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Abstract
We use the recently established existence and regularity of area and energy min-
imizing disks in metric spaces to obtain canonical parameterizations of metric
surfaces. Our approach yields a new and conceptually simple proof of a well-known
theorem of Bonk and Kleiner on the existence of quasisymmetric parameterizations of
linearly locally connected, Ahlfors 2-regular metric 2-spheres. Generalizations and
applications to the geometry of such surfaces are described.

1. Introduction and statement of main results
By the classical uniformization theorem, every smooth Riemann surface is confor-
mally diffeomorphic to a surface of constant curvature. A fundamental question,
widely studied in the field of analysis in metric spaces, asks to what extent non-
smooth metric spaces admit parameterizations from a Euclidean domain with good
geometric and analytic properties. In this more general context, one usually looks for
parameterizations which are bi-Lipschitz, quasisymmetric, or quasiconformal.

A celebrated and difficult theorem of Bonk–Kleiner [4] asserts that an Ahlfors
2-regular metric space X , homeomorphic to the standard 2-sphere S2, admits a
quasisymmetric homeomorphism from S2 to X if and only if X is linearly locally
connected. We refer to Section 2 for the definitions of quasisymmetric homeomor-
phism, linear local connectedness, and Ahlfors 2-regularity. This result has since been
extended, for example, in [5], [34], [47], [48], and [26], and recently in the important
paper [37]. We refer to [37] for details and more references.

The main purpose of the present paper is to provide a new and conceptually sim-
ple approach to the theorem of Bonk and Kleiner and related results. Our approach
is a direct generalization of the classical existence proof of conformal parameteri-
zations of smooth surfaces via minimization of the energy of maps into the surface
(see [18]). In a similar vein, energy-minimizing maps into smooth surfaces and into

DUKE MATHEMATICAL JOURNAL
Vol. 169, No. 4, © 2020 DOI 10.1215/00127094-2019-0065
Received 15 November 2017. Revision received 16 July 2019.
First published online 6 February 2020.
2010 Mathematics Subject Classification. Primary 30L10; Secondary 58E20, 49Q05, 30C65.

761



762 LYTCHAK and WENGER

surfaces with upper curvature bounds and conical singularities have been used in
[19], [23], [35], [38], [40], and [36], where their injectivity, optimal quasiconformal-
ity, and connection with Teichmüller theory are studied. Our main parameterization
result can be stated as follows. We denote by D and D the open and closed unit disks
in R

2, respectively, and refer to Section 2 for the definition of energy E2C.u/ of a
(Sobolev) map u from D to a metric space.

THEOREM 1.1
Let X be a geodesic metric space homeomorphic to D and with boundary circle @X
of finite length. If X is Ahlfors 2-regular and linearly locally connected, then there
exists a homeomorphism u W D! X of minimal energy E2C.u/ <1. Any such u is
quasisymmetric and is uniquely determined up to a conformal diffeomorphism of D.

A more general statement will be provided in Theorem 6.1. Note that the theorem
comprises several statements, which will be described more precisely and in a differ-
ent order below. First, there exists a continuous map of finite energy from D to X
whose boundary parameterizes the boundary circle @X . Second, there exists one such
map of minimal energy. Finally, any such map is a quasisymmetric homeomorphism
which is unique up to composition with a conformal diffeomorphism of D. Simi-
larly to Theorem 1.1, we obtain a canonical (up to conformal diffeomorphism) qua-
sisymmetric parameterization of Ahlfors 2-regular, linearly locally connected metric
2-spheres (see Theorem 6.2) and, consequently, the Bonk–Kleiner theorem mentioned
above (see Corollary 6.3).

We now describe our approach and the statements of the theorem in more pre-
cise terms. Let X be a complete metric space. Denote by N 1;2.D;X/ the space
of (Newton-) Sobolev maps from D to X in the sense of [17]. Given a map u 2
N 1;2.D;X/, we let tr.u/ be its trace, E2C.u/ its Reshetnyak energy, and Area.u/
its parameterized area. See Section 3 for these definitions and references. If � � X
is a Jordan curve, then we let ƒ.�;X/ be the possibly empty family of maps u 2
N 1;2.D;X/ whose trace has a continuous representative which is a weakly mono-
tone parameterization of � .

Our first result provides topological information on energy minimizers.

THEOREM 1.2
Let X be a geodesic metric space homeomorphic to D, and let u W D ! X be a
continuous map. If u is inƒ.@X;X/ and minimizes the Reshetnyak energyE2C among
all maps in ƒ.@X;X/, then u is a uniform limit of homeomorphisms from D to X .

If X has a quadratic bound H2.B.x; r//� C � r2 for the Hausdorff 2-measure of
r -balls, then any u as in the theorem above is a homeomorphism (see Theorem 3.6).
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In general, the family ƒ.@X;X/ may be empty for spaces as in Theorem 1.2.
However, for spaces admitting a quadratic isoperimetric inequality as defined below,
this family is not empty when the length of @X is finite. Furthermore, energy mini-
mizers exist, are continuous, and their infinitesimal structure is as close to conformal
as possible by our results in [29] and [30] (see also Theorem 3.4).

Definition 1.3
A complete metric space X is said to admit a quadratic isoperimetric inequality if
there exists C > 0 such that every Lipschitz curve c W S1! X is the trace of some
u 2N 1;2.D;X/ such that

Area.u/� C � `.c/2;

where `.c/ denotes the length of c.

If the constant C matters, then we will say that X admits a quadratic isoperimet-
ric inequality with (isoperimetric) constant C . Our second ingredient in the proof of
Theorem 1.1 is the following.

THEOREM 1.4
Let X be a complete, geodesic metric space homeomorphic toD, S2, or R2. Suppose
that there exists C > 0 such that every Jordan curve in X bounds a Jordan domain
U �X with

H2.U /� C � `.@U /2: (1)

Then X admits a quadratic isoperimetric inequality with constant C .

A Jordan domain U � X is an open set homeomorphic to D such that U �
X is homeomorphic to D. Particular examples of spaces satisfying (1) are Ahlfors
2-regular, linearly locally connected metric spaces homeomorphic to D or S2 (see
Lemma 5.6).

Now, if X is as in Theorem 1.1, then it admits a quadratic isoperimetric inequal-
ity by Theorem 1.4. Hence, the family ƒ.@X;X/ is not empty and, by [29] and [30],
contains an energy minimizer u which is continuous. By Theorem 1.2 and the remark
following it, any such u is a homeomorphism. Since the infinitesimal structure of
energy minimizers is as close to conformal as possible by [29] and [30], the modu-
lus estimates from [15] imply that u is quasisymmetric; furthermore, u is uniquely
determined up to a conformal diffeomorphism ofD. This concludes the outline of the
proof of Theorem 1.1.

The class of metric surfaces satisfying (1) is of importance in the theory of mini-
mal surfaces in metric spaces (see [31]). Such surfaces need not be Ahlfors 2-regular
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and they need not admit quasiconformal parameterizations (as defined in [37]) even
locally (see Example 5.9). Combining Theorems 1.4 and 1.2, we nevertheless obtain
natural “almost parameterizations” of such surfaces (see Theorem 5.8). For surfaces
satisfying (1) with the Euclidean constant C D 1

4�
, we obtain, as a consequence of

Theorem 1.4 together with [32, Theorem 1.1], the following strengthening of [32,
Theorem 1.3].

COROLLARY 1.5
Let X be a geodesic metric space homeomorphic to D. Then X is a CAT.0/-space if
and only if every Jordan domain ��X satisfies

H2.�/�
1

4�
� `.@�/2:

In particular, spaces as in the corollary are Lipschitz 1-connected (see Section 5
below and [25]). For spaces satisfying (1) with C > 1

4�
, it is in general not easy to

construct nontrivial maps with suitable metric or analytic properties, as the following
open problem shows.

QUESTION 1.6
LetX be a geodesic, Ahlfors 2-regular, linearly locally connected metric space home-
omorphic to D. Is it true that every Lipschitz map c W S1!X extends to a Lipschitz
map on D? If so, is X Lipschitz 1-connected?

Notice that Theorem 1.4 in particular asserts the existence of many nontrivial
Sobolev maps into a space satisfying (1). Using this theorem together with the results
in [33], we can give a partial answer to the question above. Let .X;d/ be a met-
ric space, A � R

2, and ˛ > 0. A map ' W A! X is said to be .L;˛/-Hölder if
d.'.a/; '.a0// � L � ja � a0j˛ for all a;a0 2 A. The space X is said to have the pla-
nar ˛-Hölder extension property if there exists � � 1 such that any .L;˛/-Hölder
map ' W A!X with A� R

2 extends to an .�L;˛/-Hölder map N' W R2!X . Theo-
rem 1.4 together with [33, Theorems 7.1 and 6.4] implies the following.

COROLLARY 1.7
Let X be a complete, geodesic metric space homeomorphic toD, S2, or R2. Suppose
that there exists C > 0 such that every Jordan curve in X bounds a Jordan domain
U �X with

H2.U /� C � `.@U /2:

Then X has the planar ˛-Hölder extension property for every ˛ 2 .0; 1/.

The following special case provides our almost answer to Question 1.6.



CANONICAL PARAMETERIZATIONS OF METRIC DISKS 765

COROLLARY 1.8
LetX be a geodesic, Ahlfors 2-regular, linearly locally connected metric space home-
omorphic to D or S2. Then for every ˛ 2 .0; 1/ there exists � � 1 such that if
' W S1 ! X is an L-Lipschitz map, then ' extends to an .�L;˛/-Hölder map on
all of D.

The structure of the paper is as follows. In Section 2, we gather definitions and
some basic results which will be used throughout the paper. Section 3 contains back-
ground from the theory of metric-space-valued Sobolev maps. We furthermore sum-
marize the main existence and regularity results for energy minimizers in metric
spaces. Finally, we provide an embeddedness criterion for minimal disks, which is
used in our main results. In Section 4, we prove Theorem 1.2. Section 5 is devoted to
the proof of Theorem 1.4. We furthermore obtain Theorem 5.8, which gives an almost
parameterization result for surfaces as in Theorem 1.4. In Section 6, we prove Theo-
rem 1.1 and an analogous result for spheres (see Theorem 6.2), yielding, in particular,
the Bonk–Kleiner theorem.

2. Preliminaries

2.1. Basic definitions and notations
The Euclidean norm of a vector v 2R2 is denoted by jvj, the open unit disk in R

2 by

D WD
®
z 2R2 W jzj< 1

¯
;

and its closure by D. Let .X;d/ be a metric space. The open ball in X centered at
some point x0 of radius r > 0 is denoted by

B.x0; r/DBX .x0; r/D
®
x 2X W d.x;x0/ < r

¯
:

A Jordan curve in X is a subset of X which is homeomorphic to S1. Let � �X be a
Jordan curve. A continuous map c W S1! � is called a weakly monotone parameteri-
zation of � if c is the uniform limit of homeomorphisms ci W S1! � . The length of a
curve c in X is denoted by `X .c/ or simply by `.c/. A curve c W Œa; b�!X is called
geodesic if `.c/D d.c.a/; c.b//. The metric space X is called geodesic if any pair of
points x;y 2X can be joined by a geodesic. If c W .a; b/!X is absolutely continu-
ous, then c is metrically differentiable at almost every t 2 .a; b/; that is, the limit

ˇ̌
c0.t/

ˇ̌
WD lim

s!t

d.c.s/; c.t//

jt � sj

exists (see [21], [22]).
Given m � 0, the m-dimensional Hausdorff measure on X is denoted by Hm

X

or simply by Hm if there is no danger of ambiguity. The normalizing constant in
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the definition of Hm is chosen in such a way that Hm coincides with the Lebesgue
measure on Euclidean R

m.
The following elementary observation will be used repeatedly throughout the

text.

LEMMA 2.1
Let .X;d/ be a geodesic metric space homeomorphic to D or D, and let ��X be
a Jordan domain such that `.@�/ <1. Then the length metric d� on � is finite for
any pair of points and has the following properties:
(i) The metrics d and d� induce the same topology on �.
(ii) For every curve c in �, we have `d .c/D `d

�
.c/.

(iii) For every Borel set A��, we have H2
d
.A/DH2

d
�
.A/.

In particular, the space .�;d�/ is a geodesic metric space homeomorphic to D.

Proof
Using that @� has finite length, we see that d� defines a compact topology. Since
d� � d , we therefore obtain that the identity map � W .�;d�/! .�;d/ is a homeo-
morphism, proving (i). Statement (ii) follows from [6, Proposition 2.3.12]. Since � is
locally isometric on �, we furthermore get (iii).

2.2. Quasisymmetric homeomorphisms and conformal modulus
We collect basic definitions concerning quasisymmetric mappings between metric
spaces and the modulus of families of curves. We refer to [14], [15], [44], and [17]
for more details.

Definition 2.2
A metric space X is called linearly locally connected if there exists � � 1 such that
for every x 2 X and for all r > 0, every pair of points in B.x; r/ can be joined by
a continuum in B.x;�r/ and every pair of points in X n B.x; r/ can be joined by a
continuum in X nB.x; r=�/.

If X is geodesic, then the first condition in the definition of linear local connect-
edness is automatically satisfied. By [4, Lemma 2.5], a metric spaceX homeomorphic
to a closed 2-dimensional manifold is linearly locally connected if and only if X is
linearly locally contractible: there exists �� 1 such that every ball B.x; r/�X with
0 < r < ��1 � diamX is contractible in B.x;�r/.

Definition 2.3
A homeomorphism ' W M ! X between metric spaces M and X is said to be qua-
sisymmetric if there exists a homeomorphism � W Œ0;1/! Œ0;1/ such that
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d
�
'.z/; '.a/

�
� �.t/ � d

�
'.z/; '.b/

�

for all z; a; b 2M with d.z; a/� t � d.z; b/.

Quasisymmetric homeomorphisms preserve the doubling property and linear
local connectedness. Recall that a metric space X is called doubling if there exists
N � 1 such that every ball of radius 2r in X can be covered by at most N balls of
radius r . Subsets of Ahlfors regular spaces are, in particular, doubling.

Definition 2.4
A metric space X is called Ahlfors 2-regular if there exists L> 0 such that

L�1 � r2 �H2
�
B.x; r/

�
�L � r2

for all x 2X and 0 < r < diamX .

LetX be a metric space and � a family of curves inX . A Borel function 	 W X!
Œ0;1� is said to be admissible for � if

R
�
	 � 1 for every locally rectifiable curve


 2 � . We refer to [17] for the definition of the path integral
R
� 	. The modulus of �

is defined by

mod.�/ WD inf
�

Z
X

	2 dH2;

where the infimum is taken over all admissible functions for � . Note that throughout
this paper, the reference measure on X will always be the 2-dimensional Hausdorff
measure. By definition, mod.�/D1 if � contains a constant curve. A property is
said to hold for almost every curve in � if it holds for every curve in �0 for some
family �0 � � with mod.� n �0/D 0. In the definition of mod.�/, the infimum can
equivalently be taken over all weakly admissible functions, that is, Borel functions
	 W X! Œ0;1� such that

R
�
	 � 1 for almost every locally rectifiable curve 
 2 � .

THEOREM 2.5
Let X be a metric space which is homeomorphic to D and satisfies, for some L > 0
and for every x 2X and r > 0, that

H2
�
B.x; r/

�
�L � r2:

Let Q � 1, and suppose that u W D!X is a homeomorphism satisfying

mod.�/�Q �mod.u ı �/

for every family � of curves inD. Then u is quasisymmetric if and only ifX is linearly
locally connected.
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Here, u ı � denotes the family of curves u ı 
 with 
 2 � . The proof of Theo-
rem 2.5 is a simple variation of the proof of [15, Theorem 4.7], which we provide for
completeness in the Appendix. The theorem furthermore holds with D replaced by
S2.

2.3. Topological preliminaries
We recall some topological notions and results which we will need in Section 4. For
details we refer to [9], [12], and [8].

Definition 2.6
Let X and Y be metric spaces and v W X ! Y a continuous map. If v�1.y/ is con-
nected for every y 2 Y , then v is called monotone. If v�1.y/ is totally disconnected
for every y 2 Y , then v is called light.

The monotone-light factorization theorem due to Eilenberg and Whyburn (see
[51, Theorem 3.5]) asserts that, for every continuous, surjective map v W X ! Y

between compact metric spaces X and Y , there exist a compact metric space Z and
continuous surjective maps v1 W X ! Z and v2 W Z! Y such that v1 is monotone,
v2 is light, and v D v2 ı v1. The fibers v�11 .z/ are exactly the connected components
of v�1.v2.z//.

We will furthermore need the notion of cell-like spaces and cell-like maps (cf. [9,
p. 112]).

Definition 2.7
A compact metric space is called cell-like if it admits an embedding into the Hilbert
cube Q in which it is null-homotopic in every neighborhood of itself. A continuous
surjection f W X! Y between metric spaces X and Y is called cell-like if f �1.q/ is
cell-like (in particular compact) for every q 2 Y .

A compact subset X of S2 is cell-like if and only if X is connected and S2 nX
is nonempty and connected. A closed connected subset X of D is cell-like if and
only if each connected component of D nX intersects @D. A cell-like set contained
in a Jordan curve is a point or a topological arc. A compact cell-like metric space X
of topological dimension 1 is unicoherent (see [12, p. 332] and [12, p. 97]). Recall
that a connected metric space X is unicoherent if, for all closed connected subsets
A;B �X with X DA[B , the intersection A\B is connected.

Let X and Y be absolute neighborhood retracts. A continuous surjective map
f W X! Y is cell-like if and only if for every open set U � Y the restriction

f jf �1.U / W f
�1.U /! U
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is a homotopy equivalence. In particular, if f is cell-like, then, for every open con-
nected (resp., contractible) set U � Y , the preimage f �1.U / is connected (resp.,
contractible).

LEMMA 2.8
Let W � S2 be an open, connected set, and let K �W be a compact set all of whose
connected components are cell-like. Then W nK is connected. Moreover, for every
connected component T of K there exist arbitrarily small neighborhoods V �W of
T which are homeomorphic to D and such that V is homeomorphic to D and @V
does not intersect K .

Proof
Let Y be the space obtained from W by identifying the points in each connected
component of K , endowed with the finest topology such that the natural projection
� W W ! Y is continuous. Then � is a cell-like map and hence Y is homeomorphic to
W by Moore’s theorem (see, e.g., [8, Theorem 25.1] or [9, p. 116]). Moreover, �.K/
is totally disconnected in Y and hence Y n �.K/ is connected. It follows that W nK
is also connected. This proves the first statement of the lemma.

Let now T � K be a connected component of K . Then there exist arbitrarily
small neighborhoods U of the point �.T / 2 Y such that U is homeomorphic to D,
U is homeomorphic to D, and such that the circle @U does not intersect the totally
disconnected set �.K/. (In order to construct such U , it suffices to find a Jordan
curve around the point �.T / which avoids the set �.K/ and let U be the enclosed
Jordan domain.) Then V D ��1.U / is an arbitrarily small neighborhood of T which
is homeomorphic to D, such that V is homeomorphic to D and such that the circle
@V does not intersect K .

PROPOSITION 2.9
For a continuous surjective map f W D!D, the following statements are equivalent:
(i) f is monotone.
(ii) f is cell-like.
(iii) f is a uniform limit of homeomorphisms fi W D!D.

Proof
Clearly, (ii) implies (i). Property (i) is equivalent to (iii) by [50]. Finally, (iii) implies
(ii) since the uniform limit of cell-like maps between compact absolute neighborhood
retracts is cell-like by [8, Theorem 17.4].
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3. Metric-space-valued Sobolev maps
We recall some definitions from the theory of metric-space-valued Sobolev mappings
based on upper gradients; see [16], [42], and [17], as well as the results concerning
existence and regularity of energy minimizing disks established in [28], [29], and
[30].

Let .X;d/ be a complete metric space and �� R
2 a bounded domain. A Borel

function g W �! Œ0;1� is said to be an upper gradient of a map u W �!X if

d
�
u
�

.a/

�
; u
�

.b/

��
�

Z
�

g (2)

for every rectifiable curve 
 W Œa; b�!�. If (2) only holds for almost every curve 
 ,
then g is called a weak upper gradient of u. A weak upper gradient g of u is called a
minimal weak upper gradient of u if g 2L2.�/ and if for every weak upper gradient
h of u in L2.�/ we have g � h almost everywhere on �.

Denote by L2.�;X/ the collection of measurable and essentially separably val-
ued maps u W �! X such that the function ux.z/ WD d.u.z/; x/ belongs to L2.�/
for some and thus any x 2X . A map u 2L2.�;X/ belongs to the (Newton-) Sobolev
space N 1;2.�;X/ if u has a weak upper gradient in L2.�/. Every such map u has a
minimal weak upper gradient gu, unique up to sets of measure zero (see [17, Theo-
rem 6.3.20]). The Reshetnyak energy of a map u 2N 1;2.�;X/ is defined by

E2C.u/ WD kguk
2
L2.�/

:

If u 2N 1;2.�;X/, then for almost every z 2� there exists a unique seminorm
on R

2, denoted by ap mduz and called the approximate metric derivative of u, such
that

ap lim
y!z

d.u.y/;u.z//� ap mduz.y � z/

jy � zj
D 0

(see [20] and [29, Proposition 4.3]). Here, ap lim denotes the approximate limit (see
[10]).

The following notion of parameterized area was introduced in [29].

Definition 3.1
The parameterized (Hausdorff) area of a map u 2N 1;2.�;X/ is defined by

Area.u/D
Z
�

J.ap mduz/ dz;

where the Jacobian J.s/ of a seminorm s on R
2 is the Hausdorff 2-measure on .R2; s/

of the unit square if s is a norm and zero otherwise.
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The area of the restriction of u to a measurable set B �� is defined analogously.
If u is injective and satisfies Lusin’s condition (N), then Area.u/ D H2.u.�// by
the area formula (see [20], [21]). For the proof of the following lemma (see [33,
Lemma 3.6]).

LEMMA 3.2
Given a Lipschitz curve c W S1!X , there exists a Lipschitz homotopy of zero param-
eterized area between c and its constant speed parameterization.

Recall that, by John’s theorem, the unit ball with respect to a norm k � k on R
2

contains a unique ellipse of maximal area, called John’s ellipse of k � k. We will need
the following definition from [30].

Definition 3.3
A map u 2 N 1;2.�;X/ is called infinitesimally isotropic if for almost every z 2 �
the seminorm ap mduz is either zero or is a norm and the John ellipse of ap mduz is
a Euclidean disk.

We call a map u 2N 1;2.�;X/ infinitesimally Q-quasiconformal if
�
gu.z/

�2
�Q � J.ap mduz/ (3)

for almost every z 2 �. If u 2 N 1;2.�;X/ is infinitesimally isotropic, then it is
infinitesimally Q-quasiconformal with QD 4

�
(see [30]).

If u 2 N 1;2.D;X/, then for almost every v 2 S1 the curve t 7! u.tv/ with t 2
Œ1=2; 1/ is absolutely continuous. The trace of u is defined by

tr.u/.v/ WD lim
t%1

u.tv/

for almost every v 2 S1. It can be shown that tr.u/ 2L2.S1;X/ (see [22]). If u is the
restriction to D of a continuous map Ou on D, then tr.u/D OujS1 .

Given a Jordan curve � � X , we denote by ƒ.�;X/ the possibly empty family
of maps v 2 N 1;2.D;X/ whose trace has a continuous representative which weakly
monotonically parameterizes � . The following theorem summarizes the existence and
regularity properties of energy minimizers which we will need in this article and
which were proved in [29], [30], and [28]. Note that the results in these papers are
stated using a different but equivalent definition of Sobolev mapping and Reshetnyak
energy (see [39] and [17, Theorem 7.1.20]).

THEOREM 3.4
Let X be a proper metric space admitting a quadratic isoperimetric inequality. Let
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� � X be a Jordan curve such that ƒ.�;X/ is not empty. Then there exists u 2
ƒ.�;X/ satisfying

E2C.u/D inf
®
E2C.v/ W v 2ƒ.�;X/

¯
:

Any such u is infinitesimally isotropic and has a representative which is continuous
on D and extends continuously to D.

If X is as in the theorem and � � X is a Jordan curve of finite length, then
ƒ.�;X/ is not empty.

Proof
The existence of an energy minimizer in ƒ.�;X/ follows from [29, Theorem 7.6].
Continuity of energy minimizers up to the boundary is a consequence of [30, The-
orem 4.4] or [28, Theorem 1.3]. Infinitesimal isotropy follows from [30, Lemmas
3.2, 4.1] (see also [29, Lemma 6.5]).

We next prove the following proposition. See [49, Theorem 1.1] for an analogous
result.

PROPOSITION 3.5
Let X be a complete metric space, and let u W D!X be continuous and monotone.
If u 2N 1;2.D;X/ and u is infinitesimally Q-quasiconformal, then

mod.�/�Q �mod.u ı �/

for every family � of curves in D.

Proof
Let gu be the minimal weak upper gradient of u on D. We first claim that the upper
gradient inequality (2) holds with g D gu for almost every rectifiable curve 
 in D
instead ofD. Indeed, u extends to a Newton–Sobolev map on the open disk B.0; 2/�
R
2. An extension can be obtained by reflection along S1 and applying the general

gluing theorem (see [22, Theorem 1.12.3]). Hence, u ı 
 is absolutely continuous
for almost every rectifiable curve in D, parameterized by its arc-length. Since almost
every curve 
 in D intersects the boundary S1 in a set of Hausdorff 1-measure zero,
the claim follows from (2).

Let � be a family of curves in D. Then for almost every rectifiable curve 
 2 � ,
parameterized by its arc-length, the curve u ı 
 is absolutely continuous, and for
almost every t we have 
.t/ … S1 and u ı 
 is metrically differentiable at t with

ˇ̌
.u ı 
/0.t/

ˇ̌
� gu

�

.t/

�
(4)
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(see [17, Proposition 6.3.3]). Let % W X ! Œ0;1� be an admissible function for the
family u ı � , and define N% WD gu � .% ı u/ on D. Then for every curve 
 2 � with the
properties above, inequality (4) yields
Z
�

N%D

Z
gu
�

.t/

�
� %
�
u ı 
.t/

�
dt �

Z ˇ̌
.u ı 
/0.t/

ˇ̌
� %
�
u ı 
.t/

�
dt D

Z
uı�

%� 1;

so N% is weakly admissible for � .
By [29, Proposition 3.2], there exists a set A � D of measure zero such that

the restriction ujDnA has Lusin’s property (N). For x 2 u.D/, let N.u;x/ denote the
number of points z 2 D with u.z/ D x. Clearly, N.u;x/ equals 1 or 1 for every
x 2 u.D/ because u is monotone. Since

Z
u.DnA/

N.u;x/dH2.x/D

Z
DnA

J.ap mduz/ dz DArea.u/ <1;

by the area formula (see [20], [21]) it follows that N.u;x/D 1 for H2–almost every
x 2 u.D n A/. Thus, since u is infinitesimally Q-quasiconformal and monotone, it
follows again from the area formula that

Z
D

N%.z/2 dz �Q �

Z
D

% ı u.z/2 � J.ap mduz/ dz �Q �
Z
X

%.x/2 dH2.x/:

Since % was an arbitrary admissible function for u ı � , it therefore follows that

mod.�/�Q �mod.u ı �/:

This completes the proof.

We end this section with the following result needed in the proof of Theorem 6.1.

THEOREM 3.6
Let X be a complete metric space, and suppose that there exists L > 0 such that for
all x 2X and r > 0 we have

H2
�
B.x; r/

�
�L � r2:

Let u W D!X be continuous, monotone, and nonconstant. If u 2N 1;2.D;X/ and u
is infinitesimally quasiconformal, then u is a homeomorphism onto its image.

Proof
It suffices to show that u is injective. We argue by contradiction and suppose that
there exists x 2 u.D/ such that E WD u�1.x/ consists of more than one point. Fix
r > 0 such that Fr WDD n u�1.B.x; r// is not empty. Note that such r exists since u
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is assumed to be nonconstant. Let � WD �.E;Fr ID/ denote the family of curves in
D joining E and Fr .

We first show that the modulus of � is bounded from above independently of r .
Let Q � 1 be such that u is infinitesimally Q-quasiconformal. By Proposition 3.5,
we have

mod.�/�Q �mod.u ı �/:

Since u ı� is a subset of the family of curves in X joining NB.x; r=4/ to X nB.x; r/,
it follows from [14, Lemma 7.18] that mod.u ı �/ is bounded by a constant L0 only
depending on L. This shows that mod.�/�QL0.

Since E is a nondegenerate continuum (i.e., consisting of more than one point),
this bound on the modulus is easily seen to contradict the Loewner property of D.
Indeed, let z0 2 D n E and let z1 2 E be a point on E nearest to z0. For s > 0
sufficiently small, letGs denote the set of points on the straight segment from z0 to z1
which are at least a distance s away from E . Then Gs is a nondegenerate continuum
and, for s > 0 sufficiently small, we have

dist.E;Gs/� C � s �min¹diamE;diamGsº

for some C not depending on s. Fix s as above, and let r > 0 be so small thatGs � Fr ,
where Fr is as at the beginning of the proof. Then �.E;Fr ID/ contains the family
�.E;GsID/ of curves in D connecting E and Gs and hence

mod
�
�.E;GsID/

�
�mod

�
�.E;Fr ID/

�
�QL0

for all s > 0 sufficiently small. However, this is impossible since

mod
�
�.E;GsID/

�
!1

as s! 0C by the 2-Loewner property of D (see, e.g., [14, Theorem 8.23 and Exam-
ple 8.24]). This completes the proof.

4. Topological properties of energy minimizers
In this section we prove Theorem 1.2. The key ingredient is the following topological
result.

THEOREM 4.1
Let X be a geodesic metric space homeomorphic to D. Let v W D!X be a continu-
ous and surjective map satisfying the following properties:
(i) The restriction of v to S1 is a weakly monotone parameterization of @X .
(ii) Whenever T � X is a single point or bi-Lipschitz homeomorphic to a closed

interval, every connected component of v�1.T / is cell-like.
Then v is a cell-like map.
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Before proving Theorem 4.1, we first provide the following.

Proof of Theorem 1.2
Let u be as in the theorem. Then u is infinitesimally quasiconformal by Theorem 3.4.

Notice that u need not minimize the parameterized Hausdorff area among all
maps in ƒ.@X;X/; however, it minimizes a somewhat different area functional.
Indeed, by [30, Theorem 1.1], the map u minimizes the inscribed Riemannian area

Area�i .u/ WD
Z
D

J�i .ap mduz/ dz

among all maps inƒ.@X;X/, where the �i -jacobian J�i .s/ of a seminorm s on R
2 is

defined as follows. If s is degenerate, then J�i .s/D 0; if s is a norm, then J�i .s/D
�
jLj

, where jLj is the Lebesgue measure of John’s ellipse of ¹v 2R2 W s.v/� 1º.
Due to Proposition 2.9, in order to prove the theorem it is enough to show that u

satisfies the hypotheses of Theorem 4.1. For topological reasons, the map u is surjec-
tive and satisfies property (i). In order to see that u also satisfies property (ii), we argue
by contradiction and assume that there exists T as in (ii) such that some connected
componentK of u�1.T / is not cell-like. Thus, there exists a connected component of
D nK which does not intersect S1. In particular, there also exists a connected com-
ponent U of D n u�1.T / which does not intersect S1. Since T is a single point or
bi-Lipschitz homeomorphic to a closed interval, it follows that T is an absolute Lip-
schitz retract (see [2, Proposition I.1.2]). Therefore, there exists a Lipschitz retraction
P W X! T . Define a map by w WD P ı u.

We claim that the restrictions wjU and ujU have the same trace in the sense
of [31, Definition 4.1]. Indeed, for fixed x 2 X consider the real-valued function
h.z/ WD d.x;u.z// � d.x;w.z// for z 2 U , where d is the metric on X . Then h
belongs to W 1;2.U /, is continuous on U , and satisfies hD 0 on @U . Since h extends
continuously to R

2 with the value 0 on R
2 n U , it follows directly from the Havin–

Bagby theorem (see, e.g., [13, Theorem 2.1]) that h 2 W 1;2
0 .U /. Since x was arbi-

trary, this shows that ujU and wjU have equal traces in the sense of [31, Defini-
tion 4.1].

By [31, Lemma 4.2], we may replace ujU by wjU and obtain another map u1 2
N 1;2.D;X/ with the same trace as u and, in particular, u1 2 ƒ.@X;X/. Since T
is a single point or bi-Lipschitz homeomorphic to a closed interval, it follows that
ap mdwz is degenerate for almost every z and hence the inscribed Riemannian area
of w is zero. Since u minimizes the inscribed Riemannian area, it follows that the
inscribed Riemannian area of ujU is zero. Since u is infinitesimally quasiconformal,
the Reshetnyak energy of ujU must be zero as well. Therefore ujU is constant and
hence u.U / is contained in T , a contradiction. Thus every connected component of
u�1.T / is cell-like and hence u satisfies (ii). This completes the proof.
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The following result will be used in the proof of Theorem 4.1 and later.

LEMMA 4.2
Let X be a geodesic metric space, and let � �X be a topological arc connecting two
points a; b 2 X . Then for every " > 0 there exists a bi-Lipschitz curve contained in
the "-neighborhood of � and connecting a and b.

A similar statement holds for Jordan curves.

Proof
Let " > 0 and choose a piecewise geodesic curve 
 which is contained in the "

2
-

neighborhood of � and connects the endpoints a and b of � . By choosing an appro-
priate subcurve of 
 , we may assume that 
 is an injective piecewise bi-Lipschitz
curve. By changing the curve step by step near its vertices, it suffices to prove the
following claim.

CLAIM 4.3
Let s > 0, and let � W Œ�s; s�! X be an injective curve such that the restrictions
�jŒ0;s� and �jŒ�s;0� are geodesics parameterized by their arc-length. Then there exist
arbitrarily small t 2 .0; s/ such that after replacing �jŒ�t;t � by a geodesic from �.�t /

to �.t/ we obtain a bi-Lipschitz curve.

To prove the claim, note first that the Lipschitz function f .t/D d.�.�t /; �.t//
satisfies f .0/ D 0 and is strictly positive for t > 0. Thus we find arbitrarily small
t > 0 for which f 0.t/ exists and is strictly positive. Fix such t , and set ı WD f 0.t/.
Choose a geodesic ct from �.�t / to �.t/, parameterized by its arc-length and such
that ct .0/D �.�t /. The triangle inequality and the fact that f 0.t/D ı > 0 yield that,
for all sufficiently small r > 0, we have

d
�
�.�t � r/; ct .r/

�
�
ı � r

2
:

Since this holds for every such geodesic ct it follows that ct can only intersect �jŒ�s;�t�
at �.�t /. Moreover, the inequality above together with the triangle inequality imply
that the concatenation of �jŒ�s;�t� with ct is a bi-Lipschitz curve locally around �.�t /
and hence also globally. The same argument shows that the concatenation of ct with
�jŒt;s� is a bi-Lipschitz curve, and hence the concatenation of all three curves is bi-
Lipschitz. This proves the claim and completes the proof of the lemma.

The rest of this section is devoted to the proof of Theorem 4.1. Let v be as in the
statement of the theorem. We first claim that it is enough to consider the case that v is,
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in addition, a light map. Indeed, by the monotone-light factorization theorem, there
exist a metric space Z and continuous, surjective maps v1 W D!Z and v2 W Z!X

such that v1 is monotone, v2 is light, and v factors as vD v2 ıv1. Moreover, the fibers
v�11 .z/ are exactly the connected components of v�1.v2.z//. It thus follows from the
properties of v that v1 and the restriction v1jS1 are cell-like maps. Consequently, Z
is homeomorphic to D and v1 is the uniform limit of homeomorphisms (see [31,
Corollary 7.12]). We now identify Z with D via a homeomorphism and show the
following.

LEMMA 4.4
The map v2 satisfies properties (i) and (ii) of Theorem 4.1.

Proof
We first prove that v2 has property (i). As mentioned above, we identify Z with D
via a homeomorphism. Since v1 is the uniform limit of homeomorphisms, it follows
that v1.S1/ D S1 and hence v2.S1/ D @X . Let x 2 @X . We show that v�12 .x/ \

S1 consists of a single point. Let z; z0 2 S1 be such that v2.z/ D x D v2.z0/. The
preimages v�11 .z/ and v�11 .z0/ are connected components of v�1.x/, both having
nontrivial intersection with S1. Since v�1.x/\ S1 is an interval or a point, we must
therefore have z D z0. This proves property (i).

As for property (ii), let T � X be a point or bi-Lipschitz homeomorphic to a
closed interval and let K �D be a connected component of v�12 .T /. We must show
that K is cell-like. Since v1 is surjective and monotone, we have that K 0 WD v�11 .K/

is connected and thus K 0 is a connected component of v�1.T /. In particular, K 0 is
cell-like and hence K is cell-like as well by [24, Theorem 1.4]. This proves that v2
satisfies property (ii) and completes the proof of the lemma.

Now, if v2 is cell-like, then so is v because v1 is cell-like. This together with
Lemma 4.4 shows our claim. Thus, for the proof of Theorem 4.1 it is indeed enough
to consider only the case that v is, in addition, a light map. We henceforth assume that
v is as in the statement of Theorem 4.1 and that v is also light. We must show that v
is injective. For this, we first prove some auxiliary results.

LEMMA 4.5
For every x 2 @X the preimage v�1.x/ consists of exactly one point.

Proof
Since v is light and its restriction to S1 is a weakly monotone parameterization of
@X , the point x has exactly one preimage in S1. We must show that x has no preim-
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ages in D. We argue by contradiction and assume that there exists z 2D such that
v.z/D x. There exists an open neighborhood U �D of z homeomorphic to D such
that U is homeomorphic to D and @U does not intersect the totally disconnected set
v�1.x/. We find an open neighborhood W of x which does not intersect v.@U /. We
then find an arc S inW separating x from v.@U /; just take S to be any arc inW which
intersects @X exactly in the two boundary points of S lying on “different sides” of x.
By Lemma 4.2 we may assume that S is a bi-Lipschitz curve. Since S separates v.U /,
the set v�1.S/must separate U . However, v�1.S/\@U D; and any connected com-
ponent of v�1.S/ is cell-like by assumption. Hence the setK WD v�1.S/\U is com-
pact and all its connected components are cell-like. So, U n v�1.S/ is connected by
Lemma 2.8. However, this contradicts the fact that v�1.S/ separates U and completes
the proof.

Statements similar to the following lemma have been studied under the additional
assumption that the map is open (see, e.g., [11]).

LEMMA 4.6
Let T � X be bi-Lipschitz homeomorphic to a closed interval. Then v.C /D T for
every connected component C of v�1.T /.

Proof
We argue by contradiction and assume that there exists a connected component C of
v�1.T / such that v.C /¤ T , and thus v.C / is a compact subarc of T . After possibly
replacing T by a nontrivial subarc which intersects v.C / exactly in one point, and
replacing C by a connected component in C of the preimage of this subarc, we may
assume that v.C / is just one endpoint of T , which we call p. Since v is a light map
it follows that C consists of a single point z 2D.

We first assume that z … S1. By Lemma 2.8, there exists an arbitrarily small open
neighborhood U �D of z homeomorphic to D such that U is homeomorphic to D
and @U does not intersect v�1.T /. Let T 0 be a nontrivial compact subarc of T n ¹pº.
Choosing U sufficiently small, we may assume that T 0 has no preimage in U .

We find an arc S in an arbitrary small neighborhood of T which connects two
different points on T 0 and which together with the corresponding part of T 0 defines
a Jordan curve � which separates v.U /. Choosing S sufficiently close to T , we may
assume that S does not intersect v.@U /. Using Lemma 4.2, we may furthermore
assume that S is a bi-Lipschitz curve. Since T 0 does not have any preimage in U , it
follows that the preimage of � in U coincides with the preimage of S in U . Moreover,
this preimage does not intersect @U . Thus, the set K WD v�1.�/\U is compact and
every connected component of K is cell-like, and hence U n v�1.�/ is connected by
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Lemma 2.8. This, however, is impossible since � separates v.U /. This contradiction
finishes the proof in the case that z … S1.

The proof in the case z 2 S1 is analogous and is left to the reader.

Using the lemmas above we now show that v is injective, which will complete
the proof of Theorem 4.1. Let x 2X . If x 2 @X , then v�1.x/ consists of a single point
by Lemma 4.5, so we may assume that x … @X . We first suppose that x is contained
in a bi-Lipschitz arc T �X with endpoints x˙ 2 @X . By Lemma 4.5, the two points
x˙ have unique preimage points z˙ 2 S1. By Lemma 4.6, any connected component
of v�1.T / must contain both points z˙ and hence the set � D v�1.T / is connected.
Thus, by assumption (ii) of our theorem, � must be cell-like. Since v is a light map,
the set � is 1-dimensional (see [12, p. 311]), and hence � is unicoherent. Now, let
TC and T � be the subintervals into which x subdivides T . As above, the preimages
�˙ of T˙ must be connected. Since � is unicoherent, the intersection �C \ �� is
connected. Since this intersection is exactly the totally disconnected fiber v�1.x/, it
follows that v�1.x/ has exactly one point.

Now, let x 2X n @X be arbitrary. Connect x by a geodesic S with a point on @X .
The construction used in Lemma 4.2 shows that any part of S which does not contain
x can be extended to a bi-Lipschitz arc T connecting two points on @X . Thus, for any
point y on S n ¹xº, the preimage of y contains only one point. Since v�1.x/ is totally
disconnected, we deduce from Lemma 4.6 that v�1.x/ has also only one point. This
shows that v is injective and completes the proof of Theorem 4.1.

5. A quadratic isoperimetric inequality for metric surfaces
In this section, we prove Theorem 1.4 from the Introduction, as well as Corollary 5.5
below. In Theorem 5.8, moreover, we obtain an almost parameterization result for
spaces as in Theorem 1.4. We begin with the following result, which proves the first
part of Theorem 1.4.

THEOREM 5.1
Let X be a complete, geodesic metric space homeomorphic toD, S2, or R2. Suppose
that there exists C such that every Jordan curve � � X bounds a Jordan domain
��X with

H2.�/� C � `.�/2:

Then X admits a quadratic isoperimetric inequality with isoperimetric constant only
depending on C .
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We need some preparations. Recall that a metric space Y is said to be L-Lipschitz
1-connected up to some scale if there exists �0 > 0 such that every �-Lipschitz curve
c W S1! Y with �� �0 extends to an L�-Lipschitz map ' W D! Y .

PROPOSITION 5.2
Let X be as in Theorem 5.1, and suppose that Y is a metric space which contains X
and which is L-Lipschitz 1-connected up to some scale. Then every injective Lipschitz
curve c W S1!X extends to a Lipschitz map ' W D! Y with

Area.'/� C 0 � `.c/2

for some constant C 0 only depending on C and L.

Notice that we do not impose a bound on the length of the curve c and that the
constant C 0 is independent of the scale up to which Y is Lipschitz 1-connected.

Proof
Let c W S1 ! X be an injective Lipschitz curve. Then c is homotopic to its con-
stant speed parameterization via a Lipschitz homotopy of zero area by Lemma 3.2.
Therefore, we may assume that c is parameterized proportional to its arc-length.
Let � � X be the Jordan domain of smallest area and boundary c. It follows that
H2.U /� C � `.@U /2 for every Jordan domain U ��.

Denote by d� the length metric on �, and set Z WD .�;d�/. By Lemma 2.1, the
space Z is geodesic and homeomorphic to D. Moreover, the length of the boundary
circle @Z as well as the Hausdorff 2-measure of Z are finite. Finally, for every Jordan
domain U �Z, we have H2

Z.U /� C � `Z.@U /
2.

Let n 2N be sufficiently large, to be determined later. By [33, Theorem 4.1], there
exists a triangulation � of Z consisting of at most K � n2 triangles of d�-diameter at
most `.c/

n
each, and such that every edge contained in @Z has length at most `.c/

n
.

Here, K only depends on C . By a triangulation of Z, we mean a homeomorphism
from Z to a simplicial 2-complex � . We endow Z with the induced simplicial struc-
ture from � . For i D 0; 1; 2 the i -skeleton of � will be denoted � .i/ and may thus be
viewed as a subset of Z. The 2-simplices of � will also be called triangles in � .

Put on each triangle in � a piecewise Euclidean metric which makes it an equi-
lateral Euclidean triangle of side-length 1. Let d� denote the resulting length metric
on � . Then † WD .�; d� / is bi-Lipschitz homeomorphic to D by [27, Theorem 8.6].
Denote by P W Z!X the natural inclusion and observe that P is 1-Lipschitz and a
homeomorphism onto �.

We construct a Lipschitz map  W †! Y as follows. For each v 2 � .0/ we set
 .v/ WD P.v/, where we have identified v with its image in Z. Let now eD Œv;w� 2
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� .1/ be an edge. If e is contained in the boundary circle @†, then we let  je be a
constant speed parameterization of the part of c between the points  .v/ and  .w/.
Otherwise, let  je be a constant speed geodesic from  .v/ to  .w/ in X . It follows
that, for every triangle F 2 � .2/, the map  j@F is M`.c/n�1-Lipschitz, where M is
a universal constant. Hence, if n was chosen sufficiently large, then there exists an
M 0`.c/n�1-Lipschitz extension  jF W F ! Y for some M 0 only depending on L.
Since F 2 � .2/ was arbitrary, this yields a Lipschitz map defined on all of †.

We finally choose a bi-Lipschitz homeomorphism % W D!† in such a way that
the composition  ı % provides an extension of the curve c. For this, let % W S1! @†

be the piecewise constant speed map such that  ı %D c. Then, % is bi-Lipschitz and
thus extends to a bi-Lipschitz homeomorphism % W D!† by [43, Theorem A] and
by the fact (mentioned above) that † is bi-Lipschitz homeomorphic to D. Thus, the
map ' WD ı % is Lipschitz and is an extension of c. Moreover,

Area.'/D
X
F 2�.2/

Area. jF /�

p
3K

4
� n2 �

�
M 0 �

`.c/

n

�2
D C 0 � `.c/2

for some constant C 0 only depending on C and L. This concludes the proof.

The next lemma will allow us to pass from noninjective Lipschitz curves to injec-
tive ones in the proof of Theorem 5.1. For m � 0, let Am be the closed unit disk D
with m pairwise-separated open Euclidean disks removed. More precisely,

Am DD n

m[
kD1

Dk

for some open Euclidean disks Dk such that Dk � D are pairwise disjoint. Up to
bi-Lipschitz equivalence, the choice of omitted Euclidean disks does not matter.

LEMMA 5.3
Let X be a geodesic metric space, and let c W S1! X be a Lipschitz curve. Given
points s0; : : : ; sN 2 S1, there exist m � 0 and a Lipschitz map ' W Am! X of zero
area satisfying the following properties:
(i) 'jS1 is a piecewise geodesic with '.sj /D c.sj / for j D 0; : : : ;N .
(ii) Each curve 'j@Dk is a Jordan curve and

mX
kD1

`.'j@Dk /� `.c/:

By a piecewise geodesic we mean the concatenation of finitely many geodesics,
where we interpret constant curves as geodesics as well.
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Proof
We may assume that the points s0; : : : ; sN 2 S1 are in cyclic order, and we set sNC1 D
s0. Proceeding by induction on i , we find curves 
i W Œs0; si �! X with the follow-
ing properties. The restriction 
i jŒsk�1;sk � is a geodesic between c.sk�1/ and c.sk/
for any 1 � k � i , and the image 
i .Œs0; si �/ is a finite topological graph Gi in X
with geodesic edges. In the inductive step, we first choose an arbitrary geodesic �
from c.si / to c.siC1/. After possibly modifying � on finitely many intervals, we may
assume that � intersects any edge of Gi only at boundary points or connected subsets.
Therefore the union of Gi and the image of � is a finite graph which has geodesic
edges. We define 
iC1 to be the concatenation of 
i and �.

For i D N C 1 we obtain a piecewise geodesic 
 W S1! X with 
.si /D c.si /
for all i and such that 
.S1/ is a finite graph G with geodesic edges. Moreover, by
construction `.
/� `.c/. We may parameterize 
 to be Lipschitz continuous.

Using topological arguments in the finite graph G, we can extend the curve 
 to
a Lipschitz-continuous map ' W Am!G for some m such that (ii) holds true. Since
' has its image in G, the area of ' is 0. Let us briefly sketch the construction of this
map '. Notice first that 
 is Lipschitz-homotopic in G to a curve 
 of length at most
`.
/ which is either constant or locally injective. If 
 is constant, then the Lipschitz
homotopy gives rise to a Lipschitz map ' W A0 DD!G such that 'jS1 D 
 . If 
 is
globally injective, then the Lipschitz homotopy gives rise to a Lipschitz map ' W A1 D
D nD1! G such that 'jS1 D 
 and 'j@D1 D 
 . In both these cases we are done.
Suppose now that 
 is locally injective but not globally injective, and let I � S1 be a
maximal open segment on which 
 is injective. LetD1 andD01 be two open separated
Euclidean disks inD. Then 
 extends to a Lipschitz map ' W Dn.D1[D01/!G such
that 'j@D1 parameterizes the Jordan curve 
 jI and 'j@D0

1
parameterizes the closed

curve 
 jS1nI . Now, we apply the same construction to the curve 
 0 WD 'j@D0
1
. After

finitely many iterations of this construction we arrive at the desired map.

Let X and Y be metric spaces, and let " > 0. We say that Y is an "-thickening of
X if there exists an isometric embedding � W X ! Y such that the Hausdorff distance
between �.X/ and Y is at most ". The following lemma, which was proved in [46] and
appeared in [33, Lemma 3.3] in its present form, asserts the existence of "-thickenings
with good properties.

LEMMA 5.4
Let X be a length space. There is a universal constant M such that for every " > 0
there exists a complete length space X" which is an "-thickening of X and has the
following property. Let � > 0, and let c0 W S1! X" be �-Lipschitz. If � � "

M
, then

c0 is M�-Lipschitz homotopic to a constant curve. If � � "
M

, then c0 is Lipschitz
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homotopic to a curve c1 W S1!X with `.c1/� 2`.c/ via a homotopy of area at most
M"�. Furthermore, if X is locally compact, then X" is locally compact.

In particular, X" is Lipschitz 1-connected up to some scale. We can now provide
the following.

Proof of Theorem 5.1
Let k � 2, and let Xk be a 1

k
-thickening of X as in Lemma 5.4. Note that Xk is

locally compact, geodesic, and converges in the Gromov–Hausdorff sense to X as
k!1. By [33, Theorem 1.8], a quadratic isoperimetric inequality in the sense of
Definition 1.3 is stable under taking Gromov–Hausdorff limits. In order to prove
Theorem 5.1, it thus suffices to show that each Xk admits a quadratic isoperimetric
inequality with isoperimetric constant depending only on C .

Fix k � 2, and let c W S1!Xk be a Lipschitz curve. We will show that c extends
to a Lipschitz map ' W D! Xk of area at most C 0 � `.c/2, where C 0 only depends
on C . By Lemma 3.2, we may assume that c has constant speed. By Lemma 5.4, there
exists a Lipschitz homotopy '1 of area

Area.'1/�M � `.c/
2

from c to a Lipschitz curve c1 which is either constant or has image in X and satisfies
`.c1/ � 2`.c/. Here, M denotes a suitable universal constant. If c1 is constant, then
we are done, so we may assume c1 to be nonconstant and to have image in X . As
above, we may assume that c1 has constant speed.

Fix N 2 N sufficiently large (see below), and let s0; : : : ; sN 2 S1 be equidis-
tant points in cyclic order. Let '2 W Am! X be a Lipschitz map of zero area as in
Lemma 5.3, when applied to the curve c1. Set c2 WD '2jS1 , and note that

`.c2/� `.c1/� 2`.c/:

Set sNC1 WD s0. If N was chosen sufficiently large, then there exist Lipschitz homo-

topies in Xk of area at most M 0 � `.c1/
2

.NC1/2
from c1jŒsj ;sjC1� to c2jŒsj ;sjC1� for j D

0; : : : ;N , where M 0 is a suitable universal constant. This follows from the Lipschitz
1-connectedness up to some scale of Xk . Using these homotopies, we construct a
Lipschitz homotopy '02 from c1 to c2 satisfying

Area.'02/� .N C 1/ �M
0 �

`.c1/
2

.N C 1/2
DM 0 �

`.c1/
2

N C 1
:

We consider the Lipschitz map '2 defined on Am DD n
Sm
jD1Dj . By construc-

tion, we have
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mX
jD1

`.'2j@Dj /� `.c1/

and each '2j@Dj is a Jordan curve in X . Thus, by Proposition 5.2, there exists a
Lipschitz extension  j W Dj !Xk of '2j@Dj with

Area. j /�K � `.'2j@Dj /
2

for some constant K depending only on C .
Finally, gluing the Lipschitz maps '1, '02, '2, and  1; : : : ; m, we obtain a Lip-

schitz extension ' W D!Xk of c satisfying

Area.'/�Area.'1/CArea.'02/CArea.'2/C
mX
jD1

Area. j /

�M � `.c/2CM 0.N C 1/�1 � `.c1/
2CK �

mX
jD1

`.'2j@Dj /
2

� .M C 4M 0C 4K/ � `.c/2:

This proves that Xk admits a quadratic isoperimetric inequality with isoperimetric
constant at most C 0 DM C 4M 0C 4K . This completes the proof.

Theorem 5.1 has the following consequence.

COROLLARY 5.5
Let X be a complete, geodesic metric space homeomorphic toD, S2, or R2. Suppose
that X is linearly locally connected and there exists L> 0 such that

H2
�
B.x; r/

�
�L � r2

for every x 2X and r > 0. Then X admits a quadratic isoperimetric inequality.

The corollary follows directly from Theorem 5.1 together with the lemma below.

LEMMA 5.6
Let X be a proper metric space homeomorphic to D, S2, or R

2. Suppose that X is
linearly locally connected and there exists L> 0 such that

H2
�
B.x; r/

�
�L � r2

for every x 2 X and r > 0. Then there exists C > 0 such that every Jordan curve
� �X bounds a Jordan domain ��X satisfying

H2.�/� C � `.�/2:
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If X is homeomorphic to S2 or R2, then the lemma holds with C DL�2, where
� is the linear local connectedness constant of X . If X is homeomorphic to D, then
the constantC which we obtain in our proof depends onL, �, H2.X/, and diam.@X/.

Proof
We only give the proof in the case that X is homeomorphic to D, the argument for
the other cases being similar but simpler. Let � � X be a Jordan domain, and set
r WD `.@�/. Let �� 1 be the linear local connectedness constant. We distinguish two
cases and first assume that r < .2�/�1 � diam.@X/. Fix a point x 2 @� and observe
that there exists x0 2 @X with d.x;x0/ > �r . Since X is a disk, � cannot intersect
the boundary circle @X , and hence x0 …�. Since @� � B.x; r/, it thus follows that
x0 2X n�. We now show that ��B.x;�r/. We argue by contradiction and assume
that there exists x00 2 � n B.x;�r/. Since X is �-linearly locally connected, there
exists a continuumE �X nB.x; r/ connecting x0 and x00. However,E must intersect
@�, which contradicts the fact that @��B.x; r/. Hence, ��B.x;�r/. Finally, we
estimate

H2.�/�H2
�
B.x;�r/

�
�L � .�r/2 DL�2 � `.@�/2:

This concludes the proof of the first case. We now assume that r � .2�/�1 �diam.@X/.
Observe that H2.X/ <1, and hence

H2.�/�H2.X/�
4�2 �H2.X/

diam.@X/2
� `.@�/2:

This concludes the proof.

The following proposition will be needed in the proof of Theorem 1.4.

PROPOSITION 5.7
Let X be as in Theorem 1.4, and let c W S1!X be an injective Lipschitz curve. Then
for every " > 0, there exists u 2N 1;2.D;X/ with tr.u/D c and such that

Area.u/� C � `.c/2C ":

Proof
Let c W S1!X be an injective Lipschitz curve. By Lemma 3.2, we may assume that
c is parameterized proportional to its arc-length.

Let ��X be the Jordan domain of smallest area and boundary c. Denote by d�
the length metric on �. Set Y WD .�;d/ and Z WD .�;d�/, where d is the metric
from X . By Lemma 2.1, the identity map � W Z! Y is a homeomorphism which pre-
serves the lengths of curves and the Hausdorff 2-measure of Borel subsets. Moreover,
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Z is geodesic and � is 1-Lipschitz. Finally, � is locally isometric on Z n @Z. Hence,
every Jordan domain U �Z satisfies

H2
Z.U /� C � `.@U /

2:

It thus follows from Theorem 5.1 that Z admits a quadratic isoperimetric inequality.
In particular, ƒ.@Z;Z/ is nonempty and, by Theorem 3.4, there exists v 2ƒ.@Z;Z/
which minimizes the Reshetnyak energyE2C among all maps inƒ.@Z;Z/. Moreover,
v has a unique representative which is continuous on D and extends to a continuous
map v W D! Z. Finally, v satisfies Lusin’s condition (N) (see [30, Theorem 4.4]).
Theorem 1.2 shows that v is a cell-like map and thus monotone. The area formula
now implies that

Area.v/D
Z
v.D/

N.v; z/dH2
Z.z/;

where N.v; z/ denotes the number of points in the fiber v�1.z/. Since v is monotone
and Area.v/ <1, it follows that N.v; z/D 1 for almost every z 2 v.D/ and hence

Area.v/DH2.Z/DH2
Y .�/� C � `.c/

2:

Let " > 0. By [31, Lemma 4.8], we may connect c and tr.v/ by a Sobolev annulus
w of area at most ". Gluing v and w we obtain a Sobolev map u 2N 1;2.D;X/ whose
trace equals c and with area at most C � `.c/2C ". This completes the proof.

We can finally provide the following.

Proof of Theorem 1.4
Let c W S1! X be a Lipschitz curve. Fix N 2 N sufficiently large (see below), and
let s0; : : : ; sN 2 S1 be equidistant points. Let ' W Am!X be a Lipschitz map of zero
area as in Lemma 5.3, when applied to the curve c. Set c1 WD 'jS1 , and note that
`.c1/� `.c/.

By Theorem 5.1, the space X admits a quadratic isoperimetric inequality with
isoperimetric constant only depending on C . Arguing as in the third paragraph of the
proof of Theorem 5.1, but using the isoperimetric inequality instead of Lipschitz 1-
connectedness, one shows the following. There exists a Sobolev homotopy '0 from c

to c1 satisfying

Area.'0/� C 0.N C 1/�1 � `.c/2

for some constant C 0 depending only on C , whenever N was chosen large enough.
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Let " > 0, and write Am as Am DD n
Sm
jD1Dj . By Proposition 5.7, there exists

for each j a map uj 2N 1;2.Dj ;X/ with tr.uj /D 'j@Dj and

Area.uj /� C � `.'j@Dj /
2C

"

m
:

Gluing the maps ', '0, and u1; : : : ; um yields a Sobolev map u 2 N 1;2.D;X/ with
tr.u/D c and such that

Area.u/�Area.'0/C
mX
jD1

Area.uj /�
�
C C "CC 0.N C 1/�1

�
� `.c/2:

Choosing " > 0 arbitrarily small and N arbitrarily large, we see that X admits a
quadratic isoperimetric inequality with constant arbitrarily close to C . It thus follows
from [7, Theorem 4.5] that X actually admits a quadratic isoperimetric inequality
with constant equal to C . This completes the proof.

Combining Theorem 1.4, Theorem 3.4, and Theorem 1.2, we obtain the following
almost parameterization result.

THEOREM 5.8
Let X be as in Theorem 1.4 and such that X is homeomorphic to D and `.@X/ <1.
Then ƒ.@X;X/ contains an element u of minimal energy E2C.u/. Every such u is
infinitesimally isotropic and has a continuous representative which is a uniform limit
of homeomorphisms from D to X .

The following example (see, e.g., [31, Example 11.3]) illustrates that spaces as in
the theorem need not be Ahlfors 2-regular.

Example 5.9
Let T � D be a compact ball. Denote by X the metric space obtained from D by
identifying points in T , equipped with the quotient metric. Then X is a geodesic
metric space which is homeomorphic to D and satisfies (1).

Clearly, the space X in the example is not Ahlfors 2-regular. Moreover, X is not
reciprocal as defined in [37] and hence does not admit a quasiconformal parameteri-
zation in the sense of [37].

6. Proofs of parameterization results
The following result makes the statements in Theorem 1.1 more precise and slightly
more general.
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THEOREM 6.1
Let X be an Ahlfors 2-regular, geodesic metric space homeomorphic to a 2-
dimensional manifold. Let��X be a Jordan domain with `.@�/ <1 and such that
� is linearly locally connected. Then there exists u 2ƒ.@�;�/ which is continuous
on D and satisfies

E2C.u/D inf
®
E2C.v/ W v 2ƒ.@�;�/

¯
:

Any such map is a quasisymmetric homeomorphism from D to � and is uniquely
determined up to a conformal diffeomorphism of D.

By a manifold we mean a topological manifold with or without boundary.

Proof
Denote by Y the set � equipped with the metric from X and by Z the same set �
equipped with the length metric. By Lemma 2.1, the identity map � W Z ! Y is a
homeomorphism which preserves the lengths of curves and the Hausdorff 2-measure
of Borel subsets. Moreover, Z is geodesic and � is 1-Lipschitz.

By Lemma 5.6, there exists C > 0 such that every Jordan domain U � Y satisfies

H2.U /� C � `.@U /2:

Hence, the same is true for Jordan domains in the space Z. Thus, Theorem 5.1 shows
that Z admits a quadratic isoperimetric inequality. It follows that also Y admits a
quadratic isoperimetric inequality. By Theorem 3.4, there exists u 2ƒ.@Y;Y / which
minimizes the Reshetnyak energy E2C among all maps in ƒ.@Y;Y /. Moreover, any
such u is infinitesimally isotropic and has a unique representative which is continuous
on D and extends to a continuous map u W D! Y .

We will now show that any u with the properties above is a quasisymmetric
homeomorphism. For this, consider the map v WD ��1 ı u, which is continuous, in
N 1;2.D;Z/, and satisfies ap mdvz D ap mduz for almost every z 2 D (see [31,
Corollary 3.2]). In particular, v 2 ƒ.@Z;Z/ and E2C.v/ D E

2
C.u/. It is now clear

that v is an energy minimizer in ƒ.@Z;Z/ since for any w 2ƒ.@Z;Z/ we have

E2C.v/DE
2
C.u/�E

2
C.� ıw/�E

2
C.w/:

Thus, Theorem 1.2 shows that v is a uniform limit of homeomorphisms from D to
Z and thus monotone by Proposition 2.9. Consequently, the map u is monotone too.
Since u is infinitesimally isotropic and thus infinitesimally quasiconformal, Theo-
rem 3.6 shows that u is a homeomorphism from D to Y . Proposition 3.5 and Theo-
rem 2.5 imply that u is quasisymmetric.

We are left to show that any map as above is unique up to composition with a
conformal diffeomorphism ofD. Thus, let u and v be energy minimizers inƒ.@Y;Y /
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which are continuous on D. They are thus quasisymmetric homeomorphisms from
D to Y by the argument above. We will show that the map ' W D ! D given by
' WD v�1ıu is a conformal diffeomorphism ofD. First notice that, as the composition
of two quasisymmetric homeomorphisms, the map ' is itself quasisymmetric and, in
particular, ' and '�1 satisfy Lusin’s condition (N) (see [45, Theorem 33.2]). It thus
follows from the approximate metric differentiability of u and v that

ap mduz D ap mdv'.z/ ı dz'

for almost every z 2D (see [29, Proposition 4.3]). Here, dz' denotes the classical dif-
ferential of ', which exists for almost every z 2D (see [45, Corollary 32.2]). By the
area formula and [16, Corollary 8.15], the approximate metric derivatives ap mduz
and ap mdvz are nondegenerate at almost every z.

By Theorem 3.4, the maps u and v are infinitesimally isotropic, so for almost
every z the unique ellipses of largest area (John’s ellipses) contained in the unit balls
with respect to the norms ap mduz and ap mdv'.z/ are given by Euclidean disks.
Since the map

dz' W .R
2; ap mduz/! .R2; ap mdv'.z//

is an isometry, it must map John’s ellipses to John’s ellipses. This shows that ' is
1-quasiconformal and hence a conformal diffeomorphism. This proves that u and v
indeed agree up to a conformal diffeomorphism.

We now prove an analogue of Theorem 6.1 for spaces homeomorphic to S2.
Given a complete metric space X , denote by N 1;2.S2;X/ the Newton–Sobolev
space defined as in Section 3 with � replaced by S2. The energy E2C.u/ of an
element u 2 N 1;2.S2;X/ is defined analogously. Let ƒ.X/ be the family of maps
u 2N 1;2.S2;X/ such that u is a uniform limit of homeomorphisms from S2 to X .

THEOREM 6.2
LetX be an Ahlfors 2-regular, linearly locally connected metric space homeomorphic
to S2. Then ƒ.X/ is not empty and contains an element u which satisfies

E2C.u/D inf
®
E2C.v/ W v 2ƒ.X/

¯
:

Any such map u is a quasisymmetric homeomorphism from S2 to X and is uniquely
determined up to a conformal diffeomorphism of S2.

Since quasisymmetric homeomorphisms preserve the linear local connectedness,
our theorem, in particular, implies the Bonk–Kleiner theorem (see [4]), restated in the
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corollary below. Actually, the corollary will already follow from the first step of the
proof of our theorem (see Remark 6.5).

COROLLARY 6.3
Let X be an Ahlfors 2-regular metric space homeomorphic to S2. Then X is qua-
sisymmetric to S2 if and only if X is linearly locally connected.

We turn to the proof of Theorem 6.2 and first show the following.

PROPOSITION 6.4
If X is as in Theorem 6.2, then ƒ.X/ is not empty.

Proof
By [41, Theorem B.6], the space X is quasi-convex. Thus, after changing the met-
ric on X in a bi-Lipschitz way, we may assume that X is geodesic. Starting with a
Jordan curve in X and arguing exactly as in the proof of Lemma 4.2 we find a Jor-
dan curve � � X which is moreover a bi-Lipschitz curve. Let �1;�2 � X be the
two Jordan domains enclosed by � . We claim that �1 and �2 are linearly locally
connected. Indeed, for i D 1; 2 one constructs continua in �i satisfying the linear
local connectedness condition by using the continua in X given by the linear local
connectedness and replacing the part outside �i by a part of the bi-Lipschitz curve
@�i . By Theorem 6.1, there exist quasisymmetric homeomorphisms uk W D! �k
for k D 1; 2. The map given by ' WD u�12 ı u1jS1 is a quasisymmetric homeomor-
phism of S1 to itself and hence extends to a quasisymmetric homeomorphism ' ofD
by [3]. Consequently, the quasisymmetric homeomorphism Nu2 W D!�2 defined by
Nu2 WD u2 ı ' agrees with u1 on the boundary S1. Now, identify S2 in a bi-Lipschitz
way with the space obtained by gluing two copies ofD along their common boundary
S1. Let  W S2!X be the homeomorphism which coincides with Nu2 on one copy of
D and with u1 on the other copy. Since u1 and Nu2 are Sobolev maps, it follows from
the general gluing theorem for Sobolev maps (see [22, Theorem 12.1.3]) that  is in
N 1;2.S2;X/ and hence ƒ.X/ is not empty. This completes the proof.

Remark 6.5
Notice that the map constructed in the proof of the proposition satisfies the hypothe-
ses of the quasisymmetric gluing theorem (see [1, Theorem 3.1]) and thus  is actu-
ally a quasisymmetric homeomorphism. This already establishes Corollary 6.3.

Now, we identify S2 with the Riemann sphere OC and note that precompositions
with conformal maps in domains of OC preserve Sobolev maps and the Reshetnyak
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energy (see [29]). This allows us to reduce all local questions and statements about
elements in N 1;2.S2;X/ to the case of Sobolev maps on bounded domains in CD

R
2. In particular, the Reshetnyak energy is lower semicontinuous for energy bounded

sequences in N 1;2.S2;X/ (see [17], [29]), and any map u 2 N 1;2.S2;X/ has an
approximate metric derivative almost everywhere. As in the case of disks, we have
the following.

THEOREM 6.6
Let u 2 N 1;2.S2;X/ be such that E2C.u ı 
/ � E

2
C.u/ for all bi-Lipschitz homeo-

morphisms 
 W S2! S2. Then u is infinitesimally isotropic.

Indeed, the proof of [29, Theorem 1.2], repeated and reformulated in [30, Lem-
mas 3.2, 4.1], applies to the present situation without change, since the “critical”
bi-Lipschitz homeomorphism 
 of D constructed in [29] is fractional linear outside
a small ball and hence extends to a bi-Lipschitz homeomorphism of OC which is con-
formal outside a small ball.

Proof of Theorem 6.2
By Proposition 6.4, the family ƒ.X/ is not empty. The existence of an energy mini-
mizer inƒ.X/ is now proved as in the classical case when X is smooth (see [18, Sec-
tion 3.1]). Indeed, fix distinct points p1; p2; p3 2 S2 and distinct points q1; q2; q3 2
X . Let .un/ be an energy minimizing sequence in ƒ.X/. After possibly composing
with conformal diffeomorphisms of S2 we may assume that each un satisfies the 3-
point condition un.pi /D qi for i D 1; 2; 3. Applying the Courant–Lebesgue lemma,
we deduce as in [18, Section 3.1] that the family .un/ is equicontinuous. Thus, after
possibly passing to a subsequence, the sequence .un/ converges uniformly to a map
u W S2! X . Then u is in N 1;2.S2;X/ and is a uniform limit of homeomorphisms
from S2 to X , and hence u 2 ƒ.X/. By the lower semicontinuity of E2C we thus
see that u is an energy minimizer in ƒ.X/. This proves the existence of an energy
minimizer in ƒ.X/.

Let u be any energy minimizer in ƒ.X/. By Theorem 6.6, the map u is infinites-
imally isotropic. Since u is monotone, it follows as in the proof of Theorem 6.1 that u
is a quasisymmetric homeomorphism and that u is unique up to precomposition with
a conformal diffeomorphism.

Appendix
The purpose of this section is to establish the following.
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Proof of Theorem 2.5
Since quasisymmetric maps preserve linear local connectedness, one direction is
clear. In order to prove the other direction, suppose that X is linearly locally con-
nected with some constant � � 1. The linear local connectedness and the quadratic
upper bound on the Hausdorff measure together imply that X is Ahlfors 2–regular
and thus doubling. This follows similarly to [37, p. 1369]. For z 2 D and r > 0,
define

L.z; r/ WDmax
®
d
�
u.z/;u.z0/

�
W z0 2D \ NB.z; 2r/

¯
;

where NB.z; 2r/ denotes the closed ball. Since u is uniformly continuous there exists
r > 0 such that

L.z; r/ <
diamX

4
(5)

for all z 2D. By [14, Theorem 10.19] and [44, Theorem 2.23], it suffices to show
that for every z 2D the restriction of u to D\B.z; r/ is a weak quasisymmetry. See
[14, Section 10] for the definition of a weak quasisymmetry.

Fix z 2D, and let w;a; b 2D \B.z; r/ be such that

jw � aj � jw � bj:

Set s WD d.u.w/;u.a//, and let M > 0 be such that

s >M � d
�
u.w/;u.b/

�
:

It suffices to show that M must be bounded from above by a constant depending only
onQ, L, and �. IfM � 4�2, then nothing needs to be proved, so we may assume that
M > 4�2.

We claim that there exists z0 2D n NB.z; 2r/ with u.z0/ … NB.u.w/; s=2/. Indeed,
due to (5), there exists y 2X with d.y;u.z// > 2L.z; r/ and thus z0 WD u�1.y/ sat-
isfies z0 … NB.z; 2r/. Consequently,

2L.z; r/ < d
�
y;u.z/

�
� d

�
y;u.w/

�
C d

�
u.w/;u.z/

�
� d

�
y;u.w/

�
CL.z; r/;

from which it follows together with

s � d
�
u.w/;u.z/

�
C d

�
u.z/;u.a/

�
� 2L.z; r/

that

d
�
y;u.w/

�
>L.z; r/�

s

2
:

This proves the claim.
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Since u.b/ 2B.u.w/; s=M/ and u.a/;u.z0/ …B.u.w/; s=2/, it follows from the
linear local connectedness of X that there exists a continuum

E 0 �B
�
u.w/;�s=M

�

connecting u.w/ and u.b/ and there exists a continuum

F 0 �X nB
�
u.w/; s=2�

�

connecting u.a/ and u.z0/. Let �.E 0;F 0IX/ be the family of curves joining E 0 to F 0

in X . Since �.E 0;F 0IX/ is a subset of the family of curves joining NB.u.w/;�s=M/

to X nB.u.w/; s=2�/ in X , it follows from [14, Lemma 7.18] that

mod
�
�.E 0;F 0IX/

�
�L0 �

�
log

M

2�2

��1
; (6)

where L0 is a constant depending on L.
SetE WD u�1.E 0/ and F WD u�1.F 0/. Then �.E 0;F 0IX/D uı�.E;F ID/, and

hence

mod
�
�.E;F ID/

�
�Q �mod

�
�.E 0;F 0IX/

�
: (7)

We clearly have

dist.E;F /� 2 �min¹diamE;diamF º

since dist.E;F /� jw � aj and

min¹diamE;diamF º �min
®
jw � bj; ja� z0j

¯
�
1

2
� jw � aj:

It thus follows that

mod
�
�.E;F ID/

�
� 
.2/ > 0; (8)

where 
 is a Loewner function for D. For a definition of the Loewner function and
the Loewner property of D see, for example, [14]. Combining inequalities (6), (7),
and (8), we see that

M � 2�2 � exp
�QL0

.2/

�
:

This shows that the restriction of u to D \B.z; r/ is weakly H -quasisymmetric for
some H only depending on �, Q, L.
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