
 

Quantum Simulation Meets Nonequilibrium Dynamical Mean-Field Theory:
Exploring the Periodically Driven, Strongly Correlated Fermi-Hubbard Model

Kilian Sandholzer ,1 Yuta Murakami,2 Frederik Görg,1 Joaquín Minguzzi,1 Michael Messer,1 Rémi Desbuquois,1
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We perform an ab initio comparison between nonequilibrium dynamical mean-field theory and optical
lattice experiments by studying the time evolution of double occupations in the periodically driven Fermi-
Hubbard model. For off-resonant driving, the range of validity of a description in terms of an effective static
Hamiltonian is determined and its breakdown due to energy absorption close to resonance is demonstrated.
For near-resonant driving, we investigate the response to a change in driving amplitude and discover an
asymmetric excitation spectrum with respect to the detuning. In general, we find good agreement between
experiment and theory, which cross validates the experimental and numerical approaches in a strongly
correlated nonequilibrium system.
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Quantum simulation exploits the high degree of control
over a quantum system, such as ultracold atoms, to explore
the complexity of many-body physics [1–4]. To gain
reliable insights from this approach it is important to
benchmark the simulator against numerical or analytical
methods. Extensive comparisons have been performed for
static systems, such as the Fermi-Hubbard model, which
captures essential effects of electronic correlations in solids
[5–11]. A new frontier in many-body physics is the study of
driven systems, such as high-temperature superconductors
exposed to intense laser fields [12,13] or cold atoms in
topologically nontrivial band structures [14,15]. It is indeed
a considerable challenge to understand the consequences of
periodic driving, often referred to as Floquet engineering,
in correlated lattice models [15,16]. An important question
is to what extent the properties of the driven system can
be captured by an effective static description (Floquet
Hamiltonian) despite its nonequilibrium nature. We address
this subject by studying the driven Fermi-Hubbard model in
the experimental setting of an optical lattice and directly
compare the results to nonequilibrium dynamical mean
field theory (DMFT).
Effective Floquet Hamiltonians can be derived from

high-frequency expansions or time-dependent Schrieffer-
Wolff transformations [17–20]. It is expected that these
effective models describe the dynamics and thermodynam-
ics of the many-body system under certain conditions.
Nevertheless, the real Floquet-engineered state may be
characterized by nonthermal energy distributions induced
by switch-on procedures or energy absorption from the
periodic drive [18,21–25] and higher order corrections. We
use ultracold fermions in a brick wall lattice to avoid

unwanted excitation processes induced by the driving [26]
that otherwise lead to heating of the interacting system
[27–32]. A theoretical formalism which captures the full
time evolution is nonequilibrium DMFT [33–35]. This
method has been used to study a broad range of non-
equilibrium setups in single-band [35] and multiband [36]
Hubbard models, and to interpret pump-probe experiments
on correlated solids at a qualitative level [37]. However,
there have been only a few attempts to test the accuracy of
this method for the nonequilibrium dynamics in finite-
dimensional lattices [38] and there has so far been no
ab initio comparison to experiments.
We investigate the driven Fermi-Hubbard model
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on a three-dimensional brick wall lattice structure [Fig. 1(a)].
Here, ĉ†iσ and n̂iσ are the fermionic creation and number
operators at site i ¼ ðix; iy; izÞ in spin-state σ ¼ ↑, ↓
respectively. The nearest neighbor hi; ji tunneling rate is
denoted by Jij, the onsite interaction by U and the time-
periodic driving field in the x direction by EðtÞ, with
xi ¼ hx̂ii the x position of the Wannier function on site i.
Our study covers the off-resonant and near-resonant driving
regimes, which are described by different effective
Hamiltonians; see Fig. 1(b).
Experimentally, the model is implemented using a

degenerate fermionic 40K cloud with N ¼ 35ð3Þ × 103

atoms [39] loaded into a three-dimensional optical lattice
with a brick wall geometry [43]. Two equally populated
magnetic sublevels of the F ¼ 9=2 hyperfine manifold
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mimic the interacting spin-up and spin-down particles
moving in the lowest band of the lattice. The time-periodic
field in Eq. (1) is realized with a piezoelectric actuator
moving the retroreflecting mirror of the lattice such that the
x position of the lattice is sinusoidally modulated [39].
It can be written as EðtÞ ¼ mAΩ2 sinðΩtÞ, where A is the
displacement amplitude, m the mass of the atoms, and Ω
the angular driving frequency. A crossed dipole trap forms
an overall harmonic confinement on top of the periodic
potential generated by the lattice beams. The resulting
atomic density distribution can be estimated in the loading
lattice for an independently determined entropy [39].
On the theory side the same model is studied using

nonequilibrium DMFT [33–35] (for details of the imple-
mentation, seeRef. [39]). DMFTis based on a self-consistent

mapping to a quantum impurity model [Fig. 1(a)] and a local
self-energy approximation, which becomes exact in the limit
of infinite dimensions [44,45]. The periodic driving is
incorporated by a Peierls factor in the hopping terms [35].
To solve the impurity problem, we use the noncrossing
(NCA) and one-crossing (OCA) approximations [46–48].
It turns out that NCA is sufficient to describe the system in
the present study [39]. The local density approximation
(LDA) is employed to take into account the inhomogeneity
of the cold atom system; i.e., we simulate the dynamics of
homogeneous systems with different fillings and compute
the average over the experimentally determined density
distribution [39]. The comparison between theory and
experiment is thus limited to timescales which are short
enough that there is no significant redistribution of atoms
within the trap [26].
The many-body dynamics can be captured by measuring

the fraction of atoms on doubly occupied sites D ¼
2=N

P
i hn̂i↑n̂i↓i [39]. This observable indicates how the

nature of the state changes when the effective on-site
interaction changes or the system is driven in or out of
strongly correlated regions. The value ofD is averaged over
the spatially inhomogeneous system and one driving cycle
to distinguish the effective dynamics from micromotion
[49,50]. Theoretical plots illustrating the full time evolution
of D and the measurement protocol are shown in Fig. 1(c).
In addition, DMFT calculations allow us to extract the
local single-particle spectral function AðωÞ and its particle
(hole) occupation NðωÞ [N̄ðωÞ] to investigate the driving
induced couplings between many-body states [39].
In the off-resonant case ℏΩ ≫ U, W, with W ¼ 2Jx þ

4ðJy þ JzÞ denoting the free-fermion bandwidth, a high-
frequency expansion to lowest order yields the effective
Hamiltonian [51,52]
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This corresponds to a static Hubbard model with hopping
in the x direction renormalized by the zeroth-order Bessel
function J 0ðK0Þ [53,54] which depends on the dimension-
less driving amplitude K0 ¼ mAΩdx=ℏ; dx denotes the
distance of two neighboring sites in the x direction. If we
lower the driving frequency, higher order corrections to
Eq. (2) have to be taken into account and reliable information
on the evolution of the state can only be obtained by the
combination of quantum simulations and time-dependent
DMFT calculations.
For U=W ¼ 1.1ð1Þ we compare experimental [Fig. 2(a)]

and theoretical [Fig. 2(b)] data for different drive frequen-
cies in the off-resonant regime to first validate the
effective Hamiltonian description according to Eq. (2).

Experiment Theory:DMFT

lattice
impurity

(a)

(b)

(c)

ramp up measure

lattice
potential

FIG. 1. (a) Experiment: Three-dimensional brick wall structure
in a trapping potential. The driving is applied in the x direction.
Theory: DMFT mapping of the lattice system to an effective
impurity problem. It is characterized by the hybridization
function Δðt; t0Þ, which mimics the hopping of particles to
neighboring sites in the lattice system. (b) Schematic illustration
of the different effective Hamiltonians. In the off-resonant regime
(ℏΩ ≫ U, J), the interaction U is unaffected while the hopping
parameter J is renormalized. In the near-resonant regime
(ℏΩ ≈U ≫ J), the interactions are reduced to U − ℏΩ and the
hopping parameter depends on whether or not the tunneling
process changes the number of doubly occupied sites. (c) DMFT
simulations of the double occupation D in the off-resonant
(Ω=2π¼3kHz, U=h¼750Hz, Jx ¼ 200 Hz, Jy ¼ Jz ¼ 40 Hz)
and near-resonant (Ω=2π ¼ U=h ¼ 3.5 kHz, Jx ¼ 200 Hz,
Jy ¼ Jz ¼ 100 Hz) regimes. As in the experiment, the driving
field EðtÞ is ramped up linearly during a period tramp and D is
measured just after the ramp and averaged over one period of
the excitation (T ¼ ð2π=ΩÞ).
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We prepare an initial state with D ¼ 0.083ð5Þ [39] and
ramp up the modulation in different times tramp to the final
strength [K0 ¼ 1.68ð2Þ] before D is measured. If the
renormalization to Jeff is dominant, D is expected to be
suppressed because U=Jeff increases. This is verified by
data taken in static lattices at the same entropy, with the
hopping set once to the preparation parameter (Jx, green)
and once to the effective value [Jeffx ¼ JxJ 0ðK0Þ, orange].
Theoretically, the same reference line for the preparation
lattice is calculated (green) and for Jx=h ¼ 81ð12Þ Hz the
equilibration value of D is estimated by the adiabatic ramp
of the hopping from Jx=h ¼ 193ð32Þ Hz [39]. The cloud
is loaded into a shallow lattice to achieve adiabatic
preparation. However, in order to resolve the dynamics
in the experiment, the tunneling energies in the starting
lattice of the experiment are reduced. This leads to a gradual
increase in D associated with the induced global density
redistribution [39].

To test the validity of the effective Hamiltonian (2) we
also simulate undriven systems in which the hopping
amplitude is changed in time by a protocol which mimics
the ramp-up of the driving amplitude K0 in the effective
Hamiltonian (red lines) [26,50]. For the large (off-resonant)
driving frequencies, both theoretical and experimental
results follow the trend of the effective Hamiltonian
dynamics. The theoretical data clearly identify adiabatic
timescales above 1 ms for reaching the equilibrium
reference value which is consistent with the experimental
data, although the latter are not fully conclusive due to the
large scatter. In addition, the theoretical results show that
the effective description is valid even when tramp is
comparable to a single cycle [ð2πÞ=Ω ¼ 0.2 to 0.33 ms]
of the modulation [21,39].
By moving the drive frequency closer to resonances

with the on-site interaction U (see also Ref. [39]), we
explore for which frequencies Eq. (2) still provides
a good description of the system [39]. At Ω=2π ¼
1.5 kHz the frequency is larger than U and W but
comparable to U þW, which is the naively expected
maximum energy of a double occupation excitation in
the system. In this nontrivial regime both theory and
experiment consistently predict a breakdown of the
effective description.
Here D are created at short ramp times before decreas-

ing again for longer times. Experimentally, times below
0.1 ms (shaded area) are difficult to access because of
the finite bandwidth of the piezoelectric actuator and the
detection time. From the theoretically obtained local
single-particle spectral function one can see that direct
excitations across the gap are possible because the
bandwidth is broadened by the interaction [Fig. 2(c)].
This is most pronounced at short times as the effective
bandwidth decreases due to the driving at longer times
[Fig. 2(d)]. Interestingly, D does not decrease to the same
values as for higher driving frequencies beyond 1 ms.
Despite a very similar final effective Hamiltonian, the
final state is very different depending on the energy
absorbed. This can be seen as nonadiabatic behavior that
was confirmed by further studies in the off- and near-
resonant regime [39]. Since the number of coupled states
changes rapidly with driving frequency,D is very sensitive
to Ω in this regime. We attribute the remaining deviations
in the values of D between the ab initio calculations and
the experimental values to the systematic uncertainties on
the input temperature and density profiles provided by
the experiment [39].
A particularly appealing feature of Floquet engineering

is the possible creation of effective Hamiltonians with
terms that are difficult to realize in static systems. An
example in the strong coupling regime is the near-resonantly
driven system (J ≪ U ≃ ℏΩ), for which the effective
Hamiltonian becomes [20,50,55,56]

(a)

(c) (d)

(b)

FIG. 2. Off-resonant driving in the Fermi-Hubbard model at
U=h ¼ 0.75ð3Þ and W=h ¼ 0.71ð7Þ kHz. Experimental (a) and
DMFT (b) data display D measured after ramping up the drive
on different timescales. The legend applies to both plots. In the
off-resonant case (triangle left:Ω=2π ¼ 5, triangle right: Ω=2π ¼
3 kHz) D is suppressed, whereas an increase is observed when
Ω=2π ¼ 1.5 kHz ≃ ðU þWÞ=h (squares). Solid lines show data
taken in an undriven system. The upper and lower lines are
reference values for holding in the initial [Jx=h ¼ 193ð34Þ Hz]
and final lattice [Jeffx =h ¼ 81ð13Þ Hz]. The red line displays data
taken after ramping the lattice depth from Jx to Jeffx to mimic the
driven data. The dashed red line indicates the saturation value
reached at tramp ¼ 5 ms. Data in the shaded area of (a) are
influenced by residual dynamics during detection and the finite
bandwidth of the piezoelectric actuator. Error bars in (a) denote
the standard error for 5 measurements and in (b) reflect the
uncertainty of the entropy estimation in the experiment [39].
Panel (c) shows the local single-particle spectral function AðωÞ
(thin dashed) and its occupation NðωÞ (solid) at T=Jx ¼ 1.21 in
equilibrium at half-filling. The shaded area indicates the overlap
between NðωÞ and the hole occupation N̄ðω − ΩÞ shifted by the
driving frequency Ω=2π ¼ 1.5 kHz (dashed), corresponding to
possible direct excitations. In (d) we plot the nonequilibrium
spectra after ramping up the drive in 5 ms.
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as illustrated in the right panel of Fig. 1(b). In comparison to
the static Hubbard model, the interaction is modified to the
detuning from the drive Ueff ¼ U − ℏΩ. The tunneling
processes can be separated into two classes: (i) single particle
tunneling processes that keep the number of double occu-
pancies constant ½âijσ̄ ¼ ð1 − n̂iσ̄Þð1 − n̂jσ̄Þ þ n̂iσ̄n̂jσ̄ and
↑̄ ¼ ↓�, such that the interaction energy is irrelevant, and
(ii) tunneling processes that increase or decrease the double
occupancy by one unit ½b̂ijσ̄¼−ð1−n̂iσ̄Þn̂jσ̄þn̂iσ̄ð1−n̂jσ̄Þ�.
Since one opposite spin particle is involved in the latter
processes, these are density-dependent hoppings [49,50,
57–59] which make Ĥeff

res fundamentally different from a
static Hubbard model.
In one set of measurements [Fig. 3(a) (experiment)

and 3(b) (theory)] we initialize the cloud in a strongly
interacting state [U=W ¼ 2.9ð3Þ] and ramp up the modu-
lation while setting the frequency equal to the interaction
U. For different driving strengths K0 we measure the
change of D for increasing ramp times [39]. From
Eq. (3), it is expected that the D creation rate scales with
JxJ 1ðK0Þ [39]. In the static case (green) the suppressed D
reflects the strongly correlated regime. In the driven system
a finite density-dependent term and reduced effective
interactions result in an increase of D. We find good
agreement between theory and experiment. Both show the
theoretically predicted creation of D scaling as J 1ðK0Þ
averaged over the ramp-up inK0 (see theoretical analysis in
Ref. [39]). At longer times (tramp > 10 ms), the renormal-
ized tunneling and interaction energies lead to a global
redistribution of density, which manifests itself in an

increase of D. This trap induced effect cannot be captured
by nonequilibrium DMFT. The following decrease at
300 ms is influenced by atom loss indicating the excitation
of atoms to higher bands caused by absorption of energy
from the drive [39].
In another set of measurements shown in Figs. 4(a)

(experiment) and 4(b) (theory), we fix the strength [K0 ¼
1.44ð2Þ] and drive frequency (Ω=2π ¼ 3.5 kHz) but
change the interaction U symmetrically around the reso-
nance (U=h ¼ 3.5 kHz) [39]. The far detuned data
(U=h ¼ 2.5 and 4.5 kHz) show very low excitations of
D for shorter ramp times, whereas in the near-resonant
cases finite excitation rates appear. Experimentally, the
curves at U=h ¼ 3 and U=h ¼ 4 kHz have a comparable
excitation rate to the resonant case, but a lower saturation
value for U=h ¼ 4 kHz indicates an asymmetry of the
absorption with respect to the resonance frequency. In
the DMFT data this asymmetry is already reflected in the
creation rates. At half-filling, the rate is almost symmetric,
consistent with the similar size of the overlap between
the occupied states and the empty states shifted by the
driving frequenciesU=h ¼ 3 andU=h ¼ 4 kHz [Fig. 4(c)].
At lower fillings, since the bottom of the lower Hubbard
band is more occupied, the overlap is reduced for U=h ¼
4 kHz [Fig. 4(d)], which results in the asymmetry. Overall,
we find almost quantitative agreement between theory and
experiment apart from the U=h ¼ 4 kHz case where the
results are very sensitive to the exact Hubbard parameters,
which is not represented in the error bar of the theoretical

(a) (b)

FIG. 3. Resonant driving in the Fermi-Hubbard model for
Jx;y;z=h ¼ ½200ð50Þ; 100ð10Þ; 100ð10Þ� Hz. Experimentally mea-
sured (a) and theoretically simulated (b) D for different ramp
times and driving strengths at resonance [Ω=ð2πÞ ¼ 3.5 kHz,
U=h ¼ 3.5ð1Þ kHz]. Dynamics beyond tramp ¼ 10 ms are influ-
enced by trap effects and for tramp ¼ 300 ms by heating [39] and
is not considered in DMFT. Error bars are the same as in Fig. 2.

(a)

(c) (d)

(b)

FIG. 4. Near-resonant driving in the Fermi-Hubbard model for
Jx;y;z=h ¼ ½200ð50Þ; 100ð10Þ; 100ð10Þ� Hz at fixed strength
K0 ¼ 1.44ð2Þ and frequency Ω=ð2πÞ ¼ 3.5 kHz. Experimental
(a) and numerical results (b) for D after different ramp times at
interactions chosen symmetrically around the resonance. Dy-
namics beyond tramp ¼ 10 ms are influenced by trap effects and
for tramp ¼ 300 ms by heating [39] and is not considered in
DMFT. Error bars are the same as in Fig. 2. In (c) and (d), the
occupations of the lower Hubbard band (solid lines) at T=Jx ¼
3.3 are shown for symmetric detunings. The shaded area indicates
the overlap with the hole occupation (dashed) shifted by the
driving frequency. The data in (c) are for half filling and in (d) for
lower filling.
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calculation. The longer ramp times (tramp > 10 ms), only
measured in the experiment, reveal an initial increase in D
for all detunings followed by a decrease for small detunings.
This dynamics is again resulting from trap induced effects,
technical heating and coupling to higher bands [26,39].
In this work we demonstrated how basic models of

nonequilibrium, strongly correlated systems can be
explored experimentally and numerically to reveal their
fundamental dynamics. New insights into pump-probe
experiments in solid state physics can be gained by
looking at the many-body dynamics of these strongly
driven models [35,50]. Furthermore, the cross validation
of the presented methods reveals the driving regimes
where the physics is described by a desired effective
Hamiltonian. In both experiment and theory, different
model Hamiltonians can be realized including a fully
tunable Heisenberg and t − J model [50,60,61] or anyonic
Hubbard models and dynamical gauge fields resulting
from occupation dependent Peierls phases [55,62–67].
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