Faculté des sciences et de médecine

On the quasi-isometric and bi-Lipschitz classification of 3D Riemannian Lie groups

Fässler, Katrin ; Donne, Enrico Le

In: Geometriae Dedicata, 2020, p. -

This note is concerned with the geometric classification of connected Lie groups of dimension three or less, endowed with left-invariant Riemannian metrics. On the one hand, assembling results from the literature, we give a review of the complete classification of such groups up to quasi-isometries and we compare the quasi- isometric classification with the bi-Lipschitz classification. On the... More

Add to personal list
    Summary
    This note is concerned with the geometric classification of connected Lie groups of dimension three or less, endowed with left-invariant Riemannian metrics. On the one hand, assembling results from the literature, we give a review of the complete classification of such groups up to quasi-isometries and we compare the quasi- isometric classification with the bi-Lipschitz classification. On the other hand, we study the problem whether two quasi-isometrically equivalent Lie groups may be made isometric if equipped with suitable left-invariant Riemannian metrics. We show that this is the case for three-dimensional simply connected groups, but it is not true in general for multiply connected groups. The counterexample also demonstrates that ‘may be made isometric’ is not a transitive relation.