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Abstract

The average quantitative research report in applied linguistics is
needlessly complicated. Articles with over fifty hypothesis tests are no
exception, but despite such an onslaught of numbers, the patterns in
the data often remain opaque to readers well-versed in quantitative
methods, not to mention to colleagues, students, and non-academics
without years of experience in navigating results sections. I offer five
suggestions for increasing both the transparency and the simplicity
of quantitative research reports: (1) round numbers, (2) draw more
graphs, (3) run and report fewer significance tests, (4) report simple
rather than complex analyses when they yield essentially the same
results, and (5) use online appendices liberally to document secondary
analyses and share code and data.
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Krashen (2012) argued that overly long research papers are a disservice to
the field. I agree, and I find the average quantitative research report in
applied linguistics needlessly complicated. The results sections in particular
often feature highly technical passages that most applied linguists may find
difficult to understand (Loewen et al. 2019). While this is an argument for
more training in quantitative methods, it is also an argument for not making
the analyses and their write-up more complicated than needed. If an analysis
has to be complex because of the study’s design and subject matter, that
is fine; my beef is with needless complications that bury the main findings
under a thick layer of numbers and technical vocabulary with little added
value.

In the following, I make a number of suggestions for simplifying research
reports. Some of these overlap with Larson-Hall and Plonsky’s (2015) recom-
mendations for reporting quantitative research, but I plead for the inclusion
of less numerical information in the main text than they do. In a nutshell,
my recommendations are (1) to round numbers more strongly to reduce the
prevalence of uninformative digits; (2) to draw more graphs; (3) to cut down
on the number of significance tests that are run and reported; (4) to consider
simpler but valid alternatives to sophisticated procedures; and (5) to use
online appendices to ensure maximal transparency instead of bloating the
text with details. The examples that I discuss are adapted from real but
unreferenced studies in applied linguistics, bilingualism research, and second
language acquisition.

Round more

False precision abounds. Numbers are falsely precise if they suggest that the
information on which they are based is more fine-grained than it actually was,
like saying that the Big Bang happened 13,800,000,023 years ago because it
has been twenty-three years since you learnt that it happened 13.8 billion
years ago. Falsely precise numbers can also imply that an inference beyond
the sample can be made with greater accuracy than is warranted by the
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uncertainty about that inference, like when a pollster projects that a party
will gain 37.14% of the vote but the margin of error is 2 percentage points.

False precision is common in summary statistics, with mean ages reported as
41.01 years rather than just 41 years or mean response latencies of 1742.82
milliseconds rather than just 1743 milliseconds. Other than giving off an air
of scientific exactitude, there is no reason for reporting the mean age of a
sample of participants as 41.01 years rather than as just 41 years. Nothing
hinges on the 88 hours implied by .01 years, and people do not report their
age to the nearest week anyway. Similarly, response latencies are measured
with a precision of about 1 millisecond in lab-based experiments and of
about 15–20 milliseconds in realistic online settings (Anwyl-Irvine et al. 2020;
Bridges et al. 2020).

False precision is also commonly found in estimates of population statistics
(e.g., regression coefficients, correlation coefficients, percentages, or sample
means that are used to draw conclusions beyond the sample itself). These
are often reported with more digits than the standard error, confidence
interval, or credible interval around them licences (see Feinberg & Wainer
2011; Wainer 1992). For instance, when an estimated regression coefficient
and its standard error are reported as β̂ = 12.584 ± 1.047, the .584 part of
the estimate is firmly in doubt and no meaningful information is lost by
reporting β̂ = 12.6 ± 1.0 or even β̂ = 13 ± 1. By the same token, if 31 out
of 95 participants answer a question correctly, no meaningful information
is lost by reporting the percentage as 33% instead of 32.63%; in fact, the
standard error around the estimate is 5 percentage points.

An isolated falsely precise number is easily ignored. But they often come in
batches, which clutters the text and makes it harder to spot patterns in the
results (Ehrenberg 1977; Ehrenberg 1981). Moreover, they can convey the
impression that there is much more certainty about the findings than there
really is if they are not accompanied by a measure of uncertainty.

So round more. Average reaction times do not have to be reported to
one-hundredth of a millisecond, the outcome of an F -test rarely hinges on
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anything after the second digit in the F -statistic (i.e., F (1, 29) = 4.26 and
F (1, 29) = 4.34 give essentially the same result, as do F (1, 29) = 11.1 and
F (1, 29) = 10.6), and correlation coefficients and proportions rounded to two
decimal places are probably precise enough already.

To how many digits best to round is partly a matter of taste. To give you
some perspective, Ehrenberg (1977) suggests to round values to the first
two digits that vary in a comparison. For instance, when comparing 40.73,
72.80, and 145.13, the hundreds and tens are the first two digits that vary.
He would round them to 4 × 101, 7 × 101, and 15 × 101. By contrast, when
comparing mean values of 140.73, 172.80, and 145.13, the hundreds do not
vary, but the tens and units do, so the rounded values would be 141, 173 and
145. In the latter example, readers, editors, and reviewers would not bat an
eyelid at the rounded values, but in the former, I suspect that they would. A
less extreme interpretation of Ehrenberg’s rule of thumb is Chatfield’s (1983,
Appendix D), which is to round to the first two digits that vary over the
whole range from 0 to 9 in a comparison. The following are some of my own
suggestions that would help authors get rid of the most egregious cases of
false precision while still producing rounded values that are inconspicuous.

• For summaries of fairly continuous measurements such as milliseconds,
voice onset times, and age, a good rule of thumb is to round to at least
the level of precision with which they were measured (typically to the
closest unit). For instance, the mean age in a sample of adults can be
reported to the nearest year (i.e., 41 instead of 41.01 years). But in
a sample of infants, it may be reported to the nearest month if the
individual infants’ ages were reported in months.

• For coarser data, such as data collected on a Likert scale or self-
assessments on a six-point scale, rounding to the nearest unit may
obscure patterns in the data, and rounding to the first decimal may be
preferable. For instance, rounding mean responses on a 6-point scale
of 4.466 and 3.622 to 4.5 and 3.6, respectively, may be more sensible
than rounding them to the nearest integer (i.e., 4 for both).
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• For percentages, correlation coefficients, and regression coefficients,
a good point of departure is to consider their standard error and to
avoid reporting beyond the first non-zero digit of the standard error.
For instance, an estimated regression coefficient of β̂ = 1.7452 can be
rounded to 1.7 when its standard error is 0.43 (i.e., β̂ = 1.7 ± 0.4)
and to 1.75 when its standard error is 0.078 (i.e., β̂ = 1.75 ± 0.08).
But values may be rounded more strongly if they are known with a
precision that exceeds their practical or theoretical importance. For
instance, 42,137 out of 100,000 and 53,742 out of 100,000 correspond to
42.1 ± 0.2% and 53.7 ± 0.2%, respectively, but can probably be rounded
to 42% and 54% without affecting any of the conclusions.

• p-values above 0.01 can be rounded to two decimal places, those between
0.001 and 0.01 can be reported as p < 0.01, and those below 0.001 as
p < 0.001. Minute differences in p-values are never informative. Test
statistics such as t, F , z, and χ2 almost never have to be reported
beyond the first decimal.

But sooner than rigidly follow these suggestions, ask yourself how many
digits actually convey information that is both reliable and meaningful in
the context of your study. There is nothing unscientific or sloppy about
reporting r = 0.23 or even r = 0.2 instead of r = 0.2274 if that better reflects
the precision of the measurements and the uncertainty of the inference.

Show the main results graphically

To me, graphs in research reports serve three purposes, which I will discuss
in turn. I will then offer some rules of thumb and refer to useful resources
for readers who want to expand their arsenal of visualisation techniques.
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Help readers get the gist of the results

Expert readers may be able to piece together the trends in the data from an
avalanche of tests and a table, but a well-chosen visualisation makes even
their lives easier. Most analyses are based on statistical models (t-tests and
ANOVA are models, too), and these can be visualised. A nice example of
this in our field is Ågren & van de Weijer (2019), whose Figure 1 shows what
an interaction between a continuous predictor (language proficiency) and a
categorical predictor (modality) in a logistic mixed-effects model actually
looks like in terms of the percentage of correctly produced liaisons in L2
French. Even simple line charts showing averages can be useful to highlight
the results, though it is often possible to make these more informative, as
discussed next.

Show that the numerical results are relevant

The most commonly used statistical tests and models compare means, but
these means may poorly reflect the central tendencies in the data. While
the outcome of the models and tests may still be technically correct (insofar
as they correctly capture the trend in the mean), they may not be relevant
(if the mean is not a relevant measure of the data’s central tendency). Line
charts and bar charts, with or without error bars, may obscure the test’s
or model’s irrelevance as shown in Figure 1. For fairly simple comparisons,
plotting not just the summary statistics but also the data that went into
them is often a good idea (Loewen et al. 2019; Weissgerber et al. 2015). For
some designs, such as within-subjects designs with more than two conditions,
sensibly plotting the raw data is admittedly difficult.

A situation where I consider a plot with the raw data mandatory is when
the conclusions hinge on correlation coefficients. Figure 2 shows why (also
see Anscombe 1973). Any correlation coefficient can correspond to a vast
number of data patterns, and a study’s conclusions can change dramatically
depending on the shape of the data cloud. I consider correlation coefficients
without an accompanying scatterplot useless.



simplicity and transparency 7

15

20

25

30

35

m
ea

n 
ou

tc
om

e

Group 1 Group 2

0

100

200

300

400

500

600

ou
tc

om
e

Group 1 Group 2

Figure 1: Most tests and models compare means, but these may be atypical
of the data. Left: A plot showing just the group means. Right: When the
individual data points are shown, it becomes clear that the means (blue
asterisks) are atypical of most data due to the strong positive skew. (Data
from the ‘Gambler’ study in Klein et al. (2014; UFL sample). Because of
the skew, Klein et al. transformed these data before running any tests.)
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Figure 2: The correlation coefficients for the data in four panels in the
top row are all r(50) = 0.00; those for the panels in the bottom row are
all r(50) = 0.70. These correlation coefficients adequately capture the
relationship in the first panel of each row. But they understate the strength
of the relationship in the second panels; they are strongly influenced by one
data point in the third panel; and in the fourth panel, they hide the fact that
the dataset comprises two groups, within each of which the relationship may
run in the opposite direction of that in the dataset as a whole (Simpson’s
paradox). (Figure drawn using the plot_r() function in the cannonball
package (Vanhove 2019b) for R.)
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Table 1: A multiple regression model in which human ratings of the lexical
diversity of 1,000 short texts were fitted in terms of their type/token ratio
and the number of tokens. What does the 3.8 ± 0.3 estimated coefficient
for the type/token ratio mean? (Data from the French corpus published by
Vanhove, Bonvin, Lambelet and Berthele (2019).)

Estimate Standard error
Intercept −4.1 0.5
Type/token ratio 3.8 0.3
log2 number of tokens 1.22 0.05

Forestall common misunderstandings

Take a look at Table 1. What does the estimated coefficient for the type/token
ratio mean in statistical terms?

Many readers will interpret the positive estimated coefficient of 3.8 ± 0.3 to
mean that texts with higher type/token ratios are rated as lexically more
diverse. This interpretation is simple, theoretically compelling, and wrong.
Figure 3 shows why: If anything, texts with higher type/token ratios are
rated as lexically less diverse. The regression model is not wrong, though,
but numerical summaries are easily misunderstood: The 3.8 ± 0.3 does not
mean that texts with larger type/token ratios are rated as lexically more
diverse than texts with lower type/token ratios. It means that texts with
higher type/token ratios are rated as lexically more diverse than texts with
lower type/token ratios but with the same number of tokens. The correct
interpretation of a regression coefficient is always conditional on all the other
predictors in the model (see Vanhove 2020), but first interpretation skims
over this. The misinterpretation is understandable, however; providing the
scatterplot matrix helps to prevent it.

In sum, visualise the main findings and, if possible, show the data that
went into the analyses. While they do not cover all the bases, the following
guidelines may serve as a useful point of departure. But rather than follow
them to the letter, try out several different visualisations and see which ones
best highlight the trends and other salient patterns in the data (e.g., outliers,
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Figure 3: The data underlying the model presented in Table 1. The top
triangle shows scatterplots for the three bivariate relationships. The numbers
in the bottom triangle are the corresponding Pearson correlation coefficients.
If anything, the unconditional relationship between the type/token ratio
and the lexical diversity ratings is negative, not positive (see the scatterplot
in the first row, second column, and the correlation coefficient in the second
row, first column).
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skew, noteworthy differences in the variance):

• For between-group comparisons on a fairly continuous variable, box-
plots are a reasonable choice. But they can often be rendered more
informative by overlaying the individual data points (see Weissgerber
et al. 2015). An interesting new tool is the raincloud plot, which
shows the individual data points, the quartiles, and the entire empirical
distribution (see Allen et al. 2019).

• For relationships between two more or less continuous variables, scat-
terplots are useful (see Figure 2).

• For relationships between several variables, scatterplot matrices (as in
Figure 3) and generalised pair plots (see Emerson et al. 2013) are often
a good choice. The latter can accommodate non-continuous variables.

• For comparing individual numbers (e.g., rates, percentages, summary
statistics), Cleveland dotplots are woefully underused (see Jacoby 2006).
The upcoming Figure 4 is a simple example of a dotplot, but their true
versatility and usefulness in linguistics is showcased by Sönning (2016).

• A useful technique for visualising statistical models is drawing effect
plots (see Fox 2003; Healy 2019; Vanhove 2019a). Figure 1 in Ågren &
van de Weijer (2019) is an example of such an effect plot. For some
models, such as generalised additive models, it is impossible to piece
together what the model implies from the numerical output alone and
effect plots are not just useful but necessary.

More general resources for researchers who want to up their visualisation game
are Healy (2019; available for free from https://socviz.co/), Robbins (2005),
and Wilke (2019; available for free from https://serialmentor.com/dataviz/).

Run and report much fewer significance tests

Researchers often make their readers run a gauntlet of F -tests and p-values
before letting them be party to the main findings. I did a rough count of the
statistical hypotheses tested using p-values or Bayes factors in the empirical

https://socviz.co/
https://serialmentor.com/dataviz/
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(36 articles)
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(41 articles)
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Statistical hypothesis tests in applied linguistics journals in 2019

Figure 4: Each circle represents a research article published in the 2019
volume of one of four journals. Qualitative research articles are also included;
theoretical articles, meta-studies, and articles in special issues are not. The
dashed vertical lines show the median for each journal.

articles in the regular issues of four journals in our field published in 2019;
see Figure 4. Almost all qualitative studies and some quantitative ones did
not test any hypotheses statistically, but over a quarter reported 50 or more
hypothesis tests. Such overuse indicates that many tests were not used to
test genuine a priori hypotheses but that they were used to explore the data
or that they were reported just because they appeared in the output of
the researchers’ statistical software. Moreover, they also betray that many
researchers overestimate the informativeness of p-values. Misinterpretations
of p-values are expertly discussed elsewhere (see Gigerenzer & Marewski
2015; Goodman 2008; Greenland et al. 2016). Here, I will go over some types
of hypothesis tests that should almost never be carried out or reported.

Silly tests

Silly tests (Abelson’s [1995] term) are tests that cannot tell you anything that
is both true and new. So-called balance tests in experiments with random
assignment are the prime example of silly tests, see Example A.
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Example A.
“The forty participants were randomly assigned to the control and
intervention groups (both n = 20). These did not differ significantly in
terms of mean age (20.07 vs. 20.49, t(38) = 1.27, p = 0.21), proportion
of men (0.30 vs. 0.40, χ2(1) = 0.44, p = 0.51), or mean self-assessed
German skills (3.5 vs. 3.3, t(38) = 0.31, p = 0.75).”

The problem with these tests is discussed elsewhere (Huitema 2011; Mutz,
Pemantle & Pham 2019; Senn 2012; Vanhove 2015), so I will stick to the short
version. In a study with random assignment, a non-significant balance test
tells you that the study used random assignment, which you knew already,
whereas a significant one tells you that it did not, which you know is incorrect.
The significance test for the main outcome has its nominal Type-I error rate
if you do not act on the outcome of the balance tests (e.g., by deciding to
include a covariate in the analysis only if the balance test is significant), but
it becomes incorrectly calibrated if you do act on the outcome of the balance
tests. Example A can thus be simplified:

Alternative to Example A.
“The forty participants were randomly assigned to the control and
intervention groups (both n = 20).”

Moreover, if it makes sense to include a covariate in the analysis if it is
unbalanced between the experimental conditions, it also makes sense to
include it if it is perfectly balanced. In fact, in experiments with random
assignment, the benefits of adjusting for a pretreatment covariate are even
greater when the covariate is balanced than when it is not, so covariate
balance is nice to have though not required. But the appropriate technique
to achieve it is ‘blocking’ before the data are collected (Maxwell, Delaney &
Hill 1984; McAweeney & Klockars 1998), not running balance tests.

In studies without random assignment, balance tests are not quite as silly,
but their use is still misguided. Consider this: If a nonsignificant balance test
actually could tell you that the groups were sufficiently balanced with respect
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to a covariate, you could achieve balance by randomly throwing away data
until the balance test did not have enough power to detect any differences
and you obtained a nonsignificant result. A far better solution is to carefully
consider whether the covariate is a possible confounder (e.g., by drawing
directed acylic graphs; for introductions see Elwert 2013; Rohrer 2018) and,
if it is, control for it statistically regardless of balance (Sassenhagen & Alday
2016).

Apart from balance tests, another clear example of silly tests are what I
call tautological tests: The researchers split up a sample of participants or
stimuli based on some characteristic (e.g., high-proficiency vs. low-proficiency
participants or high-frequency vs. low-frequency stimuli) and then run a test
to confirm that, yes indeed, the groups so formed differ with respect to this
covariate. Apart from tautological tests being silly and cluttering research
reports with useless prose, carving up continuous variables into high and
low groups is almost invariably a bad idea (e.g., Cohen 1983; MacCallum et
al. 2002; Maxwell & Delaney 1993). It is almost always better to respect
the continuous nature of the original covariate and to use it in a linear or
nonlinear regression model (Baayen 2010; Clark 2019).

Tests in the output that are not relevant to the research ques-
tion

Silly tests should never have been run in the first place, but even reasonable
analyses typically produce tests with little relevance to the research question.
Consider an experiment with three times two conditions. The analysis might
involve a 2 × 2 × 2-ANOVA, and your statistics program would output
seven significance tests (three main effects, three two-way interactions, and
one three-way interaction). But if it is only the three-way interaction that
is relevant to the research question, I suggest only it be included in the
main text; the remainder of the ANOVA output can be tucked away in the
supplementary materials. This, of course, requires that the researchers know
and specify beforehand what it is they are actually interested in (Cramer et
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al. 2016).

Similarly, tests of ‘control’ and ‘blocking’ variables are rarely of interest.
Including these variables in the analysis is often a good idea, however (see
Vanhove 2015). But that is because they are already known to account for
differences in the outcome. Including them in the analysis then helps to
reduce the residual variance, which in turn makes it possible to estimate the
effect of interest with greater accuracy. For the purposes of the study, the
effect of the covariate itself is rarely interesting, and it does not need to be
reported. Moreover, interpreting covariate effects is harder than you might
think (see Hünermund & Louw 2020).

Omnibus tests followed by planned comparisons when testing
a priori hypotheses

Consider Example B.

Example B.
“An ANOVA showed that the test results differed significantly between
the three accent conditions (F (2, 110) = 7.8, p < 0.001). Contrary
to expectations, a follow-up t-test revealed that the participants in
the ‘native accent’ condition did not score better than those in the
‘different L2 accent’ condition (t(72) = 1.1, p = 0.27). As predicted,
participants in the ‘same L2 accent’ condition outperformed those in
the ‘native accent’ condition (t(77) = 2.6, p = 0.01).”

Example B is a benign example of common statistical boilerplate: First,
an ANOVA is run to check for any differences between the conditions (the
omnibus test). Then, follow-up tests are carried out to home in on the source
of these differences. More extreme versions of this strategy involve multiway
ANOVAs, followed by one-way ANOVAs, followed by t-tests as well as well
as names like Bonferroni, Fisher, Tukey, Scheffé or Holm, and a dozen or so
tests flung at the reader. Many of these tests can be pruned.

The ‘omnibus, then follow-up’ strategy can often be avoided, however, thereby
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reducing the number of tests that are reported and often gaining some
statistical power to boot. The follow-up tests will (or could) often have
been planned beforehand, that is, they represent the subset of the possible
comparisons that is actually relevant to the research question. For instance,
when four conditions are involved, six comparisons are possible, but perhaps
only three are relevant to the research questions. When this is the case,
the omnibus test can be dispensed with, and only the planned comparisons
can be reported (also see Schad et al. 2020 on how to test several planned
comparisons in a single regression model). Whether and how the researchers
should correct for any multiple comparisons depends on how the statistical
tests map onto the research hypotheses. If each tests a different research
hypothesis, no correction is called for; if some test the same hypothesis
and finding at least one significant result will be interpreted as support
for this hypothesis, some correction may be in order (see Bender & Lange
2001; Ruxton & Beauchamp 2008). Ideally, the planned comparisons, and
hypothesis tests more generally, are preregistered (Chambers 2017).

Pseudo-exploratory significance tests

Many significance tests are reported for which no a priori justification was
given. For instance, matrices listing the bivariate correlations between
several variables, adorned with asterisks to signify significance at this or that
level, are a common sight, but I have never seen any justification for all of
these tests. The correlation matrices themselves are fine, if accompanied by
scatterplots; it is the barrage of significance tests that I have a problem with.
Similarly, articles often contain tests for pairwise comparisons that were not
a priori interesting, but that do seem interesting now that the data are in.
As long as they are clearly labelled as such and not sold as confirmatory
analyses of a priori hypotheses (see Kerr 1998), exploratory analyses have
value (but see de Groot 2014; Gelman & Loken 2013; Rubin 2017; Steegen et
al. 2016 on the meaning of p-values in exploratory research). But a matrix
of correlation coefficients with significance stars and without any graphs
hardly represents an exploratory analysis, and I suggest that researchers
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show restraint by not testing every single comparison and relationship that
they can think of.

Sometimes, simple analyses suffice

There are some situations in which seemingly sophisticated analyses can
be replaced by simpler and equally valid techniques. In such cases, I think
the simpler approach should be preferred whenever both approaches yield
the exact same result. When the two approaches yield similar but not
identical results, a workable solution is to report the easier one in the main
text and refer to the appendix for the more complex one. In terms of p-
values, you could define “similar results” as, for instance, “both p < 0.01”,
“both 0.01 < p < 0.05”, “both 0.05 < p < 0.10”, or “both p > 0.10.”
In terms of effect sizes (e.g., mean differences and estimated regression
coefficients), “similar results” could be defined as yielding the same numerical
summary after appropriate rounding. For instance, if the two analyses yield
β̂ = 1.662 ± 0.293 and β̂ = 1.722 ± 0.341 as their respective outcomes, their
results could be considered similar because both are β̂ = 1.7 ± 0.3 when
rounded.

Mixed repeated-measures ANOVA versus t-tests

Results sections of papers reporting on pretest/posttest experiments often
read like this:
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Example C (from Vanhove 2015).
“A repeated-measures ANOVA yielded a nonsignificant main effect
of Condition (F (1, 48) < 1) but a significant main effect of Time
(F (1, 48) = 154.6, p < 0.001): In both groups, the posttest scores were
higher than the pretest scores. In addition, the Condition × Time
interaction was significant (F (1, 48) = 6.2, p = 0.02): The increase in
reading scores relative to baseline was higher in the treatment than in
the control group.”

This type of analysis is valid, but only the interaction term is actually
relevant (Huck & McLean 1975; Vanhove 2015). The significance tests for
the main effects are only distractions. One improvement would be to report
just the test for the interaction—you do not have to report the full output
of your analysis in the article. But the analysis itself could be simplified.
Repeated-measures ANOVA is a fairly fancy technique, but you would obtain
the exact same result by first calculating the pretest/posttest difference per
participant and then submitting these differences to a Student’s t-test:

Alternative to Example C.
“We calculated the difference between the pretest and posttest score
for each participant. A two-sample t-test showed that the treatment
group showed a higher increase in reading scores than the control group
(t(48) = 2.5, p = 0.02).”

The p-values resulting from both analyses will always be identical, and the
t-value in the second analysis will always be the square root of the F -value
for the interaction term in the first analysis.1

Other ‘mixed’ RM-ANOVAs can similarly be simplified. Consider a study
that compares bilinguals with monolinguals on the Simon task. This task

1A slightly more powerful and more generally useful alternative to analysing gain
scores in pretest/posttest experiments is to use the pretest score as a covariate in a
regression/ANCOVA analysis (Hendrix, Carter & Hintze 1978; Huck & McLean 1975;
Maris 1998). One advantage of this approach is that it does not require the pretest to be
measured on the same scale as the posttest.
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consists of both congruent and incongruent trials, and the idea is that
cognitive advantages of bilingualism would be reflected in a smaller effect
of congruency in the bilingual than in the monolingual participants. The
results of such a study are then typically reported as follows:

Example D.
“A repeated-measures ANOVA showed a significant main effect of Con-
gruency, with longer reaction times for incongruent than for congruent
items (F (1, 58) = 14.3, p < 0.001). The main effect for Language
Group did not reach significance, however (F (1, 58) = 1.4, p = 0.24).
The crucial interaction between Congruency and Language Group was
significant, with bilingual participants showing a smaller Congruency
effect than monolinguals (F (1, 58) = 5.8, p = 0.02).”

If the question of interest is whether the Congruency effect is smaller in
bilinguals than in monolinguals, the following analysis will yield the same
inferential results but is easier to navigate through:

Alternative to Example D.
“For each participant, we computed the difference between their mean
reaction time on congruent and on incongruent items. On average,
these differences were smaller for the bilingual than for the monolingual
participants (t(58) = 2.4, p = 0.02).”

If three or more groups are compared, a one-way ANOVA could be substituted
for the t-test, which is still easier to report and understand than a two-way
RM-ANOVA that produces two significance tests that do not answer the
research question. Better still, the research questions could be addressed
using planned comparisons on the difference scores, as discussed above.

To seasoned researchers, the difference the original write-ups and my sugges-
tions may not seem like much. This is because they have learnt to ignore
the numerical padding. But novices—sensibly but incorrectly—assume that
each reported significance test must have its role in a research paper. The
two irrelevant significance tests detract them from the paper’s true objective.
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Additionally, novices are more likely to be familiar with t-tests than with
repeated-measures ANOVA, so the simpler write-up may be considerably
less daunting to them.

Multilevel models vs. cluster-level analyses

Cluster-randomised experiments are experiments in which pre-existing groups
of participants are assigned in their entirety to the experimental conditions.
Importantly, the fact that the participants were not all assigned to the
conditions independently of one another needs to be taken into account in
the analysis since the inferences can otherwise be spectacularly overconfident
(see Vanhove 2015). Applied linguists regularly fail to properly analyse
cluster-randomised experiments, in which case their analysis and write-up
are simple but invalid. But when they do take clustering into account, the
write-up may read as follows:

Example E.
Fourteen classes with 18 pupils each participated in the experiment.
Seven randomly picked classes were assigned in their entirety to the
intervention condition, the others constituted the control group. (...)
To deal with the clusters in the data (pupils in classes), we fitted a
multilevel model using the lme4 package for R with class as a random
effect. p-values were computed using Satterthwaite’s degrees of freedom
method as implemented in the lmerTest package and did show not a
significant intervention effect (t(12) = 1.8, p = 0.10).

Technically, this analysis is perfectly valid, but a novice may get sidetracked
by the specialised software and the sophisticated vocabulary (multilevel,
random effect, Satterthwaite’s degrees of freedom). Compare this to the
following write-up:
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Alternative to Example E.
Fourteen classes with 18 pupils each participated in the experiment.
Seven randomly picked classes were assigned in their entirety to the
intervention condition, the others constituted the control group. (...)
To deal with the clusters in the data (pupils in classes), we computed
the mean outcome per class and submitted these means to a t-test
comparing the intervention and the control classes. This did not show
a significant intervention effect (t(12) = 1.8, p = 0.10).

Computing means is easy enough, as is running a t-test: The entire analysis
could easily be run in a spreadsheet program. Moreover, the result is exactly
the same. In fact, if the cluster sizes are all the same, the multilevel approach
and the cluster-mean approach yield the exact same result as long as the
multilevel model does not obtain a singular fit (also see Murtaugh 2007).
If the cluster sizes are not all the same, the results that both approaches
yield will not be exactly the same. As far as I know, there are no published
comparisons of which approach is best in such cases, but my own simulations
indicate that both are equally powerful statistically (see https://janhove.gi
thub.io/analysis/2019/10/28/cluster-covariates).

Nonparametrics vs. parametric tests

A fairly common strategy is for researchers to first run significance tests to
check whether their data meet the normality or homoskedasticity assumptions
(e.g., using the Shapiro–Wilk test or Levene’s test) and to then choose between
a parametric (e.g., t-test or ANOVA) and a nonparametric test (e.g., Mann–
Whitney or Kruskal–Wallis). The combination of preliminary tests and
possibly lesser known procedures represents an increase in complexity in the
research report. Rather than adopt an automated strategy (‘If the Shapiro–
Wilk is significant, run a Mann–Whitney.’), I think researchers ought to
consider the following three points.

First, preliminary tests of normality are most powerful when they are least

https://janhove.github.io/analysis/2019/10/28/cluster-covariates
https://janhove.github.io/analysis/2019/10/28/cluster-covariates
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useful. Substantial deviations from normality often go undetected in small
samples, whereas trivial departures from normality (e.g., when the values are
recorded to the nearest unit or decimal, or when the range of the variable is
truncated) get flagged in large samples. Hence, graphic assumption checks
are recommended rather than hypothesis tests (Gelman & Hill 2007; Zuur et
al. 2009).

Second, the main problem with severely nonnormal data is that parametric
methods compare means (and usually still do so correctly with nonnormality;
see, for instance, Schmider et al. 2010), but that these means may not
be relevant. When the means are considered relevant despite assumption
violations, researchers should be aware that tools such as the Mann–Whitney
or Kruskal–Wallis do not in fact compare means but entire distributions.
Substituting a nonparametric test for a parametric one thus changes the
hypotheses being tested. Depending on the context, this may be fine or
it may be undesirable. For some alternatives when the mean is of interest
despite assumption violations, see Delacre, Lakens & Leys (2017), Delacre et
al. (2019), Hesterberg (2015), and Zuur et al. (2009).

Third, contrary to some researchers’ convictions, nonparametric tests also
make assumptions about the distribution of the data; they just do not
assume that this distribution is normal. In fact, the popular notion that
nonparametric tests compare medians is only half-true: They compare entire
distributions and therefore also often flag differences between distributions
other than the median (e.g., mean or variance, see Zimmerman 1998).

In sum, numeric tests of normality and homoskedasticity can better be
replaced by visual checks, and more transparent alternatives to the off-the-
shelf nonparametric tests are often appropriate.

Use appendices liberally

If researchers take my suggestions on board, their results sections should
become leaner and more comprehensible. But at the same time, I plead for
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maximal transparency; I just do not think that the main text of an article is
the best place to achieve it. Instead, the raw data and computer code with
which they were analysed (SPSS syntax, R or Python scripts, etc.) can, and
in my view should, be put in online repositories such as osf.io alongside any
codebooks, technical reports, and experimental materials (see Klein et al.
2018). Not only does this allow other researchers to verify and even build on
your results, it also saves you from reporting details that are not important
for your research questions. These are some examples:

• I think standardised effect sizes such as Cohen’s d are of limited use in
primary studies (also see Baguley 2009; Cohen 1994; Tukey 1969), so I
rarely report them. If a meta-analyst needs them, he or she should be
able to compute them using the supplementary materials.

• The effects of control variables in an experiment are uninteresting for
the purposes of answering the research questions. But they may be
useful when planning similar studies. Again, this information is readily
available in the appendix.

• I cannot imagine anyone being interested in how many iterations it
took for a mixed-effects model to converge, or which optimiser I used,
or whether cubic regression splines instead of thin plate regression
splines were used. But if someone is, they only need to look at the
scripts.

Epilogue

This article’s take-home point is not that applied linguists should stay clear
of sophisticated quantitative methods. It is that they should more carefully
consider the added value of their analyses and write-ups relative to simpler
analyses and write-ups, or to no analysis whatsoever. Appropriately simple
analyses and write-ups foster comprehension and hence transparency; rich
appendices with code, data, and secondary analyses further ensure that
anyone who might be interested in what is ultimately a detail from the
authors’ point of view can look it up.
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Simplifying an analysis or write-up can be difficult, though. It takes more
time, effort, and knowledge to properly outline the precise goals of the study
and to think through how the results can best be communicated than to draw
a standard line chart, borrow statistical boilerplate from previous articles,
and chuck a bunch of F -tests and p-values at the readers. But this is time
and effort well spent.
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