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ABSTRACT—We discuss large tracks recently discovered in Paleocene coal deposits from Svalbard. The age, large size, and
excellent preservation of the tracks allows them to be identified to the pantodont Titanoides. This is the earliest evidence of
a large mammal on the Arctic islands and the northernmost record from the Paleocene. The traces are described in detail
and named Thulitheripus svalbardii, gen. et sp. nov. Large Paleocene pantodonts are previously only known from North
America. The presence of pantodonts in the Paleocene strata of Svalbard confirms the postulated DeGeer route for migration

of mammals in the Paleocene/Eocene.

INTRODUCTION

This is the first discovery of fossil mammal tracks on
Spitsbergen in the Svalbard archipelago, Arctic Norway. Size and
excellent quality of the tracks make them unique and makes it
possible to identify the track maker and its implication for under-
standing the regional geology. The tracks were discovered on the
20th December 2006 by the miners Havard Dyrkollbotn and Kent
Solberg, in the roof of the coal mine (Gruve 7) in Longyearbyen.
This coal is in the Todalen Member of the Firkanten Forma-
tion (Fig. 1), of Paleocene age (Manum and Throndsen, 1986).
Svalbard has previously yielded some of the northern-most ev-
idence of dinosaurs in the form of several track-bearing lay-
ers from the Lower Cretaceous (Lapparent, 1960; Lockley and
Meyer 2000; for discussion and additional references, see Hurum
et al., 20006).

The track record of Paleocene mammals is scarce and so far
only a handful of tracks and trackways have been described
worldwide (e.g., McCrea et al., 2004; Lucas, 2007). There are no
known skeletal remains of mammals from the Paleocene of Sval-
bard and the adjacent Paleocene deposits of Greenland. The only
vertebrate fossil ever recorded from this unit on Svalbard is an
amiid fish (Lehman, 1951). The size of the tracks implies they
were made by a large mammal.

GEOLOGICAL BACKGROUND

In the Paleogene, Svalbard was situated close to the north-
ern part of Greenland and Ellesmere Island, Canada (Blythe
and Kleinspehn, 1998). The convergence with Greenland due to
plate movement in connection with the opening of the Northern
Atlantic created the western fold and thrust belt and the related
flexural basin (Blythe and Kleinspehn, 1998; Liithje, 2008).

The main Paleogene succession on Svalbard is in the Central
Tertiary Basin consisting of 1.9 km of clastic strata (Dallmann,
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1999) deposited in the flexural basin (Liithje, 2008). The Todalen
Member of the Firkanten Formation is the lowest stratigraphic
unit and is separated from the underlying Carolinefjellet Forma-
tion (Albian/Aptian) by an unconformity representing more than
35 million years (Fig. 1). The Firkanten and Basilika Formations
(Fig. 1A) form a general transgressive succession (Liithje, 2008)
from continental and marginal marine coastal plain to shoreface
and offshore transition (Steel et al., 1981; Dallmann, 1999; Liithje,
2008). The Todalen Member was deposited in a marginal ma-
rine to coastal plain setting, characterized by tidally influenced
lagoons protected by sandy barrier bars (Liithje, 2008). The ter-
restrial vegetation has been characterized as the “Paleocene and
Eocene polar, broad leaved, deciduous forests” (Collinson and
Hooker, 2003). These forests were present in the Greenland Re-
gion (Greenland, Svalbard, Ellesmere Island, and Scotland) and
characterized by the genera Trochodendroides, Corylites, and
Metasequoia (Collinson and Hooker, 2003). The climate on Sval-
bard during the Paleocene and Early Eocene has been inter-
preted to be warm-temperate, with a high humidity equally dis-
tributed over the year based on fossil plant material (Golovneva,
2000; Cepek and Kruttzsch, 2001). It was a very favorable climate
for plant production even though plate reconstruction places
Svalbard at 65-68° N at this time (Cepek and Kruttzsch, 2001). In
the Late Eocene, the climate changed to almost cool-temperate.
The mean annual temperature has been estimated to be around
+12°C in the Paleocene and only +8°C in the Late Eocene
(Golovneva, 2000). On the coastal plain, large peat mire com-
plexes built up the thick coal seams being mined today. The
tracks were found at the boundary between the coal and over-
lying sandy deposits.

Age of Sediments

The age of the Firkanten Formation is poorly controlled be-
cause of the sparse fossil record but a Paleocene age can be
concluded. The Paleocene to Eocene boundary is in the over-
lying Frysjaodden Formation (Fig. 1) (Manum and Throndsen,
1986; Dallmann, 1999; Nagy et al., 2000). Sequence stratigraphic



522

Central Tertiary Basin S

JOURNAL OF VERTEBRATE PALEONTOLOGY, VOL. 30, NO. 2, 2010

Aspelintoppen Fm

Battfjellet Fm
B

Hollendardalen Fm

Grumantbyen Fm

Endalen Mb
__Todalen Mb

Grenfjorden BEY

B B % MUD SAND GRAVEL LEGEND
g 2 T88%
= o S293 Sandstone
S E = s2403
5] E EzvimwEgog3 —
I o ) || Claystone
16~ ‘g . Coal
1 £
& = Lamination
14— a =
Amgg 5| T o
- s ~<x_ Ripple lamination
@
o
E (S) Bioturbation
m E @ Plant material
s £
o E & Roots
o 3
o o Il Organic fragments
c | wmws Mudclasts angular
§ % o« §
- i P Pyiite
= [
= 2 @ Planolites
EX $ = 2
] S E C3=0 Pebbles
= >
a =
- C%SS B ["r Load casts
3 - ‘3:;
o B
o ] 2
.g SS (= F
L Wash-over fan
-
Peat mire
Ny
-
o 5
© 2
=4 E
] = E
=0
g - A\ E %
] - Fg
Am B
- el 2
j [ - T g2,
- 2 p 3£
A w258
L. Cretaceous 7 <] % o
- wEY

Coastal plain to shallow marine
mudstone sandstone and coal

I:I sandstone mudstone

Shoreface to shelf Offshore transition to offshore

FIGURE 1. A, The stratigraphy of the Paleogene Van Mijenfjorden Group in the Central Tertiary Basin of Spitsbergen, from (Liithje, 2008), based
partly on Bruhn and Steel (2003) and Steel et al. (1985). Geometries are based on relative thickness variations (Dallmann, 1999) over the basin. B,

Sedimentary log of core BH05-2004, from a location near Gruve 7.

analysis indicates a general stepwise but overall transgressive suc-
cession, with no relative sea level fall detected in the Firkanten
Formation (Liithje, 2008), indicating that it was deposited in a
period with no major eustatic sea level falls, arguing for a Late
Paleocene age for the Firkanten Formation (Liithje, 2008).

Locality Gruve 7, Longyearbyen

The tracks were found at the boundary between the coal and
overlaying muddy, organic-rich fine-grained sandstone (Fig. 1B).
The coal, which is highly bituminous, accumulated as peat in ex-
tensive mire complexes on the coastal plain and has been mined
from several places on Svalbard the last 100 years.

Normally tracks would not be expected to be preserved in coal
because coal originates from peat, which is not expected to keep
an imprint. However, tracks and trackways are commonly en-
countered in the top surface of coal seams because the lithologi-
cal differences between the coal and the overlying sediments are
optimal for track preservation (e.g., Peterson, 1924; Brown, 1938;
Lockley and Jennings, 1987; Parker and Balsby, 1989; Parker and
Rowley, 1989; Lockley and Hunt 1995; Hurum et al., 2006). Fur-
thermore, the worldwide commercial coal quarrying helps to ex-
pose large, potentially track-bearing surfaces.

The tracks in Gruve 7 are also situated in a 2-5 cm thick
layer of sapropelic coal on top of the ombrotrophic coal.

Sapropelic coal is normally produced by algal, bacterial, or fun-
gal organic production in stagnant swamps under anaerobic con-
ditions (McCabe, 1984) and greatly improves the possibilities
for preservation of the tracks. The tracks show that the animals
sank deeply into the sticky substrate, leaving a good imprint, be-
cause an algal mat does not have the same elastic properties as
peat. Some of the tracks were found to have been imprinted in
the sandstone on top of the coal. This suggests that they are ei-
ther of a slightly later time (hours) and/or the surface area was
mud/algae covered in places and sandy in others.

The preservation of the tracks was also improved by being
covered shortly after by fine-grained sandstone from the marine
transgression that was already ongoing. The sapropelic coal indi-
cates a base level rise where the environment became too water-
logged for peat production and therefore became a swamp. The
mire was flooded by raised ground water level, which is charac-
teristic for swamps. Swamps can be influenced by both fresh and
marine salt water. In this case, the following marine transgression
on top of the coal indicates that the swamp was created by marine
flooding from a rising relative sea level.

The sandstone on top of the tracks is organic-rich, with poor
structural development and pebbly layers (Fig. 1B). The section is
interpreted to represent part of a wash-over fan deposited on top
of the swamp and the mire by the marine transgression. Teredo-
lites trace fossils found in the overlying sandstone were created by
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FIGURE 2. A, Photo of the tracks as they were discovered in the roof
of the coal mine. The scale equals 1 m. B, Frontal view of track T3-2. The
pes is partly overstepping the more deeply impressed manus print.

marine burrowing and dwelling bivalves that typically bore into
organic deposits that are flooded (Pemberton et al., 1992).

THE TRACK ASSEMBLAGE

The track assemblage consists of 17 individual imprints ex-
posed on a 5 m stretch along the roof of the coal mine. All tracks
are preserved as natural casts of silty sandstone (Fig. 2).

Trackways

The tracks can de divided into three individual trackways,
based on differences in size and trackway parameters. Four indi-
vidual tracks cannot be readily assigned to any specific trackway
(Fig. 3). The three trackways are numbered T1-T3, with each in-
dividual track within the trackway numbered in running order.
The four unassigned tracks are designated “T?’ The trackways are
set in a narrow gauge pattern, with the tracks from left and right
side of the animal set close to the midline of the trackway. T1 has
an average stride length of 85 cm and an average pace angulation
of 113° (Fig. 4). The trackway width is on average 47 cm. T2 has
a stride length of 98 cm and pace angulation of 118°, and is 44 cm
wide. T3 have a stride length of 82 cm and a pace angulation of
125° and is 36 cm wide.

Manus (fore limb) and pes (hind limb) imprints are pen-
tadactyl, with short, broad digits. The pes impressions are in most
cases partly overstepping the manus impression, obscuring the
details of the pedal digits, and hindering exact measurements of
the dimensions of the pes. The size of the manus imprint is on
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FIGURE 3. Sketch of the complete track assemblage from the mine.
The sketch is redrawn from a photograph mosaic of the mine roof. The
tracks belonging to the three different trackways are indicated by dif-
ferent shades of grey and each trackway is numbered T1-T3, with each
consecutive track numbered. The four tracks designated “T?” indicates
tracks that cannot be assigned to the three trackways. Tracks indicated
by broken lines are very badly preserved or damaged during mining. The
holotype and collected specimens are indicated by boxes and museum
numbers.
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Stride length

Pace angulation

FIGURE 4. Stride length is defined as the distance between two succes-
sive right or left tracks in a trackway. Pace angulation is the angle between
a left-right-left or right-left-right succession of tracks (Leonardi, 1987).

average half the size of pes imprints, ranging from one-third to
two-thirds the size of the pes. The manus is typically more deeply
impressed than the pes by several centimeters. However, a few
pes tracks are found impressed behind the manus imprint show-
ing the complete pedal imprint.

Manus

The manus imprints are pentadactyl. The impression of dig-
its IIl and I'V are the longest, with digits II-I of decreasing length
and digit V of equal length to digit I. Each digit impression termi-
nates in the impression of short, laterally compressed sharp claw.
In the best-preserved specimens, a weak division of the digits into
digital pads are present (Fig. 5).

1 oIy
I
\'
C D 10 cm

FIGURES. A, The holotype of Thulitheripus svalbardii (SVB 2058). B,
Interpretative drawing of overlapping manus and pes couple, based on
tracks T?-4 (SVB 2058) and T3-2. C, Isolated manus based on track T3-2.
D, Isolated pes, based on track T?-2 (SVB 2061). All drawn to same scale.
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Pes

The pes imprints partly overstep those of the manus in most
of the observed specimens in the trackways, so only the rear end
of the pes imprint is preserved, hindering descriptions of the dig-
its. In two cases the pes is not overstepping the manus (Fig. 3,
T2-1 and T2-2), but unfortunately the tracks are too indistinctly
preserved to reveal any anatomical details.

One specimen, however, has preserved the complete pes im-
print (Fig. 3, T?-2). The specimen was found detached from the
sand layer on top of the coal seam. From below it appeared as
a smooth sub-circular rounded depression filled with sandstone.
When carefully excavated, the upper side of the cast revealed the
perfect impression of a pes.

The pes imprint is pear-shaped and measures 24 cm in length
and 22 cm in width. There are impressions of five short, triangu-
lar, forward-facing, hoof-like digits, with the middle digit being
the longest, with a length of 4 cm, and the adjacent digits subse-
quently shorter (Fig. 5).

Interpretations of Tracks and Trackways

All the tracks are deeply impressed into the substrate but the
manus prints are more deeply impressed than the pes prints. The
impressions of the manual digits are preserved as elongated im-
pressions, representing the movement of the digits first sinking
deeply into the substrate and subsequently being lifted out of the
substrate, which hinders the reconstruction of the exact manus
shape. The pes impressions are in all but three specimens, partly
overprinting the manus impressions. However, they have been
shallowly impressed into the substrate, and therefore in most
cases have not left any impressions of the pedal digits. In two
examples, the pes impression is located behind the manus im-
pressions, but in these cases the pes impressions are too poorly
preserved to reveal anything but the gross shape of the pes. The
only complete pes impression is the one preserved as part of the
rounded depression.

The peculiar morphology of the sandstone depressions with
the pes imprint is the result of the foot being emplaced on a rela-
tively firm substrate, creating a rotated disc of material below the
foot during the kick-off when the weight of the animal was trans-
ferred to the distal parts of the digits (Thulborn and Wade, 1989).
This exercises a downward and backward force on the sediment
subjacent to the foot, creating the rotated disc below the foot.
Faint striations from the rotation are preserved on the under-
side of the disc. A condition similar to the formation of rotated
discs is described from Middle Jurassic theropod tracks from the
Entrada Sandstone in Utah (Graversen et al., 2007).

The majority of the tracks are preserved as natural casts of
true tracks, and sapropelic coal is preserved squeezed between
the casts of the digit impressions, demonstrating that the animals
were walking directly on top of the mire/swamp deposit before it
was covered. The two tracks preserved as rotated discs are em-
placed later than the trackways, because the rotated disc itself is
composed of the same sandstone that overlies the coal seam. The
tracks have thereby been emplaced after deposition of the sand
layer (Fig. 6).

SYSTEMATIC ICHNOLOGY

This is the first worldwide record of such large-sized, well-
preserved tracks and trackways from the Paleocene, and we erect
the following new ichnogenus and species to accommodate them,
Thulitheripus svalbardii, gen. et sp. nov.

THULITHERIPUS, gen. nov.

Diagnosis—Narrow-gauge trackway of quadruped track-
maker, manus, and pes pentadactyl, with impressions of short,
forward-facing digits. Digits III and I'V are the longest, with digits
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FIGURE 6. The tracks, preserved as rotated discs of sandstone, are
formed when the animal walks on a few-centimeter-thin layer of sand de-
posited on top of the peat. When the weight of the animal is transferred
forward during the stride, the sandlayer below the foot breaks and forms
a rotated disc below the foot.

II-T of decreasing length and digit V is of equal length to digit I.
The pes is trapezoid in outline and almost symmetrical along the
midline, and has an elongated triangular heel (Fig. 5). The digits
are triangular in shape, digit III being the longest, with the adja-
cent digits being subsequently shorter. The manus impression is
on average half the size of the pes impression, and has a trans-
verse posterior margin (Fig. 5). Trackway widths range from 36
to 47 cm, stride lengths from 82 to 98 cm, and pace angulations
from 113° to 125°.

THULITHERIPUS SVALBARDII, gen. et sp. nov.

Diagnosis—As for Thulitheripus, with manus having impres-
sions of sharp, laterally compressed claws on the manual digits.
Pedal digits terminate in impressions of blunt hoof-shaped claws.

Holotype—A double track showing manus and pes (Fig. 5A) in
the collection of Svalbard Museum (SVB 2058), Longyearbyen,
Norway.

Additional Material—two double tracks showing manus and
pes (SVB 2059, 2060), and a track showing pes (SVB 2061).

Etymology—Thulitheripus, Thulitheri, meaning great beast
from the north and Pus, a foot. Species svalbardii after the Arctic
island Svalbard where the tracks are found.

Type Locality—Ceiling of the coal mine Gruve 7, 12 km south-
east of Lonyearbyen in the mountain Breinosa, on Svalbard, Arc-
tic Norway, in Paleocene strata of the Todalen Member, Firkan-
ten Formation, Van Mijenfjorden Group.

DISCUSSION
Taxonomic Identification: Pantodonta, Titanoideidae

The detailed preservation of the tracks enables a unique iden-
tification of the track maker on a high taxonomic level. The
late Palaeocene age, the size, and the morphology of the tracks
strongly suggests that the tracks have been made by pantodonts,
which were the only known mammals with a sufficient body
size during the Palacocene (Rose, 2006). The configuration of
blunt claws on the hind feet and sharp, laterally compressed
claws on the forefeet suggests that the tracks are made by a
member of the pantodont family Titanoideidae, which so far
only comprises the Paleocene, North American genus Titanoides
(Coombs, 1983; Lucas, 1998, Rose 2006). Titanoideids are the
only large pantodonts in the Paleocene that possessed laterally
compressed claws on the manus (Fig. 7). The claws of the pes
are unknown in Titanoides, but based on the track evidence, it
is suggested that Titanoideidae possessed blunt hoofs on the pes.
All other known pantodonts with preserved manus and pes had
blunt hoofs on both (Rose, 2006).

Purported pantodont tracks have previously been re-
ported from the Eocene Checkanut Formation, Northeastern
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FIGURE 7. Pedal skeleton of the pantodont Titanoides. A, The manus
of Titanoides bears sharp laterally compressed claws. B, The unguals of
the pes are unknown in this genus. After Simons (1960).

Washington, but these tracks are only preserved as indistinct
rounded depressions, without any anatomical details about the
foot morphology of the track maker, and were only suggested to
be of pantodont origin due to their size (Mustoe, 2002).
Pantodonts were omnivorous and herbivorous large mammals
that lived in the Northern hemisphere, except one pantodont-
type from South America (Muizon and Marshall, 1992), in the
Paleocene and Eocene. Primitive forms were small and some of
them with a body weight of about 10 kg. More derived forms were
large and some exceeded 500 kg. The pantodonts on Svalbard
were comparable to the largest pantodonts found so far and have
presumably migrated from Northern America. This is the north-
ernmost identified evidence of pantodonts from this period.

Migration Routes

The Central Tertiary Basin of Svalbard was formed as a flex-
ural basin to the West Spitsbergen fold and thrust belt (Steel
et al., 1985; Bruhn and Steel, 2003; Liithje, 2008) due to con-
vergence between the Eurasian plate and Greenland. In the
Paleocene, there was a land contact from Svalbard to North-
ern Greenland and Ellesmere Island, Canada (Blythe and
Kleinspehn, 1998). Even a narrow sound would probably have
prevented the pantodonts from migrating from the American
continent, implying that the opening of the Greenland Svalbard
strait seaway must have taken place after the deposition of the
Firkanten Formation.

The postulated DeGeer route for migration of mammals
from North America to an isolated Fennoscania in the Pa-
leocene/Eocene via Northeastern Canadian Arctic, Greenland,
Svalbard, and the Barents shelf (Janis, 1993) is supported by the
pantodont tracks. The late Paleocene Cernaysian mammal age
of Europe lacks evidence of large herbivores like pantodonts.
However, pantodonts are preserved in deposits of the same
age in North America (Lofgren et al, 2004). The younger
Eureka Sound Formation (early Eocene) at Ellesmere Island in
the Canadian Arctic with its vertebrate assemblage is the only
other high Arctic finding of this age (Dawson et al., 1976; Rose
et al., 2004). Unfortunately no pantodonts has yet been described
from the locality (Dawson, 1990).

The sedimentary record in the thrust belt indicates substantial
erosion. The most important factor creating the Central Tertiary
Basin is suggested to be compressional folding (Liithje, 2008).
When the basin was established, flexural loading and isostasy
would have had some effect on further basin development. The
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compressional folding model suggests that the orogeny did not
necessarily create a mountain belt with high elevation (Zhang
and Bott, 2000). The uplift and erosion of thick sediments could
still have taken place without the formation of great mountain
belt (Liithje, 2008) if the uplift and erosion were in balance. Any
great orogenic belt would have been a natural obstruction for the
pantodonts to cross.

CONCLUSION

The Paleocene tracks from Svalbard are a unique discovery.
There are no previous records of Paleogene terrestrial mammals
from Svalbard and the excellent quality of preservation allows
the tracks to be identified as belonging to a titanoideid pantodont
like Titanoides. This is the earliest discovery of pantodonts this
far north and east, and the tracks are formally named Thulitheri-
pus svalbardii, gen. et sp. nov. The tracks are found in sapropelic
coal deposited in a swamp later covered by marine fine-grained
sandstone as a result of a marine transgression. The presence of
pantodont tracks in the Firkanten Formation suggests that dur-
ing the Paleocene, there was no seaway between Svalbard and
Greenland/Ellesmere Island and the topography of the thrust
belt was probably limited, because this would otherwise have im-
plied an obstruction for the migrating pantodonts.
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