réserve est équipée comme toutes les autres d’un déshumidificateur avec un drainage continu grâce à un tuyau relié à une évacuation d’eaux usées se trouvant à l’extérieur. Aucune donnée relative aux conditions annuelles thermohygrométriques n’existe à ce jour. Aucune conduite d’eau ne passe en dessus de ces modules de rangement. Les modules de rangement sont hauts de 183.2 cm, larges de 110 cm et ont une profondeur d’échelle de 80 cm82. La hauteur sous plafond est de 50 cm. Ces tablettes peuvent supporter une charge allant jusqu’à 110 kg83.

81 Selwyn, 2004, p.127.
82 Cf. Annexes : sch. 13, p.85.
83 Foster, 2019, p.8.
7.3. Analyse des conditions de conservation

Forces physiques

Afin de manipuler les plateaux, 5 cm sont nécessaires de chaque côté pour permettre leur préhension. Ce qui revient à une largeur nécessaire de 95 cm. Ce qui équivaut à une pile de plateaux par tablette. Le poids d’un plateau de bois est évalué à 4.5 kg en prenant comme repère les informations de la fiche technique des planches en contreplaqué utilisées. Le poids d’un vitrail de 80 x 80 cm est estimé à 7 kg par M. Pascal Moret, peintre-verrier à Cugy. Le poids par plateau est donc évalué à 11.5 kg. Dans le cas de l’emplacement envisagé, l’empilement de huit plateaux l’un sur l’autre serait possible en considérant la distance au plafond et la capacité de charge des tablettes. Cependant, leur localisation et leur poids rendent d’ores et déjà leur manipulation périlleuse. C’est pourquoi il serait préférable de les répartir sur les quatre modules en empilant que quatre plateaux l’un sur l’autre⁸⁴. Ce choix d’emplacement compte de nombreux désavantages. Il rend la manipulation et la consultation des objets compliquées. En effet, l’installation des plateaux nécessite la présence de deux personnes et d’échelles afin d’assurer la sécurité des porteurs et des objets. Les risques de chute sont importants. L’empilement direct des plateaux l’un sur l’autre rend la consultation de ces derniers peu aisée. Si on souhaite consulter le dernier plateau de la pile, il est nécessaire de déplacer tous les autres afin d’avoir l’accès visuel à ce dernier. Des risques de choc pourraient aussi survenir en lien avec cet empilement direct. Dans ce sens, un mauvais placement du plateau sur la liste en bois inférieure pourrait engendrer un choc entre le plateau supérieur et le vitrail inférieur.

Polluants

Les risques liés aux polluants ont d’ores et déjà été mentionnés. La problématique des polluants provient principalement de l’emploi des plateaux en bois évalués comme acceptable pour un usage temporaire. Un ajout concernant l’empilement de tableaux peut tout de même être fait. Ce dernier peut à terme favoriser les processus de dégradation dus aux polluants en créant des microclimats par le manque d’échange d’air. Toutefois, selon l’expertise de M. Trümpler l’espacement de 4 cm entre chaque plateau permettrait une ventilation suffisante⁸⁵.

La présence de poussière et de produits exogènes sur les objets pourrait engendrer des processus de dégradations. La poussière par son caractère hygroscopique peut entraîner la formation de zone d’humidité relative élevée. Les produits exogènes peuvent être instables chimiquement.

Humidité relative

L’analyse de l’impact de cet agent de dégradation demanderait la collecte de données supplémentaires inexistantes à ce jour. Il pourrait être intéressant de mener une étude climatique dans ces réserves. Toutefois, certaines recommandations concernant les conditions climatiques optimales sont données à la page 34.

⁸⁵ Trümpler, 2020 [Entretien].
7.4. **Recommandations**

Forces physiques

Afin de favoriser la conservation des objets, il serait judicieux d’envisager un autre lieu de stockage. La fabrication, par exemple, d’une structure de rangement sous forme d’un meuble à échelles permettant la répartition des plateaux avec un plus grand espacement entre eux. Ceci réduirait la création de microclimats par l’augmentation des possibilités de ventilation. Ce système facilite aussi la consultation et la manipulation des plateaux. La surface au sol minimal nécessaire serait de 95 x 85 cm. Toutefois, il pourrait s’avérer intéressant de diviser les plateaux dans deux modules de rangement différents afin d’éviter les manipulations de plateau lourd à des hauteurs trop importantes. Cela implique cependant une surface au sol plus importante de 190 x 85 cm (*sch. 7*). Le même type d’installations pourrait être envisagé sur le haut des modules afin de faciliter la consultation et la manipulation des vitraux. Toutefois, les risques de chute sont toujours très élevés.

De manière générale, les objets lourds et fragiles devraient être entreposés sur les niveaux inférieurs afin de faciliter leur manipulation et diminuer les risques de chute. Une autre option pourrait résider dans une potentielle réorganisation de certaines localisations de stockage afin de libérer une zone basse d’étagères pouvant alors accueillir les plateaux. Des objets légers et solides pourraient être posés au niveau du haut des étagères sans poser les mêmes problématiques de manipulation. L’applicabilité de cette proposition devrait être étudiée par Mme Kocher.

Polluants

Dans le cas de ce corpus de vitrail, une surveillance de l’état des objets devrait être organisée. L’emploi des plateaux en bois ayant été évalué comme acceptable pour un usage temporaire, l’inspection périodique des objets stockés permettrait de déceler tout signe de détérioration sur les objets et permettre de réagir en conséquence. L’institution, ne connaissant pas de gros moyens techniques, cette inspection se traduirait principalement par un contrôle visuel des objets. Bien que ce dernier reste sujet à la subjectivité de l’opérateur, il permet de déceler les plus grosses problèmes. Il serait judicieux de s’appuyer sur une documentation photographique permettant une comparaison entre chaque contrôle.

Dans le cadre de cette inspection, il est important de chercher les signes de corrosion récente. Le taux de dégagement de COV d’un produit du bois peut être fluctuant à différents stades de son existence. De manière générale, le dégagement de COV par les produits du bois a tendance à décroître avec le temps.

temps jusqu’à atteindre une certaine phase de stabilisation87. Les concentrations sont alors bien plus faibles et constantes. De fait, certains produits initialement considérés comme impropre à une utilisation permanente peuvent être ultérieurement utilisés sans danger88. C’est pourquoi la fréquence de contrôle suggérée dans un premier temps serait de tous les 3 mois la première année et pouvant être limitée à une inspection bisannuelle voir annuelle par la suite.

Différentes solutions pourraient être envisagées pour réduire les risques liés à l’agent de dégradation polluant. Comme mentionné dans le paragraphe précédent, l’augmentation de la distance entre les plateaux permettrait une meilleure ventilation ce qui réduit les risques liés à la formation de microclimats riches en certains COV. Toutefois, rares sont les solutions efficaces sur le long terme. « Dans la mesure du possible, il est toujours préférable de supprimer les sources de polluants89. » La gestion des risques liés à l’agent polluant pourrait être alors simplifiée par l’élimination de la principale source d’émanation que sont les plateaux en bois. Le remplacement de ces derniers par des plateaux en carton non acide représente une solution pour la conservation à long terme des objets. Ceci demanderait toutefois un investissement supplémentaire de la part de l’institution. Ce dernier a été estimé à 713.60 CHF90. Ces plateaux de remplacement pourraient se composer d’un plateau en carton non acide de type nid d’abeilles avec un système de renforcement des bords à l’aide de cornières pour éviter toute désformation du plateau sous le poids de l’objet (sch. 8)91. Ces cornières pourraient être confectionnées dans un carton non acide à une cannelure. L’application d’un pare-vapeur pourrait être une solution alternative à celle du remplacement des planches. Les résultats des tests effectués dans le cadre de ce travail ouvrent les réflexions sur les pare-vapeurs envisageables. L’époxy pourrait représenter une bonne alternative. Elle reste cependant très onéreuse et demanderait l’élaboration d’un protocole d’application. En effet, lors de l’application et du séchage de la résine, un stockage provisoire des vitraux devrait être conçu et mis en place. L’application d’un film polyester de type Melinex90 ne présente pas les mêmes soucis de durée de séchage. Toutefois, l’exécution de cette alternative demanderait des recherches et des tests plus approfondis au niveau de

87 Tétreault, 2003, p.41.
88 Tétreault, 2003, p.41.
89 Tétreault, 2003, p.37.
90 Cf. Annexes : tab. 18, p.86.
91 Cf. Annexes : sch. 15, p.87.
la méthode de fixation de ce film sur le support en bois. Les pare-vapeurs vont limiter les risques sans les éliminer pour autant.

L'utilisation de sorbants à COV pourrait aussi être mentionnée. Toutefois, ces derniers demanderaient une surveillance et un renouvellement régulier ce qui semble ne pas s'accorder aux contextes actuels des collections. Ils ne représentent pas une solution à long terme.

Une autre solution afin de réduire les processus de dégradations liés à la présence de polluants dans l'air pourrait être de réduire le taux d'HR dans les réserves. Afin de réduire les risques d'amorce des phénomènes de corrosion, une valeur située en dessous de 40 % d'hygrométrie serait recommandée. Toutefois, la présence d'objets organiques dans la même réserve rend cette option inenvisageable, car elle serait au détriment de ces derniers.

Bien qu'un premier dépoussiérage à sec a été effectué sur les zones accessibles des objets, une intervention de nettoyage serait bénéfique aux objets, réduisant les risques liés à la présence de poussière et de produits exogènes. Cette intervention doit être réalisée par un professionnel et impliquerait donc la constitution d'un budget pouvant être alloué à cette dernière. Cet événement représenterait aussi une occasion de consolider certaines zones fragiles des objets afin de prévenir de futures altérations.

Humidité relative

Du point de vue des conditions climatiques des réserves, il serait intéressant de faire une étude climatique des locaux. Néanmoins, des recommandations peuvent être données. Les conditions optimales pour la conservation de vitraux, dont les pièces en verre sont saines et stables sont évalués à température d'environ 20 °C et un taux d'HR de 40 % ± 5 % avec des variations journalières ne dépassant pas les 5 %.

Si ces normes ne peuvent pas être respectées, il est préconisé de rester à un taux d'HR inférieur à 55 %. Cependant, il est important de prendre en considération la présence d'objets organiques dans les réserves. Pour la majorité des objets, des températures entre 15 et 22 °C et une HR comprise entre 50 % ± 10 % sont idéales. Dans tous les cas, le plus important est de viser à des conditions climatiques stables avec une variation journalière minimale.

8. Discussion

Le contreplaqué utilisé pour la confection des plateaux de support est bel et bien une source de COV. Toutefois, son emploi a été évalué comme acceptable pour une utilisation temporaire. La conservation des objets sur les plateaux en bois pourrait mener à des altérations sur le long terme. Une surveillance des objets et de leur état de conservation devrait être mise en place, afin d'observer si des signes...
d’altérations se manifestent et de pouvoir réagir en conséquence. Une réflexion au niveau de la localisation devrait être menée par la paroisse afin de réduire les risques liés à l’agent de dégradation forces physiques. Deux tableaux récapitulatifs des observations faites lors de l’analyse des conditions de conservation sont consultables en fin d’annexes98.

À la suite de cette intervention de conditionnement, les vitraux ont été stabilisés sur les 16 plateaux en contreplaqé existants. Le système de fixation choisi élimine les risques de chute et de glissement des vitraux depuis leur plateau en bois. Il sécurise les objets lors de leur manipulation et de leur transport dans les réserves. Un autre avantage se situe au niveau de son caractère totalement démontable. Cet aspect pourrait s’avérer intéressant dans le cas où la paroisse déciderait de remplacer les plateaux en bois dans le cadre du traitement de la problématique des polluants leur étant affiliée. Dans ce cadre, le même système de fixation pourrait être utilisé sur un autre support ce qui représenterait des économies de temps, de matériel et d’argent. Le principal désavantage qu’amène ce nouveau système de fixation est qu’il complique la pose et la dépose de l’objet sur son support nécessitant le vissage ou le dévissage de chacune des vis à l’aide d’une pince. Cependant, les diverses conversations avec le mandant ont mené à la conclusion que ce critère n’était pas pertinent dans le cadre de ce projet. En effet, les vitraux ne font pas actuellement l’objet de projet scientifique ou de valorisation nécessitant le retrait de leur conditionnement et aucun projet de ce type n’est pour l’instant envisagé dans un futur proche. Les coûts matériels supplémentaires amenés par la proposition de conditionnement sont de 232.05 CHF (tab. 5). Ce montant est inférieur à l’estimation articulée dans la proposition, car l’utilisation de matériel préexistant a été favorisée. L’application de la proposition a mené aux dépenses effectives suivantes :

<table>
<thead>
<tr>
<th>Fournisseur</th>
<th>Article</th>
<th>Référence</th>
<th>Caractéristiques</th>
<th>Prix [CHF] /Pce</th>
<th>Nombre</th>
<th>Prix [CHF]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oekopack Conservus AG</td>
<td>Carton cannelé de conservation</td>
<td>031107</td>
<td>Feuilles 180 x 245 x 0.3 cm</td>
<td>46.00</td>
<td>3</td>
<td>138.00</td>
</tr>
<tr>
<td>Oekopack Conservus AG</td>
<td>Rubans gommés en toile</td>
<td>089-23</td>
<td>Rouleau (3 cm x 50 m)</td>
<td>29.00</td>
<td>1</td>
<td>29.00</td>
</tr>
<tr>
<td>Vibraplast AG</td>
<td>Mousse polyéthylène Ethafoam®</td>
<td>2210.1094.0030</td>
<td>Plaque 2.75 x 0.6 m ép. 3 cm</td>
<td>44.65</td>
<td>1</td>
<td>44.65</td>
</tr>
<tr>
<td>Landi SA</td>
<td>Vis équerre galvanisée Connex®</td>
<td>20726</td>
<td>Paquet de 30 vis 2.0 x 20 mm</td>
<td>1.70</td>
<td>4</td>
<td>6.80</td>
</tr>
<tr>
<td>Landi SA</td>
<td>Vis équerre galvanisée Connex®</td>
<td>20728</td>
<td>Paquets de 20 vis 3.0 x 40 mm</td>
<td>1.70</td>
<td>8</td>
<td>13.60</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td></td>
<td>232.05</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Les fragments de verre et les écoinçons seront conditionnés postérieurement par Mme Kocher.

98 Cf. Annexes : tab. 19 et tab. 20, p.88 à 89.
99 Lors de cette commande, des frais de port d’un montant équivalent à 85 CHF ont été demandés. Toutefois, ces derniers se répartissent sur une commande comprenant d’autres articles que les deux cités ici.
9. Conclusion

À la suite de ce travail, les vitraux ont pu être sécurisés sur les plateaux à l'aide d’un moyen de fixation entièrement démontable. Les vitraux peuvent, de ce fait, être déplacés sans risque dans les réserves. Il est cependant malencontreux qu’aucun professionnel de la conservation préventive n’ait été sollicité lors du choix matériel des plateaux. La problématique des polluants liée à l’emploi du bois aurait pu être évitée. D’autant plus que l’alternative carton non acide n’est pas plus onéreuse. Toutefois, les résultats obtenus lors des différents tests présentés dans ce dossier ne sont pas catastrophiques pour l’emploi des plateaux en bois. Une surveillance est toutefois nécessaire afin d’agir en cas de besoin. Cette nécessité de contrôle et l’amélioration des conditionnements de conservation requièrent une réflexion approfondie de la part de l’institution concernant la localisation des vitraux dans les réserves. La localisation choisie limite considérablement l’accessibilité et les possibilités de consultation des objets. Des pistes de réflexion sur ce point ont été avancées dans les recommandations d’améliorations comme la création d’une structure de stockage plus aérée simplifiant la manipulation des objets et leur accessibilité. Les résultats de ce travail répondent au mandat initial. Ils ont aussi apporté des informations supplémentaires en lien avec l’histoire matérielle des objets ouvrant ici de nouvelles pistes de travail dans le cas où les vitraux feraient prochainement l’objet d’un projet scientifique. Ce corpus de vitraux se trouve valorisé par ce projet. Ce projet a été l’occasion de se confronter aux exigences du métier dans un contexte bien réel avec ces contraintes et ces possibilités et représente une véritable expérience professionnelle enrichissante. Il a aussi été l’opportunité de mettre en pratique le savoir pluridisciplinaire acquis lors des trois années d’étude Bachelor.
10. Bibliographie

Coates et al., 2014.

Corpus Vitrearum, 2001.

De Vis et al., 2015.

Foster, 2019.

Galland et al., 2009.

Gentile et al., 1999.

Hatchfield, 2002.

*Infovitrail [En ligne].

Koob, 2006.

*Korenberg et al., 2018.

Korenberg et Bertolotti, 2019.

Lignum, 2008.
Lignum. « Dérivés du bois dans les locaux – Fiche technique pour la garantie d’une faible concentration de formaldéhyde dans l’air des locaux. » *Lignatec, n° 21, 2008.*

Rimmer et al, 2013.
Robinet, 2006.

Robinet et Thickett, 2003.

Selwyn, 2010.

Selwyn, 2004.

Strübin et Zürcher, 2017.

Tétreault, 1999.

* Les références précédées d’un astérisque ont été utilisées dans les annexes et ne sont pas mentionnées dans le corps de texte principal.

11. **Sources auxiliaires**

de Corneillan, 2020 [Courriel].

Trümpler, 2020 [Entretien].

Wolf, 2020 [relecture].

12. **Liste des figures**

fig. 1 plateau en bois © HE Arc CR, Julie Vuignier 2020. ... 6

fig. 2 photographie d’inventaire PKSO_2059a © RKSO KDSO, Guido Schenker 2020. 11

fig. 3 objets lors de leur découverte © RKSO, Kathrin Kocher 2019. .. 11

fig. 4 PKSO_2059a PKSO_2055abc photographié dans la Sankt Peterskapelle © KDSO, Ernst Räss 1971. .. 12

fig. 5 en-tête d’un document conservé dans les archives de la Römisch-katholische Kirchgemeinde de Soleure apportant certaines informations sur Adolph Kreuzer © RKSO, Kathrin Kocher 2020. 13

fig. 6 échantillons de 2 g pour le test d’Oddy. De gauche à droite : contreplaqué brut, peinture acrylique, résine époxy, film polyester, film aluminium © HE Arc CR, Julie Vuignier 2020. 23

fig. 7 le dépôt des vitraux de la rosace de Lausanne © Gentile et al., 1999, p.79. 24

fig. 8 vis équerre galvanisé Connex® © Conmetall Meister GmbH. .. 27

fig. 9 conditionnement PKSO_2059a © HE Arc CR, Julie Vuignier 2020. ... 29

fig. 10 étiquette permettant l’identification des vitraux sur les plateaux lors de leur empilement © HE Arc CR, Julie Vuignier 2020. ... 29

fig. 11 emplacement envisagé actuellement pour l’entreposage des vitraux © HE Arc CR, Julie Vuignier 2020. .. 30

fig. 12 PKSO_2060b avant intervention de dépoussiérage © HE Arc CR, Julie Vuignier 2020 48

fig. 13 PKSO_2060b après intervention de dépoussiérage © HE Arc CR, Julie Vuignier 2020 48

fig. 14 photographie d’inventaire PKSO_2053a © RKSO KDSO, Guido Schenker 2020 50

fig. 15 photographie d’inventaire PKSO_2054a © RKSO KDSO, Guido Schenker 2020 50

fig. 16 photographie d’inventaire PKSO_2054b © RKSO KDSO, Guido Schenker 2020 50

fig. 17 photographie d’inventaire PKSO_2055a © RKSO KDSO, Guido Schenker 2020 50
 Vuignier Julie, mise en réserve d’éléments de vitraux, 31.08.2020

fig. 18 photographie d’inventaire PKSO_2055b © RKSO KDSO, Guido Schenker 2020
fig. 19 photographie d’inventaire PKSO_2055c © RKSO KDSO, Guido Schenker 2020
fig. 20 photographie d’inventaire PKSO_2056a © RKSO KDSO, Guido Schenker 2020
fig. 21 photographie d’inventaire PKSO_2057a © RKSO KDSO, Guido Schenker 2020
fig. 22 photographie d’inventaire PKSO_2058a © RKSO KDSO, Guido Schenker 2020
fig. 23 photographie d’inventaire PKSO_2058b © RKSO KDSO, Guido Schenker 2020
fig. 24 photographie d’inventaire PKSO_2060a © RKSO KDSO, Guido Schenker 2020
fig. 25 photographie d’inventaire PKSO_2060b © RKSO KDSO, Guido Schenker 2020
fig. 26 photographie d’inventaire PKSO_2060c © RKSO KDSO, Guido Schenker 2020
fig. 27 photographie d’inventaire PKSO_2061a, PKSO_2061b, PKSO_2061c © RKSO KDSO, Guido Schenker 2020
fig. 28 photographie d’inventaire PKSO_2061d, PKSO_2061e, PKSO_2061f © RKSO KDSO, Guido Schenker 2020
fig. 29 photographie d’inventaire PKSO_2061g, PKSO_2061h, PKSO_2061i, PKSO_2061j © RKSO KDSO, Guido Schenker 2020
fig. 30 photographie d’inventaire PKSO_2062a © RKSO KDSO, Guido Schenker 2020
fig. 31 photographie d’inventaire PKSO_2063a © RKSO KDSO, Guido Schenker 2020
fig. 32 photographie d’inventaire PKSO_2064a © RKSO KDSO, Guido Schenker 2020
fig. 33 photographie d’inventaire PKSO_2065a © RKSO KDSO, Guido Schenker 2020
fig. 34 photographie d’inventaire PKSO_2065b © RKSO KDSO, Guido Schenker 2020
fig. 35 photographie d’inventaire PKSO_2065c © RKSO KDSO, Guido Schenker 2020
fig. 36 photographie d’inventaire PKSO_2066a © RKSO KDSO, Guido Schenker 2020
fig. 37 photographie d’inventaire PKSO_2067a © RKSO KDSO, Guido Schenker 2020
fig. 38 photographie d’inventaire PKSO_2068a © RKSO KDSO, Guido Schenker 2020
fig. 39 photographie d’inventaire PKSO_2069a © RKSO KDSO, Guido Schenker 2020
fig. 40 lieu de découverte des objets © RKSO, Kathrin Kocher 2019
fig. 41 PKSO_2055abc photographié dans la Sankt Peterskapelle © KDSO, Ernst Räss 1971
fig. 42 PKSO_2057a photographié dans la Sankt Peterskapelle © KDSO, Ernst Räss 1971
fig. 43 PKSO_2059a photographié dans la Sankt Peterskapelle © KDSO, Ernst Räss 1971
fig. 44 PKSO_2055abc photographié dans la Sankt Peterskapelle au niveau de la baie n III © KDSO, Ernst Räss 1971
fig. 45 panneau du bas de la baie n III inventorié en 2012, visible aussi sur la fig.44. © Vitrocentre, 2012
fig. 46 résultats obtenus sur les plaquettes lors du test d’Oddy effectué entre le 09.06.2020 et le 07.07.2020 © HE Arc CR, Julie Vuignier 2020
fig. 47 conditionnement PKSO_2053a © HE Arc CR, Julie Vuignier 2020
fig. 48 conditionnement PKSO_2054 a et PKSO_2054b © HE Arc CR, Julie Vuignier 2020
13. Liste des schémas

sch. 1 calcul de l’inclinaison des plateaux pour passer les portes incluant une marge de 5 cm de chaque côté pour la préhension des plateaux, mesures en [cm] © HE Arc CR, Julie Vuignier 2020........ 6

sch. 2 exemple de schéma récapitulatif des altérations structurelles © HE Arc CR, Julie Vuignier 2020. .. 14

sch. 3 plateau en bois confectionné par M. Bucher-Remund, mesures en [cm] © HE Arc CR, Julie Vuignier 2020.. 20

sch. 4 exemple taquet, mesures en [cm] © HE Arc CR, Julie Vuignier 2020. .. 24

sch. 5 profil du conditionnement envisagé © HE Arc CR, Julie Vuignier 2020.. 27

sch. 6 proposition initiale pour le conditionnement des panneaux en vitrail exemple PKSO_2059a, mesures en [cm] © HE Arc CR, Julie Vuignier 2020......................... 28

sch. 7 potentielle structure de rangement, mesures en [cm] © HE Arc CR, Julie Vuignier 2020....... 32

sch. 8 cornières de renforcement pour le plateau en carton, mesures en [cm] © HE Arc CR, Julie Vuignier 2020.. 33

sch. 9 dénomination des parties de la verrière © Trümpler, 2004, p.3. ... 44

sch. 10 installation permettant des prises de vue des vitraux sous lumières transmises et incidentes 49

sch. 11 attribution des numéros d’inventaire en s’inspirant des normes édictées par le Corpus Vitrearum © HE Arc CR, Julie Vuignier 2020... 56

sch. 12 mise en place du test d’Oddy © HE Arc CR, Julie Vuignier 2020.. 73

sch. 13 représentation visuelle du rangement envisagé, mesures en [cm] © HE Arc CR, Julie Vuignier 2020... 85
14. Liste des tableaux

<table>
<thead>
<tr>
<th>Tab.</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Glossaire visuel des altérations</td>
<td>15</td>
</tr>
<tr>
<td>2</td>
<td>Récapitulatif des principales altérations structurelles observées lors du constat d'état orienté</td>
<td>18</td>
</tr>
<tr>
<td>3</td>
<td>Éléments de comparaison pour l'appréciation des résultats du test d'Oddy</td>
<td>21</td>
</tr>
<tr>
<td>4</td>
<td>Récapitulatif des classes d'utilisation obtenues après évaluation des plaquettes du test d'Oddy</td>
<td>23</td>
</tr>
<tr>
<td>5</td>
<td>Récapitulatif des achats supplémentaires aux ressources d'ores et déjà existantes</td>
<td>35</td>
</tr>
<tr>
<td>6</td>
<td>Récapitulatif des numéros d'inventaires</td>
<td>57</td>
</tr>
<tr>
<td>7</td>
<td>Récapitulatif des prises de mesures effectuées le 27 janvier 2020</td>
<td>70</td>
</tr>
<tr>
<td>8</td>
<td>Résultats obtenus avec les bandelettes indicatrices de pH</td>
<td>71</td>
</tr>
<tr>
<td>9</td>
<td>Résultats du test des produits volatils</td>
<td>72</td>
</tr>
<tr>
<td>10</td>
<td>Critères d'évaluation du test d'Oddy utilisé à la HE-Arc</td>
<td>74</td>
</tr>
<tr>
<td>11</td>
<td>Critères de détermination de la classe d'utilisation</td>
<td>74</td>
</tr>
<tr>
<td>12</td>
<td>Évaluation du test d'Oddy</td>
<td>76</td>
</tr>
<tr>
<td>13</td>
<td>Exemples de coût pour les meubles à plans nécessaires au stockage des vitraux</td>
<td>77</td>
</tr>
<tr>
<td>14</td>
<td>Exemples de coût pour la couche d'intermédiaire entre le plateau en bois et l'objet</td>
<td>78</td>
</tr>
<tr>
<td>15</td>
<td>Estimation de coût matériel pour un conditionnement, exemple PKSO_2059a</td>
<td>78</td>
</tr>
<tr>
<td>16</td>
<td>Estimation de coût matériel pour le conditionnement de l'ensemble du corpus</td>
<td>79</td>
</tr>
<tr>
<td>17</td>
<td>Étapes de réalisation du conditionnement</td>
<td>79</td>
</tr>
<tr>
<td>18</td>
<td>Remplacement d'un plateau en bois par un support en carton non acide</td>
<td>86</td>
</tr>
<tr>
<td>19</td>
<td>Récapitulatif de l'analyse des conditions de conservation</td>
<td>88</td>
</tr>
<tr>
<td>20</td>
<td>Récapitulatif des traitements mentionnés</td>
<td>88</td>
</tr>
</tbody>
</table>

15. Acronymes et abréviations

<table>
<thead>
<tr>
<th>Acronyme</th>
<th>Signification</th>
</tr>
</thead>
<tbody>
<tr>
<td>COV</td>
<td>Composés organiques volatils</td>
</tr>
<tr>
<td>ép.</td>
<td>Épaisseur</td>
</tr>
<tr>
<td>fig.</td>
<td>Figure</td>
</tr>
<tr>
<td>HE Arc CR</td>
<td>Haute École Arc en conservation-restauration</td>
</tr>
<tr>
<td>HEPA</td>
<td>Filtre à haute efficacité</td>
</tr>
<tr>
<td>HR</td>
<td>Humidité relative</td>
</tr>
<tr>
<td>KDSO</td>
<td>Service cantonal des monuments historiques de Soleure</td>
</tr>
<tr>
<td>MDF</td>
<td>Panneau de fibres à densité moyenne</td>
</tr>
<tr>
<td>pH</td>
<td>Potentiel hydrogène</td>
</tr>
<tr>
<td>PKSO</td>
<td>Sankt Peterskapelle de Soleure</td>
</tr>
<tr>
<td>ppm</td>
<td>Partie par million</td>
</tr>
<tr>
<td>RKSO</td>
<td>Römisch-katholische Kirchgemeinde de Soleure</td>
</tr>
<tr>
<td>sch.</td>
<td>Schéma</td>
</tr>
<tr>
<td>tab.</td>
<td>Tableau</td>
</tr>
</tbody>
</table>
16. Glossaire

Coalescence : « formation d’un feuillet par évaporation de l’eau d’une émulsion, permettant aux gouttelettes de résine adjacentes d’entrer en contact et de s’unir100 ».

Contreplaqué : produit du bois industriel composé de plusieurs minces feuilles de bois, appelées plis, superposées en alternant le sens des fibres et collées entre elles à l’aide d’un adhésif101.

Dépose : action qui aboutit à retirer un panneau de vitrail de son ensemble architectural102.

Domaine plastique : le métal peut subir des déformations sous contraintes. Cette contrainte peut se situer dans le domaine plastique du métal. Une fois la contrainte appliquée la matière va garder la déformation103.

Ecoinçon : élément dont la forme comprend souvent trois côtés curvilignes se situant dans les coins de la composition géométrique d’un remplage (sch. 9)104.

Filet : « série d’étroites pièces de verre rectangulaires disposées bout à bout pour encadrer une bordure ou la périphérie d’une baie. […] Plusieurs filets peuvent être disposés parallèlement105 ».

Lancettes : « parties inférieures, étroites et verticales, d’une verrière en plusieurs parties106 » (sch. 9).

Remplage : « couronnement d’une fenêtre en plusieurs parties, souvent avec de petits panneaux à formes géométriques (trilobes, quadrilobes, mouchettes, écoinçons107 » (sch. 9).

Sorbant : « matériau qui a une fonction de sorption. Il capte certains éléments présents dans l’air ambiant et les emprisonne soit par affinité, soit par réaction108 ».

Vergette : « fines baguette en fer, droites ou recourbées, servant à renforcer un vitrail109 ».

100 Tétreault, 1999, p.21.
101 Hatchfield, 2002, p.70.
102 Infovitrail [En ligne].
103 Scott, 1991, p.1.
104 Trümpler, 2004, p.3.
105 Infovitrail [En ligne].
106 Trümpler, 2004, p.3.
107 Trümpler, 2004, p.3.
108 Tétreault, 2003, p.148.
109 Trümpler, 2004, p.3.
17. Liste des produits mentionnés

<table>
<thead>
<tr>
<th>Fournisseur</th>
<th>Article</th>
<th>Référence</th>
<th>Caractéristiques</th>
<th>Prix [CHF] /Pce</th>
<th>Prix [CHF] /m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Artdoctor</td>
<td>Non-tissé PE Tyvek®</td>
<td>SUTYRL0002</td>
<td>Rouleau (1.52 x 25 m)</td>
<td>95.00</td>
<td>-</td>
</tr>
<tr>
<td>ARTECH Pro</td>
<td>Film PET Melinex®</td>
<td></td>
<td>1.52 m de largeur</td>
<td>3.75/m</td>
<td>-</td>
</tr>
<tr>
<td>Essentra Components</td>
<td>Rivets enclipsables Polypropylène</td>
<td>8501160908VR</td>
<td>Épaisseur de panneau compatible 12 – 18 mm</td>
<td>0.08</td>
<td>-</td>
</tr>
<tr>
<td>Essentra Components</td>
<td>Rivets enclipsables Polypropylène</td>
<td>8502440900VR</td>
<td>Épaisseur de panneau compatible 20 – 40 mm</td>
<td>0.1</td>
<td>-</td>
</tr>
<tr>
<td>Fillistof Couleur SA</td>
<td>FEYCOPOX S81 2K EP Harz 500</td>
<td></td>
<td>1.5 kg</td>
<td>48.85</td>
<td>-</td>
</tr>
<tr>
<td>Gaerner SA</td>
<td>Armoire à plans, format A0, 10 tiroirs</td>
<td>102948 29</td>
<td></td>
<td>2990.00</td>
<td>-</td>
</tr>
<tr>
<td>Gaerner SA</td>
<td>Armoire à plans, format A0, 5 tiroirs</td>
<td>102877 29</td>
<td></td>
<td>1690.00</td>
<td>-</td>
</tr>
<tr>
<td>Gerstaecker Schweiz AG</td>
<td>Lascaux Acryl Transparentlack 1-UV glanz</td>
<td>8-20666</td>
<td>1 L</td>
<td>48.05</td>
<td>-</td>
</tr>
<tr>
<td>Kaiser+Kraft SA</td>
<td>Armoire à plans, format A0, 10 tiroirs</td>
<td>545448 49</td>
<td></td>
<td>3'050.00</td>
<td>-</td>
</tr>
<tr>
<td>Kaiser+Kraft SA</td>
<td>Armoire à plans, format A0, 5 tiroirs</td>
<td>545424 49</td>
<td></td>
<td>1'790.00</td>
<td>-</td>
</tr>
<tr>
<td>Klug conservation</td>
<td>Rubans gommés en toile</td>
<td>089-23</td>
<td>Rouleau (3 cm x 50 m)</td>
<td>29.00</td>
<td>-</td>
</tr>
<tr>
<td>Kremer Pigmente</td>
<td>Film polyester Hostaphan®</td>
<td>87221</td>
<td>Rouleau (1.4 x 50 m) ép. 75 μm</td>
<td>155.70</td>
<td>2.20</td>
</tr>
<tr>
<td>Landi SA</td>
<td>Vis équerre galvanisée Connex®</td>
<td>20728</td>
<td>Paquet de 20 vis 3.0 x 40 mm</td>
<td>1.70</td>
<td>-</td>
</tr>
<tr>
<td>Landi SA</td>
<td>Vis équerre galvanisée Connex®</td>
<td>20726</td>
<td>Paquet de 30 vis 2.0 x 20 mm</td>
<td>1.70</td>
<td>-</td>
</tr>
<tr>
<td>Michel + Jenni AG</td>
<td>Pappel Sperrholzplatten FSC</td>
<td></td>
<td>Contreplaqué 7 plis 2.52 x 1.87 m ép. 1.2 cm</td>
<td>-</td>
<td>21.30</td>
</tr>
<tr>
<td>Neupack Produkte AG</td>
<td>Film mousse PE</td>
<td>310.0020.10</td>
<td>Rouleau (1.20 x 250 m ép. 2 mm)</td>
<td>110.00</td>
<td>0.44</td>
</tr>
<tr>
<td>Oekopack Conservus AG</td>
<td>Carton en nid d'abeilles non acide</td>
<td>0711134</td>
<td>Feuille (140 x 250 x 1.3 cm)</td>
<td>184.50</td>
<td>52.70</td>
</tr>
<tr>
<td>Oekopack Conservus AG</td>
<td>Carton cannelé de conservation</td>
<td>031107</td>
<td>Feuilles 180 x 245 x 0.3 cm</td>
<td>51.25</td>
<td>11.60</td>
</tr>
<tr>
<td>Serex construction plastiques SA</td>
<td>Plaque en PMMA extrudée</td>
<td></td>
<td>10 mm d'épaisseur</td>
<td>-</td>
<td>203.20</td>
</tr>
<tr>
<td>Vibraplast AG</td>
<td>Mousse PE Ethafoam®</td>
<td>2210.1094.0030</td>
<td>Plaque 2.75 x 0.6 m ép. 3 cm</td>
<td>44.65</td>
<td>27.05</td>
</tr>
</tbody>
</table>
18. Listes des fournisseurs mentionnés

Artdoctor
1 Avenue Louison Bobet
FR – 94120 Fontenay-sous-bois
+33 1 60 31 97 00
artdoctor@cxd-france.com
www.artdoctor.fr

ARTECH Pro
22 bis rue Velouterie
FR – 84000 Avignon
+33 4 90 80 07 83
contact@artech-avignon.com
www.artech-avignon.com

Essentra components
280 rue de la Belle Étoile
FR - 95700 Roissy en France
+33 1 48 17 50 00
sales@essentracomponents.fr
www.essentracomponents.com

Fillistorf Couleur SA
Route de la Pâla 115
CH – 1630 Bulle
+41 26 913 75 75
bulle@fillistorf.ch
www.fillistorf.ch

Gaerner SA
Erlenweg 8
CH – 6312 Steinhausen
+41 21 728 39 00
service@gaerner.ch
www.gaerner.ch

Gerstaecker Schweiz AG
Engelbergstrasse 41
CH – 4600 Olten
+41 62 206 00 00
info@gerstaecker.ch
www.gerstaecker.ch

Kaiser+Kraft SA
Erlenweg 8 Postfach 261
CH – 6312 Steinhausen
+41 41 747 10 10
verkauf@kaiserkraft.ch
www.kaiserkraft.ch

KLUG-CONSERVATION
Zollstrass 2
DE – 87509 Immenstadt
+49 8323 9653 30
info@klug-conservation.fr
www.klug-conservation.fr

Kremer Pigmente GmbH & Co. KG
Hauptstrasse 41 – 47
DE – 88317 Aichstetten
+49 7565 91448 0
www.kremer-pigmente.com

Landi SA
Route de l’Ancienne Ferme 2
CH – 1680 Romont
+41 58 476 99 33
www.landi.ch

Michel + Jenni AG
Hühnerhubelstrasse 69
CH – 3123 Belp
+41 31 818 18 18
info@michel-jenni.ch
www.michel-jenni.ch

Neupack Produckte AG
Gewerbestrasse 1
CH – 6038 Honau
+41 58 455 00 00
info@neupack.ch
www.neupack.ch

Oekopack Conservus AG
Industriestrasse 18
CH - 3700 Spiez
+41 33 655 90 55
info@oeacag.ch
www.oekopack.ch

Serex Construction Plastiques SA
Route du Village 16
CH – 1070 Puidoux
+41 21 946 33 34
cs@serex-plastics.ch
www.serex-plastics.ch

Ulrich Bucher-Remund Antik- & Instrumenten-Schreinerei
Mühleweg 12
CH – 4562 Biberist
+41 32 672 38 14
ulrichbucher@gmx.ch
www.ulrichbucher.ch

Vibraplast AG
Wittenwilerstrasse 25
CH – 8355 Aadorf
+41 52 368 00 50
info@vibraplast.ch
www.vibraplast.ch
19. Annexes

19.1. Sécurité lors des interventions

Au-delà des principes de base devant être observés lors de la manipulation et du dépoussiérage des biens culturels, des précautions particulières doivent être considérées en relation au risque sanitaire lié à la toxicité du plomb. « Son accumulation dans l’organisme humain entraîne de nombreux effets toxiques graves, auxquels sont vulnérables pratiquement tous les organes110. » Les intoxications aiguës ou chroniques peuvent avoir des effets multiples provoquant des dérèglements hématologiques, neurologiques, rénaux, digestifs, cardiovasculaires, hépatiques, métaboliques et endocriniens111. Il peut occasionner des troubles de la reproduction112. L’inhalation et l’ingestion sont les principales voies d’absorption du plomb par l’organisme. L’ingestion peut être, par exemple, causée par le portage à la bouche de mains contaminées. Les risques liés au plomb ne sont pas équivalents à tous les types d’interventions. Le dépoussiérage présente par exemple un risque élevé par la mise en suspension dans l’air de poussière contenant des oxydes de plomb. Les oxydes de plomb peuvent provenir de la dégradation des plombs ou des mastics qui peuvent contenir du plomb dans leur composition113.

Dans un premier temps, il semble judicieux de faire un point sur le contenu de la littérature à ce sujet. Plusieurs niveaux de mesures de prévention sont présentés : des mesures techniques, organisationnelles et individuelles114. Tous les systèmes de ventilation et d’aspiration ou autres systèmes permettant le traitement de l’air ou de l’obtention d’un système clos font partie des moyens techniques. Les mesures organisationnelles touchent principalement la création de zones propres et de zones contaminées séparées. Elle implique par exemple l’organisation de vestiaires séparés, un pour les vêtements de ville et un pour les vêtements de travail avec, dans la mesure du possible, une douche assurant la communication entre les deux vestiaires115. Cette mesure est préconisée lors de travaux entraînant une potentielle contamination des vêtements de l’opérateur. Un nettoyage quotidien des zones potentiellement contaminées est préconisé afin de réduire les risques de transfert par contact. Le balayage à sec ou l’aspirateur simple sont à proscrire à cause de la mise en suspension des poussières dans l’air116. En absence d’un aspirateur avec filtre à très haute efficacité (HEPA), il est préférable d’effectuer un nettoyage humide des surfaces117. Les mesures de prévention individuelles sont principalement liées à l’hygiène et à l’équipement de protection individuelle. L’hygiène individuelle joue un rôle prépondérant dans la sécurité au travail. L’interdiction de consommation d’aliments et de

111 Coates et al., 2014, p.42.
112 Coates et al., 2014, p.42.
113 de Corneillan, 2020 [Courriel].
114 Pietscher et Liechti, 2007, p.29.
115 Pietscher et Liechti, 2007, p.29.
116 Coates et al., 2014, p.53.
117 Coates et al., 2014, p.52.
boissons doit être strictement respectée. Un lavage soigneux et régulier des mains, des ongles, des avant-bras et du visage doit être effectué à chaque fin de session de travail au minimum. Le port de gants de taille adaptés en nitrile jetable est préconisé lors de la manipulation de vieux vitraux. Contre les risques d’inhalation de poussières de plomb, la division de la médecine du travail de la Suva préconise le port d’équipements de protection respiratoires de type FFP2/P3 lorsque les mesures techniques et organisationnelles sont insuffisantes. Pour empêcher le transfert de contaminants hors des zones de travail, des vêtements de protection jetables peuvent être utilisés spécifiquement lors des sessions de travail. Le stockage de ces équipements de protection individuelle est situé dans une zone propre non contaminée.

Mesures prises

fig. 12 PKSO_2060b avant intervention de dépoussiérage © HE Arc CR, Julie Vuignier 2020.

fig. 13 PKSO_2060b après intervention de dépoussiérage © HE Arc CR, Julie Vuignier 2020.

118 Selwyn, 2010, p.4.
119 Coates et al., 2014, p.54.
120 Pletscher et Liechti, 2007, p.29.
121 Selwyn, 2010, p.5.
122 Coates et al., 2014, p.53.
19.2. Objets étudiés

19.2.1. Campagne photographique

Une campagne photographique des vitraux a été organisée le 13 et 14 juillet 2020 en collaboration avec le KDSO. M. Schenker est alors mandaté pour effectuer cette dernière. Les vitraux sont photographiés sous une lumière transmise et incidente. Cela implique la création d’une « table lumineuse » de dimension suffisante (sch. 10). Lors de cette action, les vitraux ont été manipulés majoritairement à quatre mains. Pour les vitraux les plus fragiles, des auxiliaires de manipulation ont été utilisés comme des cartons ou des films polyester épais afin de faciliter le déplacement de ces derniers de leur plateau à la table lumineuse et inversement.

sch. 10 installation permettant des prises de vue des vitraux sous lumières transmises et incidentes
Vuignier Julie, mise en réserve d’éléments de vitraux, 31.08.2020

fig. 14 photographie d’inventaire PKSO_2053a © RKSO KDSO, Guido Schenker 2020.

fig. 15 photographie d’inventaire PKSO_2054a © RKSO KDSO, Guido Schenker 2020.

fig. 16 photographie d’inventaire PKSO_2054b © RKSO KDSO, Guido Schenker 2020.

fig. 17 photographie d’inventaire PKSO_2055a © RKSO KDSO, Guido Schenker 2020.

fig. 18 photographie d’inventaire PKSO_2055b © RKSO KDSO, Guido Schenker 2020.

fig. 19 photographie d’inventaire PKSO_2055c © RKSO KDSO, Guido Schenker 2020.
Vuignier Julie, mise en réserve d’éléments de vitraux, 31.08.2020

fig. 20 photographie d’inventaire PKSO_2056a © RKSO KDSO, Guido Schenker 2020.

fig. 21 photographie d’inventaire PKSO_2057a © RKSO KDSO, Guido Schenker 2020.

fig. 22 photographie d’inventaire PKSO_2058a © RKSO KDSO, Guido Schenker 2020.

fig. 23 photographie d’inventaire PKSO_2058b © RKSO KDSO, Guido Schenker 2020.

fig. 24 photographie d’inventaire PKSO_2058c © RKSO KDSO, Guido Schenker 2020.
Vuignier Julie, mise en réserve d’éléments de vitraux, 31.08.2020

fig. 25 photographie d’inventaire PKSO_2059a © RKSO KDSO, Guido Schenker 2020.

fig. 26 photographie d’inventaire PKSO_2060a © RKSO KDSO, Guido Schenker 2020.

fig. 27 photographie d’inventaire PKSO_2060b © RKSO KDSO, Guido Schenker 2020.

fig. 28 photographie d’inventaire PKSO_2060c © RKSO KDSO, Guido Schenker 2020.

fig. 29 photographie d’inventaire PKSO_2061a, PKSO_2061b, PKSO_2061c © RKSO KDSO, Guido Schenker 2020.

fig. 30 photographie d’inventaire PKSO_2061d, PKSO_2061e, PKSO_2061f © RKSO KDSO, Guido Schenker 2020.
Vuignier Julie, mise en réserve d’éléments de vitraux, 31.08.2020

fig. 31 photographie d’inventaire PKSO_2061g, PKSO_2061h, PKSO_2061i, PKSO_2061j, © RKSO KDSO, Guido Schenker 2020.

fig. 32 photographie d’inventaire RKSO_2062a © RKSO KDSO, Guido Schenker 2020.

fig. 33 photographie d’inventaire RKSO_2063a © RKSO KDSO, Guido Schenker 2020.

fig. 34 photographie d’inventaire RKSO_2064a © RKSO KDSO, Guido Schenker 2020.

fig. 35 photographie d’inventaire RKSO_2065a © RKSO KDSO, Guido Schenker 2020.

fig. 36 photographie d’inventaire RKSO_2066a © RKSO KDSO, Guido Schenker 2020.

© RKSO KDSO, Guido Schenker 2020.
Vuignier Julie, mise en réserve d’éléments de vitraux, 31.08.2020

fig. 37 photographie d’inventaire
PKSO_2067a
© RKSO KDSO, Guido Schenker 2020.

fig. 38 photographie d’inventaire
PKSO_2068a
© RKSO KDSO, Guido Schenker 2020.

fig. 39 photographie d’inventaire PKSO_2069a
© RKSO KDSO, Guido Schenker 2020.
19.2.2. Histoire matérielle

fig. 40 lieu de découverte des objets © RKSO, Kathrin Kocher 2019.

fig. 41 PKSO_2055abc photographié dans la St. Peterskapelle © KDSO, Ernst Räss 1971.

fig. 42 PKSO_2057a photographié dans la St. Peterskapelle © KDSO, Ernst Räss 1971.

fig. 43 PKSO_2059a photographié dans la St. Peterskapelle © KDSO, Ernst Räss 1971.

fig. 44 PKSO_2055abc photographié dans la St. Peterskapelle au niveau de la baie n III © KDSO, Ernst Räss 1971.

fig. 45 panneau du bas de la baie n III inventorié en 2012, visible aussi sur la fig.44. © Vitrocentre, 2012.
19.2.3. Attribution des numéros d’inventaire

Le Corpus Vitrearum a édicté des directives concernant la conservation et des normes de numération des baies dans l’édifice et des panneaux dans la baie\(^{123}\). Grâce à des exemples de plan de numérotation présentés dans la littérature, il est possible d’appliquer cette méthodologie à notre situation\(^{124}\). L’application de cette méthode nécessite de connaître l’emplacement initial des vitraux avant leur dépose. Elle sera donc appliquée pour les vitraux dont l’emplacement a pu être identifié lors de ce travail. Un numéro a été attribué à chaque baie en partant du cœur avec une lettre indiquant si elle se trouve au nord ou au sud du bâtiment (sch. 11). Les numéros d’inventaire suivront la même logique, les numéros impairs du côté nord et les numéros pairs du côté sud. Un sous-ordre est ensuite donné à la composition des panneaux en fonction de la vue intérieure du vitrail\(^{125}\). Pour les panneaux, dont la provenance reste encore incertaine ou inconnue, des numéros d’inventaire consécutifs au dernier numéro donné sont attribués. Les numéros d’inventaire utilisés par l’institution sont composés par une abréviation suivie d’un numéro accompagné d’une lettre pour les sous-ordres. L’abréviation utilisée est en lien avec le lieu d’origine de l’objet. Les objets provenant de la Sankt Peterskapelle ont comme abréviation PKSO pour Sankt Peterskapelle Solothurn. Les objets, dont la provenance est inconnue, ont comme abréviation RKSO pour Römisch-katholische Kirchgemeinde Solothurn. Les écoinçons des baies ne sont pas directement reliés à une baie en particulier, la comparaison des formes ne permettant pas de les identifier avec certitude. Toutefois, les photographies de 1971 offrent quelques indices sur leur possible attribution. Par précaution, ils seront tous inventoriés comme un ensemble avec une indication de l’hypothèse d’attribution à une baie particulière (tab. 6). L’utilisation de lettre dans le numéro d’inventaire n’est pas forcément judicieuse, car il limite le nombre de sous-ordres à 26 hormis dans le cas où on viendrait à combiner plusieurs lettres. Cependant, dans un souci d’uniformité d’attribution de numéro dans l’inventaire, ce système est utilisé (tab.6).

\(^{123}\) Corpus vitrearum, 2001, §9.
\(^{124}\) Trümpler, 2004, p.4.
\(^{125}\) Pallot-Frossard, 2006, p.19.
Association des fragments

Les conditions de stockage précédant leur récente mise au jour ont mené à d'importantes altérations structurelles des objets. Des nombres importants de casses et déchaussements complets au niveau des pièces de verre sont à déplorer. De nombreux fragments se sont retrouvés isolés. Les manques ainsi créés ont favorisé les dégradations mécaniques des réseaux de plomb.

Une recherche de correspondance a été entreprise afin d’offrir une meilleure perception de la situation. La présence de décor peint est une aide non négligeable servant, comme les lignes de cassures, de

126 Les photos en noir et blanc ne permettent pas de dire avec certitude quel écoinçon se trouvait à quel endroit.
guide. La différenciation de la face interne ou de la face externe peut être simplifiée par la présence de décors ou la découpe particulière des fragments. Cette recherche est rendue néanmoins difficile par la disparition ou la déformation importante de certains plombs. Cependant, par la mise en relation de décors récurrents entre deux vitraux différents, il a été possible d’identifier l’emplacement d’un certain nombre de fragments. Toutefois, d’autres fragments n’ont pas pu être attribués à un vitrail en particulier à cause d’une trop grande incertitude. Comme cela peut être le cas pour les fragments composants les filets* décoratifs qui sont difficilement différenciables.
Cette recherche de correspondance est essentielle aux réflexions en lien avec leur gestion comme l’attribution d’un numéro d’inventaire ou leur conditionnement.

<table>
<thead>
<tr>
<th>Constat d’état</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contexte de conservation</td>
</tr>
<tr>
<td>Provenance</td>
</tr>
<tr>
<td>Date de rédaction</td>
</tr>
<tr>
<td>sN° d’inventaire</td>
</tr>
<tr>
<td>Dénomination</td>
</tr>
<tr>
<td>Dimension (L x l x h) [cm]</td>
</tr>
<tr>
<td>État général</td>
</tr>
<tr>
<td>Altérations structurelles</td>
</tr>
<tr>
<td>Altérations de surface</td>
</tr>
<tr>
<td>Interventions antérieures</td>
</tr>
</tbody>
</table>

Localisation des altérations structurelles

127 Les mesures sont prises sur les objets à plat.
Constat d’état

<table>
<thead>
<tr>
<th>Contexte de conservation</th>
<th>Réserves de la Römisch-katholische Kirchgemeinde de Soleure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Provenance</td>
<td>St. Peterskapelle, Soleure</td>
</tr>
<tr>
<td>Date de rédaction</td>
<td>Mai 2020</td>
</tr>
<tr>
<td>Opérateur</td>
<td>Julie Vuignier</td>
</tr>
<tr>
<td>N° d’inventaire</td>
<td>PKSO_2054a</td>
</tr>
<tr>
<td>Dénomination</td>
<td>Vitrail</td>
</tr>
<tr>
<td>Dimension (L x l x h) [cm]</td>
<td>67.5 x 35.5 x 1.7</td>
</tr>
<tr>
<td>État général</td>
<td>Mauvais</td>
</tr>
<tr>
<td>Altérations structurelles</td>
<td>Manques au niveau du sertissage, 1 pièce en verre mobile, déchaussemment des verres, cassures.</td>
</tr>
<tr>
<td>Altérations de surface</td>
<td>Encrassement important, éclaboussures blanches réparties sur l’ensemble de la surface, perte d’adhérence ponctuelle de la grisaille.</td>
</tr>
<tr>
<td>Interventions antérieures</td>
<td>-</td>
</tr>
</tbody>
</table>

Localisation des altérations structurelles

- manque
- pièce mobile associée
- pièce mobile encore placée
- déchaussement
- cassure
- plomb de casse
- déformation des plombs
- déformation du panneau
- zone de solidité
- remaniement
- élément de montage

Constat d’état

<table>
<thead>
<tr>
<th>Contexte de conservation</th>
<th>Réserves de la Römisch-katholische Kirchgemeinde de Soleure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Provenance</td>
<td>St. Peterskapelle, Soleure</td>
</tr>
<tr>
<td>Date de rédaction</td>
<td>Mai 2020</td>
</tr>
<tr>
<td>Opérateur</td>
<td>Julie Vuignier</td>
</tr>
<tr>
<td>N° d’inventaire</td>
<td>PKSO_2054b</td>
</tr>
<tr>
<td>Dénomination</td>
<td>Vitrail</td>
</tr>
<tr>
<td>Dimension (L x l x h) [cm]</td>
<td>64.3 x 33.9 x 1.7</td>
</tr>
<tr>
<td>État général</td>
<td>Mauvais</td>
</tr>
<tr>
<td>Altérations structurelles</td>
<td>Manques au niveau des plombs, 4 pièces en verre mobiles, déchaussements des verres, cassures, déformations des plombs, déformation du panneau.</td>
</tr>
<tr>
<td>Altérations de surface</td>
<td>Encrassement important, éclaboussures blanches réparties sur l’ensemble de la surface, perte d’adhérence ponctuelle de la grisaille.</td>
</tr>
<tr>
<td>Interventions antérieures</td>
<td>-</td>
</tr>
</tbody>
</table>

Localisation des altérations structurelles

- manque
- pièce mobile associée
- pièce mobile encore placée
- déchaussement
- cassure
- plomb de casse
- déformation des plombs
- déformation du panneau
- zone de solidité
- remaniement
- élément de montage
Constat d’état

<table>
<thead>
<tr>
<th>Contexte de conservation</th>
<th>Réserves de la Römisch-katholische Kirchgemeinde de Soleure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date de rédaction</td>
<td>Mai 2020</td>
</tr>
<tr>
<td>Opérateur</td>
<td>Julie Vuignier</td>
</tr>
<tr>
<td>N° d’inventaire</td>
<td>PKSO_2055a</td>
</tr>
<tr>
<td>Dénomination</td>
<td>Vitrail</td>
</tr>
<tr>
<td>Dimension (L x l x h) [cm]</td>
<td>46 x 14.5 x 0.7</td>
</tr>
<tr>
<td>État général</td>
<td>Passable</td>
</tr>
<tr>
<td>Altérations structurelles</td>
<td>Manques de pièces en verre et de plombs, 1 pièce en verre mobile, déchaussements des verres, cassures.</td>
</tr>
<tr>
<td>Altérations de surface</td>
<td>Encrassement important, éclaboussures jaunes réparties sur la face externe.</td>
</tr>
<tr>
<td>Interventions antérieures</td>
<td>-</td>
</tr>
</tbody>
</table>

Localisation des altérations structurelles

manque	déformation des plombs
pièces mobiles	déformation du panneau
pièces mobiles encore placées	zone de solidité
déchaussement	remaniement
cassure	élément de montage
plomb de casse	

Constat d’état

<table>
<thead>
<tr>
<th>Contexte de conservation</th>
<th>Réserves de la Römisch-katholische Kirchgemeinde de Soleure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Provenance</td>
<td>St. Peterskapelle, Soleure</td>
</tr>
<tr>
<td>Date de rédaction</td>
<td>Mai 2020</td>
</tr>
<tr>
<td>Opérateur</td>
<td>Julie Vuignier</td>
</tr>
<tr>
<td>N° d’inventaire</td>
<td>PKSO_2055b</td>
</tr>
<tr>
<td>Dénomination</td>
<td>Vitrail</td>
</tr>
<tr>
<td>Dimension (L x l x h) [cm]</td>
<td>71.6 x 42 x 2.8</td>
</tr>
<tr>
<td>État général</td>
<td>Passable</td>
</tr>
<tr>
<td>Altérations structurelles</td>
<td>Manques de pièces en verre et de plombs, 2 pièces en verre mobiles, déchaussements des verres, cassures, déformations des plombs, déformations du panneau, vergette.</td>
</tr>
<tr>
<td>Altérations de surface</td>
<td>Encrassement important, légères éclaboussures blanches, dépôt de mortier.</td>
</tr>
<tr>
<td>Interventions antérieures</td>
<td>-</td>
</tr>
</tbody>
</table>

Localisation des altérations structurelles

manque	déformation des plombs
pièces mobiles	déformation du panneau
pièces mobiles encore placées	zone de solidité
déchaussement	remaniement
cassure	élément de montage
plomb de casse	
Constat d’état

<table>
<thead>
<tr>
<th>Contexte de conservation</th>
<th>Réserves de la Römisch-katholische Kirchgemeinde de Soleure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Provenance</td>
<td>St. Peterskapelle, Soleure</td>
</tr>
<tr>
<td>Date de rédaction</td>
<td>Mai 2020</td>
</tr>
<tr>
<td>N° d’inventaire</td>
<td>PKSO_2055c</td>
</tr>
<tr>
<td>Dimension (L x l x h) [cm]</td>
<td>72.3 x 42.1 x 2.3</td>
</tr>
<tr>
<td>Opérateur</td>
<td>Julie Vuignier</td>
</tr>
<tr>
<td>Dénomination</td>
<td>Vitrail</td>
</tr>
<tr>
<td>État général</td>
<td>Passable</td>
</tr>
</tbody>
</table>

Altérations structurelles
Manques de pièces en verre et de plombs, 1 pièce en verre mobile, déchaussements des verres, cassures, déformations du panneau, vergette.

Altérations de surface
Encrassement important, légères éclaboussures blanches.

Interventions antérieures
-

Localisation des altérations structurelles

Constat d’état

<table>
<thead>
<tr>
<th>Contexte de conservation</th>
<th>Réserves de la Römisch-katholische Kirchgemeinde de Soleure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Provenance</td>
<td>St. Peterskapelle, Soleure</td>
</tr>
<tr>
<td>Date de rédaction</td>
<td>Mai 2020</td>
</tr>
<tr>
<td>N° d’inventaire</td>
<td>PKSO_2056a</td>
</tr>
<tr>
<td>Dimension (L x l x h) [cm]</td>
<td>Ø 74.5 x 2</td>
</tr>
<tr>
<td>Opérateur</td>
<td>Julie Vuignier</td>
</tr>
<tr>
<td>Dénomination</td>
<td>Vitrail</td>
</tr>
<tr>
<td>État général</td>
<td>Passable</td>
</tr>
</tbody>
</table>

Altérations structurelles
Manques de pièces en verre et de plombs, 2 pièces en verre mobiles non localisées avec certitude et un fragment d’une baguette de plomb, cassures, déchaussements des verres, déformations des plombs, déformations du panneau.

Altérations de surface
Encrassement important, éclaboussures blanches réparties sur l’ensemble de la surface.

Interventions antérieures
-

Localisation des altérations structurelles
Constat d’état

<table>
<thead>
<tr>
<th>Contexte de conservation</th>
<th>Réserves de la Römisch-katholische Kirchgemeinde de Soleure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Provenance</td>
<td>St. Peterskapelle, Soleure</td>
</tr>
<tr>
<td>Date de rédaction</td>
<td>Mai 2020</td>
</tr>
<tr>
<td>Opérateur</td>
<td>Julie Vuignier</td>
</tr>
<tr>
<td>N° d’inventaire</td>
<td>PKSO_2057a</td>
</tr>
<tr>
<td>Dénomination</td>
<td>Vitrail</td>
</tr>
<tr>
<td>Dimension (L x l x h) [cm]</td>
<td>71.9 x 64.5 x 1.7</td>
</tr>
<tr>
<td>État général</td>
<td>Mauvais</td>
</tr>
<tr>
<td>Manques de pièces en verre et de plombs, 6 pièces en verre mobiles, déchaussements des verres, cassures, déformations du panneau, vergette.</td>
<td></td>
</tr>
<tr>
<td>Encrassement important, coulures blanches.</td>
<td></td>
</tr>
<tr>
<td>- Localisation des altérations structurelles</td>
<td></td>
</tr>
</tbody>
</table>

Constat d’état

<table>
<thead>
<tr>
<th>Contexte de conservation</th>
<th>Réserves de la Römisch-katholische Kirchgemeinde de Soleure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Provenance</td>
<td>St. Peterskapelle, Soleure</td>
</tr>
<tr>
<td>Date de rédaction</td>
<td>Mai 2020</td>
</tr>
<tr>
<td>Opérateur</td>
<td>Julie Vuignier</td>
</tr>
<tr>
<td>N° d’inventaire</td>
<td>PKSO_2058a</td>
</tr>
<tr>
<td>Dénomination</td>
<td>Vitrail</td>
</tr>
<tr>
<td>Dimension (L x l x h) [cm]</td>
<td>Ø 36.7 x 0.7</td>
</tr>
<tr>
<td>État général</td>
<td>Passable</td>
</tr>
<tr>
<td>Manques de pièces en verre et de plombs, 1 pièce en verre mobile, déchaussements des verres.</td>
<td></td>
</tr>
<tr>
<td>Encrassement important, importantes éclaboussures grises face externe.</td>
<td></td>
</tr>
<tr>
<td>- Localisation des altérations structurelles</td>
<td></td>
</tr>
</tbody>
</table>

![Diagram of the alteration localizations]
Constat d’état

<table>
<thead>
<tr>
<th>Contexte de conservation</th>
<th>Réserves de la Römisch-katholische Kirchgemeinde de Soleure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Provenance</td>
<td>St. Peterskapelle, Soleure</td>
</tr>
<tr>
<td>Date de rédaction</td>
<td>Mai 2020</td>
</tr>
<tr>
<td>N° d’inventaire</td>
<td>PKSO_2058b</td>
</tr>
<tr>
<td>Dimension (L x l x h) [cm]</td>
<td>60.3 x 60.2 x 2.5</td>
</tr>
<tr>
<td>Opérateur</td>
<td>Julie Vuignier</td>
</tr>
<tr>
<td>Dénomination</td>
<td>Vitrail</td>
</tr>
<tr>
<td>État général</td>
<td>Mauvais</td>
</tr>
<tr>
<td>Altérations structurelles</td>
<td>Manques de pièces en verre et de plombs, 6 pièces en verre mobiles, déchaussements des verres, cassures, déformations du panneau, vergette.</td>
</tr>
<tr>
<td>Altérations de surface</td>
<td>Encrassement important, éclaboussures blanches réparties sur l’ensemble de la surface.</td>
</tr>
<tr>
<td>Interventions antérieures</td>
<td>-</td>
</tr>
</tbody>
</table>

Localisation des altérations structurelles

- manque
- pièce mobile associée
- pièce mobile encore placée
- déchaussement
- cassure
- plomb de casse
- déformation des plombs
- déformation du panneau
- zone de solidité
- remaniement
- élément de montage

Constat d’état

<table>
<thead>
<tr>
<th>Contexte de conservation</th>
<th>Réserves de la Römisch-katholische Kirchgemeinde de Soleure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Provenance</td>
<td>St. Peterskapelle, Soleure</td>
</tr>
<tr>
<td>Date de rédaction</td>
<td>Mai 2020</td>
</tr>
<tr>
<td>N° d’inventaire</td>
<td>PKSO_2058c</td>
</tr>
<tr>
<td>Dimension (L x l x h) [cm]</td>
<td>62.5 x 60.9 x 1.7</td>
</tr>
<tr>
<td>Opérateur</td>
<td>Julie Vuignier</td>
</tr>
<tr>
<td>Dénomination</td>
<td>Vitrail</td>
</tr>
<tr>
<td>État général</td>
<td>Passable</td>
</tr>
<tr>
<td>Altérations structurelles</td>
<td>Manques de pièces en verre et de plombs, 3 pièces en verre mobiles, déchaussements des verres, cassures, déformations des plombs, vergette.</td>
</tr>
<tr>
<td>Altérations de surface</td>
<td>Encrassement important, importantes coulures blanches réparties sur l’ensemble de la surface.</td>
</tr>
<tr>
<td>Interventions antérieures</td>
<td>-</td>
</tr>
</tbody>
</table>

Localisation des altérations structurelles

- manque
- pièce mobile associée
- pièce mobile encore placée
- déchaussement
- cassure
- plomb de casse
- déformation des plombs
- déformation du panneau
- zone de solidité
- remaniement
- élément de montage
Constat d’état

<table>
<thead>
<tr>
<th>Contexte de conservation</th>
<th>Réserves de la Römisch-katholische Kirchgemeinde de Soleure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Provenance</td>
<td>St. Peterskapelle, Soleure</td>
</tr>
<tr>
<td>Date de rédaction</td>
<td>Mai 2020</td>
</tr>
<tr>
<td>Opérateur</td>
<td>Julie Vuignier</td>
</tr>
<tr>
<td>N° d’inventaire</td>
<td>PKSO_2059a</td>
</tr>
<tr>
<td>Dénomination</td>
<td>Vitrail</td>
</tr>
<tr>
<td>Dimension (L x l x h) [cm]</td>
<td>78 x 77.5 x 1.5</td>
</tr>
<tr>
<td>État général</td>
<td>Mauvais</td>
</tr>
</tbody>
</table>

Altérations structurelles

- Manques de pièces en verre et de plombs, 1 pièce en verre mobile, déchaussements des verres, cassures, déformations du panneau, attaches métalliques.

Altérations de surface

- Encrassement important, éclaboussures blanches réparties sur l’ensemble de la surface, dépôts de mortier.

Interventions antérieures

- Suspicion de remplacement de certaines pièces en verre.

Localisation des altérations structurelles

![Diagramme de localisation des altérations structurelles]

Constat d’état

<table>
<thead>
<tr>
<th>Contexte de conservation</th>
<th>Réserves de la Römisch-katholische Kirchgemeinde de Soleure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Provenance</td>
<td>St. Peterskapelle, Soleure</td>
</tr>
<tr>
<td>Date de rédaction</td>
<td>Mai 2020</td>
</tr>
<tr>
<td>Opérateur</td>
<td>Julie Vuignier</td>
</tr>
<tr>
<td>N° d’inventaire</td>
<td>PKSO_2060a</td>
</tr>
<tr>
<td>Dénomination</td>
<td>Vitrail</td>
</tr>
<tr>
<td>Dimension (L x l x h) [cm]</td>
<td>45.1 x 32.2 x 2.6</td>
</tr>
<tr>
<td>État général</td>
<td>Bon</td>
</tr>
</tbody>
</table>

Altérations structurelles

- Manques de pièces en verre et de plombs, déchaussements des verres, cassures.

Altérations de surface

- Encrassement important, coulures blanches réparties sur l’ensemble de la face externe, dépôts de mortier volumineux.

Interventions antérieures

- -

Localisation des altérations structurelles

![Diagramme de localisation des altérations structurelles]
Constat d’état

<table>
<thead>
<tr>
<th>Contexte de conservation</th>
<th>Réserve de la Römisch-katholische Kirchgemeinde de Soleure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Provenance</td>
<td>St. Peterskapelle, Soleure</td>
</tr>
<tr>
<td>Date de rédaction</td>
<td>Mai 2020</td>
</tr>
<tr>
<td>Opérateur</td>
<td>Julie Vuignier</td>
</tr>
<tr>
<td>N° d’inventaire</td>
<td>PKSO_2060b</td>
</tr>
<tr>
<td>Dénomination</td>
<td>Vitrail</td>
</tr>
<tr>
<td>Dimension (L x l x h) [cm]</td>
<td>64.6 x 41.8 x 1.3</td>
</tr>
<tr>
<td>État général</td>
<td>Passable</td>
</tr>
<tr>
<td>Altérations structurelles</td>
<td>Manques de pièces en verre et de plombs, déchaussements des verres, cassures, déformation du sertissage.</td>
</tr>
<tr>
<td>Altérations de surface</td>
<td>Encrassement important, coulures blanches.</td>
</tr>
<tr>
<td>Interventions antérieures</td>
<td>-</td>
</tr>
</tbody>
</table>

Localisation des altérations structurelles

- manque
- pièce mobile associée
- pièce mobile encore placée
- déchaussement
- cassure
- plomb de casse
- déformation des plombs
- déformation du sertissage
- zone de solidité
- remaniement
- élément de montage

Constat d’état

<table>
<thead>
<tr>
<th>Contexte de conservation</th>
<th>Réserve de la Römisch-katholische Kirchgemeinde de Soleure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Provenance</td>
<td>St. Peterskapelle, Soleure</td>
</tr>
<tr>
<td>Date de rédaction</td>
<td>Mai 2020</td>
</tr>
<tr>
<td>Opérateur</td>
<td>Julie Vuignier</td>
</tr>
<tr>
<td>N° d’inventaire</td>
<td>PKSO_2060c</td>
</tr>
<tr>
<td>Dénomination</td>
<td>Vitrail</td>
</tr>
<tr>
<td>Dimension (L x l x h) [cm]</td>
<td>65 x 42.7 x 1.3</td>
</tr>
<tr>
<td>État général</td>
<td>Passable</td>
</tr>
<tr>
<td>Altérations structurelles</td>
<td>Manques de pièces en verre et de plombs, 7 pièces mobiles, déchaussements des verres, cassures, déformation du sertissage.</td>
</tr>
<tr>
<td>Altérations de surface</td>
<td>Encrassement important, coulures blanches.</td>
</tr>
<tr>
<td>Interventions antérieures</td>
<td>-</td>
</tr>
</tbody>
</table>

Localisation des altérations structurelles

- manque
- pièce mobile associée
- pièce mobile encore placée
- déchaussement
- cassure
- plomb de casse
- déformation des plombs
- déformation du sertissage
- zone de solidité
- remaniement
- élément de montage
Constat d’état

<table>
<thead>
<tr>
<th>Contexte de conservation</th>
<th>Réserves de la Römisch-katholische Kirchgemeinde de Soleure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Provenance</td>
<td>Inconnue</td>
</tr>
<tr>
<td>Date de rédaction</td>
<td>Mai 2020</td>
</tr>
<tr>
<td>Opérateur</td>
<td>Julie Vuignier</td>
</tr>
<tr>
<td>N° d’inventaire</td>
<td>RKSO_2062a</td>
</tr>
<tr>
<td>Dénomination</td>
<td>Vitrail</td>
</tr>
<tr>
<td>Dimension (L x l x h) [cm]</td>
<td>78.5 x 76.4 x 2.4</td>
</tr>
<tr>
<td>État général</td>
<td>Très mauvais</td>
</tr>
</tbody>
</table>

Altérations structurelles	Manques de pièces en verre et de plombs, 6 pièces en verre mobiles, déchaussements des verres, cassures, déformations des plombs, déformations du panneau, vergette.
Altérations de surface	Encrassement important.
Interventions antérieures	Suspicion de remplacement d’une pièce en verre.

Localisation des altérations structurelles

![Diagram of vitrail with annotations]

Constat d’état

<table>
<thead>
<tr>
<th>Contexte de conservation</th>
<th>Réserves de la Römisch-katholische Kirchgemeinde de Soleure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Provenance</td>
<td>Inconnue</td>
</tr>
<tr>
<td>Date de rédaction</td>
<td>Mai 2020</td>
</tr>
<tr>
<td>Opérateur</td>
<td>Julie Vuignier</td>
</tr>
<tr>
<td>N° d’inventaire</td>
<td>RKSO_2063a</td>
</tr>
<tr>
<td>Dénomination</td>
<td>Vitrail</td>
</tr>
<tr>
<td>Dimension (L x l x h) [cm]</td>
<td>75.5 x 67.7 x 3.6</td>
</tr>
<tr>
<td>État général</td>
<td>Très mauvais</td>
</tr>
</tbody>
</table>

Altérations structurelles	Manques de pièces en verre et de plombs, 16 pièces en verre mobiles, déchaussements des verres, cassures, déformations des plombs, déformations du panneau.
Altérations de surface	Encrassement important.
Interventions antérieures	Suspicion de remplacement de certaines pièces en verre.

Localisation des altérations structurelles

![Diagram of vitrail with annotations]
Constat d’état

<table>
<thead>
<tr>
<th>Contexte de conservation</th>
<th>Réserves de la Römisch-katholische Kirchgemeinde de Soleure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Provenance</td>
<td>Inconnue</td>
</tr>
<tr>
<td>Date de rédaction</td>
<td>Mai 2020</td>
</tr>
<tr>
<td>N° d’inventaire</td>
<td>RKSO_2064a</td>
</tr>
<tr>
<td>Dimension (L x l x h) [cm]</td>
<td>76.8 x 68.5 x 2.4</td>
</tr>
<tr>
<td>État général</td>
<td>Très mauvais</td>
</tr>
</tbody>
</table>

Altérations structurelles
Manques de pièces en verre et de plombs, 22 pièces en verre mobiles, déchaussements des verres, cassures, déformations des plombs, déformations du panneau.

Altérations de surface
Encrassement important, traces de rouilles.

Interventions antérieures

Localisation des altérations structurelles

Constat d’état

<table>
<thead>
<tr>
<th>Contexte de conservation</th>
<th>Réserves de la Römisch-katholische Kirchgemeinde de Soleure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Provenance</td>
<td>Inconnue</td>
</tr>
<tr>
<td>Date de rédaction</td>
<td>Mai 2020</td>
</tr>
<tr>
<td>N° d’inventaire</td>
<td>RKSO_2065a</td>
</tr>
<tr>
<td>Dimension (L x l x h) [cm]</td>
<td>80.4 x 76.5 x 1.7</td>
</tr>
<tr>
<td>État général</td>
<td>Extrêmement mauvais</td>
</tr>
</tbody>
</table>

Altérations structurelles
Manques de pièces en verre et de plombs, 14 pièces en verre mobiles, déchaussements des verres, cassures, déformations des plombs, déformations du panneau.

Altérations de surface
Encrassement important.

Interventions antérieures
Suspicion de remplacement de certaines pièces en verre.

Localisation des altérations structurelles

Constat d’état

<table>
<thead>
<tr>
<th>Contexte de conservation</th>
<th>Réserves de la Römisch-katholische Kirchgemeinde de Soleure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Provenance</td>
<td>Inconnue</td>
</tr>
<tr>
<td>Date de rédaction</td>
<td>Mai 2020</td>
</tr>
<tr>
<td>Opérateur</td>
<td>Julie Vuignier</td>
</tr>
<tr>
<td>N° d’inventaire</td>
<td>RKSO_2066a</td>
</tr>
<tr>
<td>Dénomination</td>
<td>Vitrail</td>
</tr>
<tr>
<td>Dimension (L x l x h) [cm]</td>
<td>75.5 x 75.5 x 3.6</td>
</tr>
<tr>
<td>État général</td>
<td>Mauvais</td>
</tr>
</tbody>
</table>

Altérations structurelles
Manques de pièces en verre et de plombs, 1 pièce en verre mobile, déchaussements des verres, cassures, déformations des plombs, déformations du panneau.

Altérations de surface
Encrassement important.

Interventions antérieures

__Localisation des altérations structurelles__

- manque
- pièce mobile associée
- pièce mobile encore placée
- déchaussement
- cassure
- plomb de casse
- déformation des plombs
- déformation du panneau
- zone de solidité
- remaniement
- élément de montage

Constat d’état

<table>
<thead>
<tr>
<th>Contexte de conservation</th>
<th>Réserves de la Römisch-katholische Kirchgemeinde de Soleure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Provenance</td>
<td>Inconnue</td>
</tr>
<tr>
<td>Date de rédaction</td>
<td>Mai 2020</td>
</tr>
<tr>
<td>Opérateur</td>
<td>Julie Vuignier</td>
</tr>
<tr>
<td>N° d’inventaire</td>
<td>RKSO_2067a</td>
</tr>
<tr>
<td>Dénomination</td>
<td>Vitrail</td>
</tr>
<tr>
<td>Dimension (L x l x h) [cm]</td>
<td>78.5 x 74.5 x 1.6</td>
</tr>
<tr>
<td>État général</td>
<td>Très mauvais</td>
</tr>
</tbody>
</table>

Altérations structurelles
Manques de pièces en verre et de plombs, 8 pièces en verre mobiles, déchaussements des verres, cassures, déformations des plombs, déformations du panneau.

Altérations de surface
Encrassement important.

Interventions antérieures
Suspicion de remplacement d’une pièce en verre.

__Localisation des altérations structurelles__

- manque
- pièce mobile associée
- pièce mobile encore placée
- déchaussement
- cassure
- plomb de casse
- déformation des plombs
- déformation du panneau
- zone de solidité
- remaniement
- élément de montage
Constat d’état

<table>
<thead>
<tr>
<th>Contexte de conservation</th>
<th>Réserves de la Römisch-katholische Kirchgemeinde de Soleure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Provenance</td>
<td>Inconnue</td>
</tr>
<tr>
<td>Date de rédaction</td>
<td>Mai 2020</td>
</tr>
<tr>
<td>Opérateur</td>
<td>Julie Vuignier</td>
</tr>
<tr>
<td>N° d’inventaire</td>
<td>RKSO_2068a</td>
</tr>
<tr>
<td>Dénomination</td>
<td>Vitrail</td>
</tr>
<tr>
<td>Dimension (L x l x h) [cm]</td>
<td>78.8 x 74.6 x 1.7</td>
</tr>
<tr>
<td>État général</td>
<td>Très mauvais</td>
</tr>
<tr>
<td>Altérations structurelles</td>
<td>Manques de pièces en verre et de plombs, 2 pièces en verre mobiles, déchaussements des verres, cassures, plomb de casse détaché, déformations des plombs, déformations du panneau, vergette.</td>
</tr>
<tr>
<td>Altérations de surface</td>
<td>Encrassement important.</td>
</tr>
<tr>
<td>Interventions antérieures</td>
<td>Suspicion de remplacement de certaines pièces en verre.</td>
</tr>
</tbody>
</table>

Localisation des altérations structurelles

- **manque**
- **pièce mobile associée**
- **pièce mobile encore placée**
- **déchaussement**
- **cassure**
- **plomb de casse**
- **déformation des plombs**
- **déformation du panneau**
- **zone de solidité**
- **remaniement**
- **élément de montage**
tab. 7 récapitulatif des prises de mesures effectuées le 27 janvier 2020.

<table>
<thead>
<tr>
<th>N° provisoire de travail</th>
<th>N° Inventaire</th>
<th>Longueur max.</th>
<th>largeur max.</th>
<th>hauteur max.</th>
<th>diamètre max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>PKSO_2053a</td>
<td>73</td>
<td>68.5</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>PKSO_2054a</td>
<td>67.5</td>
<td>35.5</td>
<td>1.7</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>PKSO_2054b</td>
<td>64.3</td>
<td>33.9</td>
<td>1.7</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>PKSO_2055a</td>
<td>46</td>
<td>14.5</td>
<td>0.7</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>PKSO_2055b</td>
<td>71.6</td>
<td>42*</td>
<td>2.8</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>PKSO_2055c</td>
<td>72.3</td>
<td>42.1*</td>
<td>2.3</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>PKSO_2056a</td>
<td></td>
<td>2</td>
<td>74.5</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>PKSO_2057a</td>
<td>71.9</td>
<td>64.5</td>
<td>1.7</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>PKSO_2058a</td>
<td></td>
<td>0.7</td>
<td>36.7</td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>PKSO_2058b</td>
<td>60.3</td>
<td>60.2</td>
<td>2.5</td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>PKSO_2058c</td>
<td>62.5</td>
<td>60.9</td>
<td>1.7* - 1.3</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>PKSO_2059a</td>
<td>78</td>
<td>77.5</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>PKSO_2060a</td>
<td>45.1</td>
<td>32.2</td>
<td>2.6* - 0.7</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>PKSO_2060b</td>
<td>64.6</td>
<td>41.8</td>
<td>1.3</td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>PKSO_2060c</td>
<td>65</td>
<td>42.7</td>
<td>1.3</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>PKSO_2061a</td>
<td>26.5</td>
<td>16</td>
<td>1.3</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>PKSO_2061b</td>
<td>25.6</td>
<td>16.1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>PKSO_2061c</td>
<td>23.2</td>
<td>15</td>
<td>1.1</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>PKSO_2061d</td>
<td>29.1</td>
<td>16.8</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>PKSO_2061e</td>
<td>25.8</td>
<td>13.9</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>PKSO_2061f</td>
<td>27.8</td>
<td>14.4</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>PKSO_2061g</td>
<td>15.1</td>
<td>14.5</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>PKSO_2061h</td>
<td>11.5</td>
<td>10.4</td>
<td>0.7</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>PKSO_2061i</td>
<td>12.3</td>
<td>11.7</td>
<td>0.7</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>PKSO_2061j</td>
<td>22.2</td>
<td>19.7</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>RKSO_2062a</td>
<td>78.5* - 77.9</td>
<td>76.4</td>
<td>2.4</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>RKSO_2063a</td>
<td>75.5</td>
<td>67.7</td>
<td>3.6</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>RKSO_2064a</td>
<td>76.8</td>
<td>68.5</td>
<td>2.4</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>RKSO_2065a</td>
<td>80.4</td>
<td>76.5</td>
<td>2.4</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>RKSO_2066a</td>
<td>75.5</td>
<td>75.5</td>
<td>3.6</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>RKSO_2067a</td>
<td>78.5</td>
<td>74.5</td>
<td>1.6</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>RKSO_2068a</td>
<td>78.9* - 78</td>
<td>74.6</td>
<td>1.7* - 1.5</td>
<td></td>
</tr>
</tbody>
</table>

Remarque *=vergette*
19.3. Étude des pare-vapeurs

19.3.1. Test d’acidité du bois

Selon Tétreault, il existe une corrélation approximative entre le pH d’une essence de bois immergée dans l’eau et l’acidité des COV qu’elle peut dégager\(^\text{128}\). Il est difficile d’estimer celle-ci en partant de tableaux existants répertoriant le pH de certaines espèces\(^\text{129}\). Tout d’abord, car il existe pour le même type d’arbre une gamme très large de pH selon les espèces spécifiques. Par exemple pour le peuplier, il peut passer de 7.5 – 8.0 pour le *Populus cathayana* à 5.4 pour le *Populus tremuloides*\(^\text{130}\). De plus, dans le cas de produit du bois, comme ici le contreplaqué, les adhésifs utilisés lors de sa fabrication peuvent aussi influencer conséquemment l’acidité du matériau.

Afin d’obtenir une indication sur l’acidité d’un matériau en particulier, il est possible de mettre en place un test.

Déroulement

Équipement : Râpe à bois, agitateur magnétique, pH-mètre pH CHECK DOSTMANN®.

Il faut placer 5 g d’échantillon de bois, préalablement râpé, dans 100 ml d’eau. Il faut ensuite mélanger à l’aide d’un agitateur magnétique pendant 2 heures. Une mesure de pH à l’aide d’un pH-mètre est ensuite réalisée.

Résultats

Les tests d’acidité du bois effectués ont mesuré un pH de 4.3 pour le contreplaqué utilisé. Le même test a été effectué sur les carrelets en pin. Le pH de ce dernier s’élève à 5.6. Des papiers pH ont aussi été utilisés pour évaluer le pH du bois. Les résultats obtenus sont légèrement différents (tab. 8). Le contreplaqué est indiqué comme ayant un pH de 5 et le carrelet un pH de 6.

\[
\begin{array}{|c|c|c|c|}
\hline
\text{Échelle de référence pH} & \text{Résultat Papier indicateur pH} & \text{pH évalué} & \text{Produit testé} \\
\hline
7 & 7 & Eau utilisée \\
6 & 6 & Carrelet \\
5 & 5 & Contreplaqué \\
4 & & & \\
\hline
\end{array}
\]

\text{tab. 8 résultats obtenus avec les bandelettes indicatrices de pH.}

\(^{128}\) Tétreault, 1999, p.7.
\(^{129}\) Tétreault, 1999, p.8 à 9.
\(^{130}\) Tétreault, 1999, p.8.
19.3.2. Test d'acidité des produits volatils

Tétreault propose un test permettant de mesurer l'acidité des composés volatils131. Ce test se déroule comme suit :

Déroulement

2 g d'échantillon de pare-vapeurs sont préparés. Les produits liquides sont appliqués sur du papier d'aluminium. Un temps de séchage de quatre jours a été respecté132. Deux gouttes d'une solution de 20 ml d'eau déminéralisée et 80 g de glycérine sont déposées sur du papier pH. Le pH initial doit être d'au moins 6133. L'échantillon et le papier indicateur de pH sont placés dans une enceinte close pendant 24 heures.

Résultats

Si aucune différence entre le papier indicateur pH du témoin et du produit est observable, alors le produit utilisé est considéré comme acceptable. Seuls les papiers pH des bocaux de la peinture acrylique marquent une différence observable (\textit{tab. 9}). Le pH identifié est plus basique que celui du témoin.

\textit{tab. 9 résultats du test des produits volatils.}

<table>
<thead>
<tr>
<th>Échelle de référence pH</th>
<th>Résultats Papier indicateur pH</th>
<th>pH évalué</th>
<th>Produit testé</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td></td>
<td>5</td>
<td>Témoin</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>5</td>
<td>Résine epoxy</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>5</td>
<td>Film polyester</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>6</td>
<td>Peinture acrylique</td>
</tr>
</tbody>
</table>

19.3.3. Test d'Oddy

Les objets patrimoniaux sont en contact permanent avec d'autres matériaux utilisés à des fins muséographiques (vitrines, socles, supports), pour leur transport ou encore à des fins de stockage. Des émanations de ces matériaux peuvent causer d'importantes dégradations aux objets. Le test d'Oddy est un test de vieillissement accéléré artificiel. Il permet d'évaluer de façon empirique l'innocuité des matériaux.

131 Tétreault, 1999, p.36.
132 Tétreault, 1999, p.6.
133 Tétreault, 1999, p.36.
Dans le cadre de ce travail, le test d'Oddy a été effectué afin d'évaluer les effets nocifs du bois et l'efficacité des pare-vapeurs.

Principe

Un échantillon du matériau à tester est placé dans un contenant clos avec 3 plaquettes métalliques de natures différentes, généralement plomb, cuivre et argent, pendant 28 jours à une HR élevée et à une température de 60 °C. L'augmentation de température a un effet important et exponentiel sur la vitesse de réaction. Une loi empirique d’Arrhénius, chimiste suédois (1859-1927), décrit la variation de la vitesse d'une réaction chimique en fonction de la température. D'après cette dernière, une augmentation de 10 °C de la température multiplie la vitesse de réaction par deux.

Ce test n’a pas pour vocation l'identification des COV, mais il permet toutefois d’indiquer leur présence. De plus, l’emploi de différentes natures de métal peut donner des renseignements sur les potentiels polluants présents. En effet, ils connaissent des différences de sensibilité et de réactivité chimiques à certains composés. Le plomb est par exemple particulièrement sensible aux acides carboxyliques et aux aldéhydes. Le cuivre réagit particulièrement aux acides organiques et aux composés soufrés. L’argent, quant à lui, réagit surtout en présence de composés soufrés. L’effet nocif des composés organiques émanant des divers matériaux testés est évalué grâce au niveau de corrosion observable sur les plaquettes métalliques à la fin du test.

Déroulement

Ce test a été effectué au sein des locaux de la HE-Arc avec les équipements et matériels utilisés usuellement pour les tests d’Oddy : bocaux en verre SCHOTT® 500 ml avec un bouchon en polypropylène, plaquettes métalliques (argent, cuivre et plomb), porte-plaquettes en laiton, eau déminéralisée, microsableuse Sandmaster®, abrasif Biloxit® Nr.320, acétone, gants en nitrile.

135 Domjan, 2020, p.8.
140 Korenberg et al., 2018, p.2.
142 Tétreault, 1999, p.6.
Cette abrasion se veut être uniforme et identique pour chaque plaquette. Cela implique une pression, un type d’abrasif (ici le Biloxit nr. 320 qui est une poudre d’oxyde d’aluminium Al₂O₃) et une distance entre la buse et la plaquette qui sont identiques. Les plaquettes sont ensuite plongées dans l’acétone afin d’éviter une oxydation de surface avant le test. Les plaquettes doivent être manipulées en portant des gants pour éviter la contamination de ces dernières par des fluides corporels. Les plaquettes sont suspendues au support et placées à l’intérieur du récipient avec l’échantillon et 1 ml d’eau déminéralisée. L’ensemble du dispositif est ensuite fermé hermétiquement et placé pendant 28 jours dans une étuve à 60 °C. 18 bocaux ont été ainsi préparés (sch. 12).

Récupération des résultats

Après 28 jours, les bocaux du test peuvent être récupérés (fig. 46). À la suite d’une documentation photographique des plaquettes, l’évaluation des résultats est effectuée en se basant sur des critères prédéfinis (tabl. 10). La différenciation entre oxydation et corrosion n’est faite que pour faciliter la lecture des plaquettes. « L’oxydation sanctionne le changement de couleur et la corrosion le degré d’attaque. » Cette évaluation est faite par appréciation visuelle des dégradations.

tab. 10 critères d’évaluation du test d’Oddy utilisé à la HE-Arc CR

<table>
<thead>
<tr>
<th>Corrosion superficielle (Oxydation de surface)</th>
<th>Corrosion profonde (Attaque de la structure)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signification</td>
<td>Signification</td>
</tr>
<tr>
<td>Insignifiante</td>
<td>Insignifiante</td>
</tr>
<tr>
<td>Légère</td>
<td>Légère</td>
</tr>
<tr>
<td>Moyenne</td>
<td>Moyenne</td>
</tr>
<tr>
<td>Prononcée</td>
<td>Prononcée</td>
</tr>
<tr>
<td>Valeur</td>
<td>Valeur</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

Domjan, 2020, p.10.

L’addition des scores obtenus lors de l’évaluation permet d’indiquer une classe d’utilisation pour les échantillons testés (tabl. 11).

tab. 11 critères de détermination de la classe d’utilisation

<table>
<thead>
<tr>
<th>Total des valeurs</th>
<th>Classe</th>
<th>Utilisation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 à 2</td>
<td>I</td>
<td>Permanente</td>
</tr>
<tr>
<td>3 et 4</td>
<td>II</td>
<td>Temporaire</td>
</tr>
<tr>
<td>5 à 7</td>
<td>III</td>
<td>Proscrite</td>
</tr>
<tr>
<td>-</td>
<td>IV</td>
<td>Impossible de se prononcer</td>
</tr>
</tbody>
</table>

Domjan, 2020, p.10.

143 Domjan, 2020, p.9.
Vuignier Julie, mise en réserve d’éléments de vitraux, 31.08.2020

fig. 46 résultats obtenus sur les plaquettes lors du test d’Oddy effectué entre le 09.06.2020 et le 07.07.2020 © HE Arc CR, Julie Vuignier 2020.
Vuignier Julie, mise en réserve d’éléments de vitraux, 31.08.2020

tab. 12 évaluation du test d’Oddy.

<table>
<thead>
<tr>
<th>Échantillon</th>
<th>Métal</th>
<th>Oxydation</th>
<th>Corrosion</th>
<th>Total</th>
<th>Classe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Témoin 1,2, 3</td>
<td>Ag</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>I</td>
</tr>
<tr>
<td></td>
<td>Cu</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>I</td>
</tr>
<tr>
<td></td>
<td>Pb</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>I</td>
</tr>
<tr>
<td>Contreplaqué 1</td>
<td>Ag</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>I</td>
</tr>
<tr>
<td></td>
<td>Cu</td>
<td>3</td>
<td>1</td>
<td>4</td>
<td>II</td>
</tr>
<tr>
<td></td>
<td>Pb</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>II</td>
</tr>
<tr>
<td>Contreplaqué 2</td>
<td>Ag</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>I</td>
</tr>
<tr>
<td></td>
<td>Cu</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>I</td>
</tr>
<tr>
<td></td>
<td>Pb</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>II</td>
</tr>
<tr>
<td>Contreplaqué 3</td>
<td>Ag</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>I</td>
</tr>
<tr>
<td></td>
<td>Cu</td>
<td>3</td>
<td>1</td>
<td>4</td>
<td>II</td>
</tr>
<tr>
<td></td>
<td>Pb</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>I</td>
</tr>
<tr>
<td>Peinture acrylique 1</td>
<td>Ag</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>I</td>
</tr>
<tr>
<td></td>
<td>Cu</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>I</td>
</tr>
<tr>
<td></td>
<td>Pb</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>II</td>
</tr>
<tr>
<td>Peinture acrylique 2</td>
<td>Ag</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>I</td>
</tr>
<tr>
<td></td>
<td>Cu</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>II</td>
</tr>
<tr>
<td></td>
<td>Pb</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>II</td>
</tr>
<tr>
<td>Peinture acrylique 3</td>
<td>Ag</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>I</td>
</tr>
<tr>
<td></td>
<td>Cu</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>II</td>
</tr>
<tr>
<td></td>
<td>Pb</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>I</td>
</tr>
<tr>
<td>Résine époxy 1</td>
<td>Ag</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>I</td>
</tr>
<tr>
<td></td>
<td>Cu</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>I</td>
</tr>
<tr>
<td></td>
<td>Pb</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>I</td>
</tr>
<tr>
<td>Résine époxy 2</td>
<td>Ag</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>I</td>
</tr>
<tr>
<td></td>
<td>Cu</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>I</td>
</tr>
<tr>
<td></td>
<td>Pb</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>I</td>
</tr>
<tr>
<td>Résine époxy 3</td>
<td>Ag</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>I</td>
</tr>
<tr>
<td></td>
<td>Cu</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>I</td>
</tr>
<tr>
<td></td>
<td>Pb</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>II</td>
</tr>
<tr>
<td>Film polyester 1</td>
<td>Ag</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>I</td>
</tr>
<tr>
<td></td>
<td>Cu</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>I</td>
</tr>
<tr>
<td></td>
<td>Pb</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>I</td>
</tr>
<tr>
<td>Film polyester 2</td>
<td>Ag</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>I</td>
</tr>
<tr>
<td></td>
<td>Cu</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>I</td>
</tr>
<tr>
<td></td>
<td>Pb</td>
<td>1</td>
<td>4</td>
<td>5</td>
<td>III144</td>
</tr>
<tr>
<td>Film polyester 3</td>
<td>Ag</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>I</td>
</tr>
<tr>
<td></td>
<td>Cu</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>I</td>
</tr>
<tr>
<td></td>
<td>Pb</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>I</td>
</tr>
<tr>
<td>Film aluminium 1</td>
<td>Ag</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>I</td>
</tr>
<tr>
<td></td>
<td>Cu</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>I</td>
</tr>
<tr>
<td></td>
<td>Pb</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>I</td>
</tr>
<tr>
<td>Film aluminium 2</td>
<td>Ag</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>I</td>
</tr>
<tr>
<td></td>
<td>Cu</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>I</td>
</tr>
<tr>
<td></td>
<td>Pb</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>I</td>
</tr>
<tr>
<td>Film aluminium 3</td>
<td>Ag</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>I</td>
</tr>
<tr>
<td></td>
<td>Cu</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>I</td>
</tr>
<tr>
<td></td>
<td>Pb</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>I</td>
</tr>
</tbody>
</table>

144 Ce résultat est sans doute dû à un nettoyage insuffisant d’un bocal ayant été utilisé précédemment.
Lors de la récupération des tests d'Oddy, des mesures ont été effectuées à l'aide d'un appareil ppbRAE 3000. Cet appareil est un détecteur de COV. Il permet de mesurer la concentration en COV en direct ou par enregistrement grâce à un capteur à photo-ionisation145. Un échantillon de vapeur est conduit à l'intérieur de l'appareil grâce à un système de pompe jusqu'à une chambre d'ionisation. L'ionisation de l'échantillon est permise par un rayonnement ultraviolet émis par une lampe. Les particules ainsi chargées produisent un courant électrique spécifique pouvant être détecté par un capteur146. Un traitement électronique des données ainsi collectées permet de corrélérer ce résultat à la concentration des vapeurs présentes.

Cependant, les conditions de prises de mesure n'ont pas permis d'obtenir des résultats concluants. L'idée était d’entrouvrir les bocaux du test d'Oddy afin de venir pomper un échantillon de vapeurs provenant de l'intérieur du bocal. Il est cependant difficile d’assurer des conditions équivalentes de mesures pour chaque échantillon ce qui rend la comparaison des résultats des mesures peu pertinente. Le manque d’étanchéité ne permet pas d’exclure le faussement du résultat par l’air extérieur. De plus, les manipulations nécessaires à la prise de mesures comprenant l’enclenchement de l’appareil, le temps d'ouverture du bocal et le positionnement de l’appareil peuvent influencer le temps d’évaporation et fausser les résultats. C'est pourquoi les résultats de ces mesures ne seront pas discutés dans ce dossier.

La prise de mesure au niveau de la concentration induite par l’empilement n’a pas été effectuée dans le cadre de ce travail. En effet, l’accessibilité à l’ensemble du corpus tout le long du projet a été privilégiée. Au début du mandat, les plateaux ont été répartis sur des tables permettant leur accès individuel à tout moment. L’empilement n’était alors plus de mise dès le début du travail.

19.4. Conditionnement

19.4.1. Conceptualisation

<table>
<thead>
<tr>
<th>Article</th>
<th>Référence</th>
<th>Caractéristiques</th>
<th>Prix [CHF] /Pce</th>
<th>Nombre</th>
<th>Prix [CHF]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fournisseur 1 : Kaiser + Kraft SA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Armoire à plans</td>
<td>545448 49</td>
<td>Format A0, 10 tiroirs</td>
<td>3'050 .00</td>
<td>1</td>
<td>3050.00</td>
</tr>
<tr>
<td>Armoire à plans</td>
<td>545424 49</td>
<td>Format A0, 5 tiroirs</td>
<td>1790.00</td>
<td>1</td>
<td>1790.00</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4840.00</td>
</tr>
<tr>
<td>Fournisseur 2 : Gaerner SA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Armoire à plans</td>
<td>102948 29</td>
<td>Format A0, 10 tiroirs</td>
<td>2990.00</td>
<td>1</td>
<td>2990.00</td>
</tr>
<tr>
<td>Armoire à plans</td>
<td>102877 29</td>
<td>Format A0, 5 tiroirs</td>
<td>1690.00</td>
<td>1</td>
<td>1690.00</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4680.00</td>
</tr>
</tbody>
</table>

145 RAE Systems, 2007, p.9.
146 Galland et al., 2009, p.4.
tab. 14 exemples de coût pour la couche d’intermédiaire entre le plateau en bois et l’objet.

<table>
<thead>
<tr>
<th>Fournisseur</th>
<th>Article</th>
<th>Référence</th>
<th>Caractéristiques</th>
<th>Prix [CHF] /Pce</th>
<th>Prix [CHF] /m²</th>
<th>Nombre</th>
<th>Prix [CHF]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oekopack Conservus AG</td>
<td>Carton cannelé de conservation</td>
<td>031107</td>
<td>Feuilles 180 x 245 x 0.3 cm</td>
<td>46.00</td>
<td>10.45</td>
<td>3</td>
<td>138.00</td>
</tr>
<tr>
<td>Neupack Produckte AG</td>
<td>Film mousse en polyéthylène</td>
<td>310.0020.10</td>
<td>Rouleau (1.20 x 250 m ép. 2 mm)</td>
<td>110.00</td>
<td>0.44</td>
<td></td>
<td>4.75</td>
</tr>
<tr>
<td>Artdoctor</td>
<td>Non tissé en polyéthylène Tyvek®</td>
<td>SUTYRL0002</td>
<td>Rouleau (1.52 x 25 m ép. 23 µm)</td>
<td>95.00</td>
<td>3.80</td>
<td></td>
<td>40.85</td>
</tr>
<tr>
<td>Kremer Pigmente</td>
<td>Film polyester Hostaphan® Foil RN 75</td>
<td>87221</td>
<td>Rouleau (1.40 x 50 m ép. 75 µm)</td>
<td>155.70</td>
<td>2.20</td>
<td></td>
<td>23.90</td>
</tr>
<tr>
<td>ARTECH Pro</td>
<td>Film polyester Melinex®</td>
<td>-</td>
<td>1.52 m de largeur</td>
<td>3.75/m</td>
<td>2.50</td>
<td>10.75 m²</td>
<td>26.90</td>
</tr>
</tbody>
</table>

tab. 15 estimation de coût matériel pour un conditionnement, exemple PKSO_ 2059a.

<table>
<thead>
<tr>
<th>Fournisseur</th>
<th>Article</th>
<th>Référence</th>
<th>Caractéristiques</th>
<th>Prix [CHF] /Pce</th>
<th>Prix [CHF] /m²</th>
<th>Nombre</th>
<th>Prix [CHF]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oekopack Conservus AG</td>
<td>Carton cannelé de conservation</td>
<td>031107</td>
<td>Feuilles 180 x 245 x 0.3 cm</td>
<td>46.00</td>
<td>10.45</td>
<td></td>
<td>7.00</td>
</tr>
<tr>
<td>Vibraplast AG</td>
<td>Mousse polyéthylène Ethafoam®</td>
<td>2210.1094.0030</td>
<td>Plaque 2.75 x 0.6 m ép. 3 cm</td>
<td>44.65</td>
<td>27.05</td>
<td>0.10 m²</td>
<td>2.70</td>
</tr>
<tr>
<td>Artdoctor</td>
<td>Non-tissé polyéthylène Tyvek®</td>
<td>SUTYRL0002</td>
<td>Rouleau (1.52 x 25 m)</td>
<td>95.00</td>
<td>2.50</td>
<td>0.10 m²</td>
<td>0.25</td>
</tr>
<tr>
<td>Klug conservation</td>
<td>Rubans gommés en toile</td>
<td>089-23</td>
<td>Rouleau (3 cm x 50 m)</td>
<td>29.00</td>
<td></td>
<td>0.34 m</td>
<td>0.20</td>
</tr>
<tr>
<td>Landi SA</td>
<td>Vis équerre galvanisée Connex®</td>
<td>20726</td>
<td>2.0 x 20 mm</td>
<td>0.06</td>
<td>-</td>
<td>8</td>
<td>0.50</td>
</tr>
<tr>
<td>Landi SA</td>
<td>Vis équerre galvanisée Connex®</td>
<td>20728</td>
<td>3.0 x 40 mm</td>
<td>0.09</td>
<td>-</td>
<td>8</td>
<td>0.70</td>
</tr>
<tr>
<td>Ulrich Bucher-Remund</td>
<td>Plateaux en bois contreplaqué</td>
<td>-</td>
<td>85 x 85 cm</td>
<td>51.25</td>
<td></td>
<td>1</td>
<td>51.25</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td>62.60</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Tableau 16: estimation de coût matériel pour le conditionnement de l'ensemble du corpus.

<table>
<thead>
<tr>
<th>Fournisseur</th>
<th>Article</th>
<th>Référence</th>
<th>Caractéristiques</th>
<th>Prix [CHF] /Pce</th>
<th>Prix [CHF] /m²</th>
<th>Nombre</th>
<th>Prix [CHF]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oekopack Conservus AG</td>
<td>Carton cannelé de conservation</td>
<td>031107</td>
<td>Feuilles 180 x 245 x 0.3 cm</td>
<td>46.00</td>
<td>10.45</td>
<td>3</td>
<td>138.00</td>
</tr>
<tr>
<td>Vibraplast AG</td>
<td>Mousse polyéthylène Ethafoam®</td>
<td>2210.1094.00-30</td>
<td>Plaque 2.75 x 0.6 m ép. 3 cm</td>
<td>44.65</td>
<td>27.05</td>
<td>3</td>
<td>133.95</td>
</tr>
<tr>
<td>Artdoctor</td>
<td>Non-tissé polyéthylène Tyvek®</td>
<td>SUTYRL002</td>
<td>Rouleau (1.52 x 25 m)</td>
<td>95.00</td>
<td>2.50</td>
<td>1.6 m²</td>
<td>4.00</td>
</tr>
<tr>
<td>Klug conservation</td>
<td>Rubans gommés en toile</td>
<td>089-23</td>
<td>Rouleau (3 cm x 50 m)</td>
<td>29.00</td>
<td>-</td>
<td>54 m</td>
<td>31.30</td>
</tr>
<tr>
<td>Landi SA</td>
<td>Vis équerre galvanisée Connex®</td>
<td>20726</td>
<td>Paquet de 30 vis 2.0 x 20 mm</td>
<td>1.70</td>
<td>-</td>
<td>5</td>
<td>8.50</td>
</tr>
<tr>
<td>Landi SA</td>
<td>Vis équerre galvanisée Connex®</td>
<td>20728</td>
<td>Paquets de 20 vis 3.0 x 40 mm</td>
<td>1.70</td>
<td>-</td>
<td>7</td>
<td>11.90</td>
</tr>
<tr>
<td>Total pour le système de fixation</td>
<td></td>
<td></td>
<td></td>
<td>327.65</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ulrich Bucher-Remund</td>
<td>Plateaux en bois contreplaqué</td>
<td>-</td>
<td>85 x 85 cm</td>
<td>51.25</td>
<td>-</td>
<td>16</td>
<td>820.00</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td>1147.65</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

19.4.2. Réalisation

Tableau 17: étapes de réalisation du conditionnement.

<table>
<thead>
<tr>
<th>Étapes de travail</th>
<th>Équipements et Matériels</th>
<th>Illustrations</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Préparation de la couche intercalaire en carton non acide</td>
<td>Crayons à papier, règle, équerre, cutter, sous-main de découpe</td>
<td>© HE Arc CR, Julie Vuignier 2020</td>
</tr>
<tr>
<td></td>
<td>Carton cannelé de conservation</td>
<td></td>
</tr>
</tbody>
</table>

Tracer un rectangle de 78.7 x 85 cm sur le carton à l'aide d'une règle et d'une équerre. Puis découper ce dernier à l'aide du cutter en prenant appui sur une règle afin d'assurer une découpe bien droite.
Mouiller le ruban gommé découpé aux dimensions souhaitées. Recouvrir les angles à l’aide d’un morceau de ruban en le repliant vers l’arrière. Puis recouvrir les bords avec le ruban.

Positionner la couche intercalaire sur le plateau en bois après l’élimination des saletés présentes par aspiration.

3. Élaboration du patron de découpe de la mousse

Assembler trois feuilles ensemble pour obtenir une bande de 85 cm. Après avoir identifié le côté le plus stable, tracer le pourtour de l’objet à cet endroit.

Tracer une ligne à 2 cm du trait longeant le pourtour de l’objet en prévision de la création de la battue d’accueil de l’objet. Dessiner à l’aide de la règle les contours du profil envisagé.

Découper le patron au niveau de la ligne la plus extérieure.

4. Découpe de la mousse

Découper tout d’abord la mousse selon le patron obtenu. À la suite de cette première découpe, retourner la mousse.
Inciser la mousse au niveau de la seconde ligne, correspondant au contour de l’objet, sur environ 0.7 cm de profondeur.

Inciser depuis le côté sur une profondeur de 2 cm afin d’obtenir la battue devant accueillir l’objet.

Mousse de polyéthylène de 3 cm d’épaisseur

Remarque :
Le profil doit prendre en compte les zones de faiblesses structurelles. Des encoches peuvent être aménagées afin de ne pas prendre appui sur certaines zones.

5. Mise en place de la couche intercalaire en non-tissé

Inciser le pourtour de l’encoche à environ 1 cm du creusement sur 0.5 cm de profondeur. Enfiler le non-tissé dans l’incision pour le maintenir en place.

Cutter, tige métallique
Non-tissé en polyéthylène

6. Positionnement du profil en mousse sur le plateau

Répartir les points de fixations. Amorcer le perçage avec l’alène et la vrille à bois. Visser la vis équerre à la main et en terminant avec une pince.

Alène à amorce, vrilles à bois, pince
Vis équerre 0.3 x 40 mm

Remarque :
si l’appui sur la liste en bois est impossible, un renfort sous forme d’une bande de carton est positionné sous le profil en mousse.
7. Découpe des taquets en carton

| Découper des taquets en carton de 1.7 x 4 cm. Inciser à 0.8 cm du bord dans le sens de la longueur pour faciliter le pliage du carton. | Crayon, règle, équerre, cutter, sous-main de découpe |
| Carton cannelé de conservation |

8. Positionnement des points de fixation ponctuelle

| Répartir les points de fixations. Amorcer le perçage avec l’alène. Visser la vis équerre à la main et en terminant avec une pince. | Alène à amorce, pince |
| Vis équerre 0.2 x 20 mm |

Remarque :
Si les zones nécessitant un calage sont évaluées comme trop sensibles pour la pression exercée par la fixation ponctuelle présentée ci-dessus, une cale en mousse est préférée.

9. Signalétique des plateaux

| Signaliser le sens d’inclinaison du plateau en dessinant, à l’aide d’un chablon, l’icône utilisée dans le transport identifiant le haut d’un paquet. | Chablon, crayon à papier |
| Crayon à papier, ciseaux, tige métallique |
| Non-tissé en polyéthylène |
| Agrafeuse manuelle, ciseaux |
| Agrafes, étiquette imprimée |

Inscrive le numéro d’inventaire sur une bande de non-tissé PE. Entailler la mousse de support de l’objet en forme de rectangle. Insérer les bords de la bande pour la maintenir en place.

Agrafer les étiquettes comportant le numéro d’inventaire et la photo de l’objet sur le côté du plateau.
Vuignier Julie, mise en réserve d’éléments de vitraux, 31.08.2020

fig. 47 conditionnement PKSO_2053a © HE Arc CR, Julie Vuignier 2020.

fig. 48 conditionnement PKSO_2054 a et PKSO_2054b © HE Arc CR, Julie Vuignier 2020.

fig. 49 conditionnement PKSO_2055a, PKSO_2055b et PKSO_2055c © HE Arc CR, Julie Vuignier 2020.

fig. 50 conditionnement PKSO_2056a © HE Arc CR, Julie Vuignier 2020.

fig. 51 conditionnement PKSO_2057a © HE Arc CR, Julie Vuignier 2020.

fig. 52 conditionnement PKSO_2058a et PKSO_2058c © HE Arc CR, Julie Vuignier 2020.
Vuignier Julie, mise en réserve d’éléments de vitraux, 31.08.2020

fig. 53 conditionnement PKSO_2058b et PKSO_2060a © HE Arc CR, Julie Vuignier 2020.

fig. 54 conditionnement PKSO_2059a © HE Arc CR, Julie Vuignier 2020.

fig. 55 conditionnement PKSO_2060b et PKSO_2060c © HE Arc CR, Julie Vuignier 2020.

fig. 56 conditionnement RKSO_2062a © HE Arc CR, Julie Vuignier 2020.

fig. 57 conditionnement RKSO_2063a © HE Arc CR, Julie Vuignier 2020.

fig. 58 conditionnement RKSO_2064a © HE Arc CR, Julie Vuignier 2020.
19.5. Contexte de conservation

sch. 13 représentation visuelle du rangement envisagé, mesures en [cm]
sch. 14 représentation visuelle du rangement amélioré, mesures en [cm]

19.6. Recommendations

Tab. 18 remplacement d’un plateau en bois par un support en carton non acide.

<table>
<thead>
<tr>
<th>Fournisseur</th>
<th>Article</th>
<th>Référence</th>
<th>Caractéristiques</th>
<th>PRIX [CHF] /Pce</th>
<th>PRIX [CHF] /m²</th>
<th>Nombre</th>
<th>PRIX [CHF]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oekopack Conservus AG</td>
<td>Carton en nid d’abeilles non acide</td>
<td>0711134</td>
<td>Feuille (140 x 250 x 1.3 cm)</td>
<td>184.50</td>
<td>52.70</td>
<td>0.7 m²</td>
<td>36.90</td>
</tr>
<tr>
<td>Oekopack Conservus AG</td>
<td>Carton cannelé de conservation</td>
<td>031107</td>
<td>Feuilles 180 x 245 x 0.3 cm</td>
<td>46.00</td>
<td>10.40</td>
<td>0.6 m²</td>
<td>6.25</td>
</tr>
<tr>
<td>Essentra Components</td>
<td>Rivets enclipsables Polypropylène</td>
<td>8501160908 VR</td>
<td>Épaisseur de panneau compatible 12 – 18 mm</td>
<td>0.08</td>
<td>-</td>
<td>8</td>
<td>0.65</td>
</tr>
<tr>
<td>Essentra Components</td>
<td>Rivets enclipsables Polypropylène</td>
<td>8502440900 VR</td>
<td>Épaisseur de panneau compatible 20 – 40 mm</td>
<td>0.1</td>
<td>-</td>
<td>8</td>
<td>0.80</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td>44.60</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total pour les 16 plateaux</td>
<td></td>
<td></td>
<td></td>
<td>713.60</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Carton de conservation avec une cannelure : ép. 0.3

Carton en nid d’abeille non acide : ép. 1.3
19.6.1. Récapitulatif de l’évaluation des conditions de conservation

tab. 19 récapitulatif de l’analyse des conditions de conservation.

<table>
<thead>
<tr>
<th>Problématiques principales identifiées</th>
<th>Explication</th>
<th>Risques</th>
<th>Causes</th>
</tr>
</thead>
</table>
| Forces physiques - Accessibilité aux objets | Difficulté au niveau de la manipulation et de la consultation | • Risques de chute
• Risques de choc | • Hauteur de stockage induite par la localisation actuellement envisagée, combinée au poids des plateaux.
• Empilement des plateaux |
| Polluants - Présence de polluants | Dégradation des objets liés à la présence de COV | • Risques d’émanation de COV par le contreplaqué
• Risques de formation de microclimats
• Risques de déclenchement de processus de dégradation par la présence de produits exogènes instables sur les objets. | • Utilisation d’un produit du bois comme support
• Empilement des plateaux pouvant former de potentiels microclimats
• Présence de produits exogènes sur les objets
• Empoussièrement sur les objets pouvant créer des zones d'humidité plus importante. |

tab. 20 récapitulatif des traitements mentionnés.

<table>
<thead>
<tr>
<th>Proposition de traitement</th>
<th>Types de traitement</th>
<th>Avantages</th>
<th>Inconvénients</th>
</tr>
</thead>
</table>
| Création d’un meuble de stockage à échelles | • Réduction des risques de chute
• Réduction des risques de choc
• Réduction des risques de formation de microclimats riche en COV | • Facilitation de la manipulation et de la consultation des objets par la diminution de la hauteur et l’élimination de l’empilement.
→ Augmentation de l’accessibilité.
• Augmentation de l’espacement entre les planches permettant une meilleure ventilation. | • Investissement supplémentaire.
• Occupation de surface au sol supplémentaire dans les réserves. |
<table>
<thead>
<tr>
<th>Proposition de traitement</th>
<th>Types de traitement</th>
<th>Avantages</th>
<th>Inconvénients</th>
</tr>
</thead>
</table>
| Réorganisation de la réserve | Réduction des risques de chute | Facilitation de la manipulation des objets par la diminution de la hauteur. | Chronophage
Pas d’élimination des risques liés à l’empilement des objets.
Pas de facilitation concrète au niveau de la consultation. |
| Surveillance visuelle périodique des objets | Temporisation de la gestion des risques liés aux polluants | Peu onéreux
Facilité de mise en place, contrôle tous les trois mois la première année puis tous les six mois.
Temporisation de la gestion des risques permettant de réagir en conséquence d’une situation donnée. | Pas d’action réelle contre les risques mentionnés
Demande une capacité de réaction rapide dans le cas où des dégradations seraient observées.
Dans le cadre actuel, augmentation des risques liés à l’agent de dégradation forces physiques par obligation de manipulation des plateaux. |
| Remplacement des plateaux en contreplaqué par des plateaux en carton non acide | Élimination de la principale source de COV | Solution à long terme pour la conservation des objets. | Investissement supplémentaire |
| Application de pare-vapeurs | Réduction des risques liés aux émanations de COV | Diminution des émanations | Pas une solution à long terme
Demande des tests supplémentaires
Investissement supplémentaire |
| Utilisation de sorbants | Réduction des risques liés aux émanations de COV | Diminution des émanations | Pas de solution à long terme
Investissements supplémentaires
Logistique de mise en place
Effort organisationnel |
| Nettoyage des vitraux par un professionnel | Élimination des risques liés à la présence de produits exogènes
Réduction des risques liés à la formation de zones avec une humidité relative élevée par la présence de poussières hygroscopiques | Solution à long terme pour la conservation adéquate des objets | Investissement supplémentaire |