Supplementary Fig. 1. Yeast background and EDS5 SA transport is disrupted by ionophores. Whole yeasts were loaded with labeled SA (14C-SA) in the presence and absence of the ionophores, nigericin and CCCP, and net SA retention was quantified as described in Kamimoto et al. (2012). Both ionophores abolish EDS5-GFP and VC-mediated SA export (negative retention) demonstrating that both EDS5 and vector control (background) SA transport is dependent on a electrochemical proton gradient. Significant differences (student’s t-test; $p<0.05$) of means ± SE ($n = 4$) to vector (Control) or solvent controls (Solvent) are indicated by one or two asterisks, respectively.
Supplementary Fig. 2. Complementation analysis of transgenic lines. Complementation of the EDS5 function was tested by the competence to induce SA after UV exposure of the transformed plants². Total SA accumulation is shown. Significant differences (student’s t-test; p<0.05) of means ± SD (n = 4) to non UV-induced plants are indicated by asterisks.