Redox Signaling in Chloroplasts: Cleavage of Disulfides by an Iron-Sulfur Cluster

Shaodong Dai,1* Cristina Schwendtmayer, 2 Peter Schürmann,2 S. Ramaswamy, † Hans Eklund 1‡

Light generates reducing equivalents in chloroplasts that are used not only for carbon reduction, but also for the regulation of the activity of chloroplast enzymes by reduction of regulatory disulfides via the ferredoxin:thioredoxin reductase (FTR) system. FTR, the key electron/thiol transducer enzyme in this pathway, is unique in that it can reduce disulfides by an iron-sulfur cluster, a property that is explained by the tight contact of its active-site disulfide and the iron-sulfur center. The thin, flat FTR molecule makes the two-electron reduction possible by forming on one side a mixed disulfide with thioredoxin and by providing on the opposite side access to ferredoxin for delivering electrons.

Redox signaling and regulation has become an area of increasing interest given that transcription, translation, apoptosis, and enzymatic activity can be regulated in this way (1). This type of regulation was first described for the activation of chloroplast enzymes by light through the reduction of disulfides, thereby changing the metabolism to become anabolic (2). Thioredoxins are the key transmitters of reducing equivalents to target enzymes.

The photosynthetic machinery in plants and other photosynthetic organisms produces reducing equivalents; e.g., nicotinamide adenine dinucleotide phosphate, reduced (NADPH), in the light reactions that together with the generated adenosine 5′-triphosphate are necessary to reduce CO2 to carbohydrates (2). Plants satisfy their energy needs through the light reactions of photosynthesis during light periods. The situation is quite different in the dark, when the plant must use normal catabolic processes as do nonphotosynthetic organisms. The stroma in the chloroplasts contains both assimilatory enzymes of the Calvin cycle and dissimilatory enzymes, which implies that there must be a light-sensitive control to balance these reactions.

One such regulatory mechanism senses the light-dependent redox potential changes of the stroma and translates them into signals that, in the light, stimulate the Calvin cycle and deactivate degradative pathways (2, 3). The enzyme ferredoxin:thioredoxin reductase (FTR) is a key component of this system. During light reactions photosystem I reduces ferredoxin, which is used by NADP+:ferredoxin reductase to produce NADPH for the carbon reduction. The reduced ferredoxin is also used by FTR to produce reduced thioredoxins, which activate fructose-1,6-bisphosphatase, sedohexulose-1,7-bisphosphatase, and phosphoribulokinase of the Calvin cycle as well as other chloroplast enzymes by disulfide reduction (3). Recently the structures of several members of this regulatory chain have been determined (Fig. 1). Here we report the structure of the last missing member of the chain, FTR. This enzyme is the central actor that transforms the electron signal received from ferredoxin to a thiol signal that is transmitted to thioredoxin. The results provide the structural framework for this mechanism.

FTR is a unique enzyme, completely different from the bacterial and mammalian thioredoxin reductases, which are flavoproteins that use NADPH as reductant. FTR is an iron-sulfur enzyme, an αβ heterodimer composed of a catalytic β subunit of 13 kD with conserved sequence between species and a variable α subunit of similar size. The β subunit contains a redox-active disulfide and a [4Fe-4S] center. Most biochemical investigations have been done on the spinach enzyme, for which a careful study of the iron-sulfur center has been performed (4). We have determined the structure of FTR from Synechocystis sp. PCC6803. The Synechocystis FTR shows no functional difference from the spinach enzyme, but it is significantly more stable and can be obtained in larger amounts (5). The structure of the oxidized FTR was determined by multiple isomorphous replacement (MIR) with the help of multil wavelength anomalous dispersion (MAD) data collected on the iron edge for the iron-sulfur center. The structure has been refined at 1.6 Å resolution (6).

The variable chain in FTR has an open β-barrel structure containing five antiparallel strands (Fig. 2A). Two loops between the β strands dominate the interaction area with the catalytic subunit. The structure of the variable chain of FTR is remarkably similar to...
that of the PsaE protein, which is a stromal subunit of photosystem I (7, 8). Two-thirds of the variable chain (53 Ca atoms of the two proteins) can be superimposed with a root-mean-square (rms) fit of 1.3 Å. The strands of the barrel are very similar in the two structures, while the loops differ. The similarities of the variable subunit of FTR and PsaE are not reflected in sequence similarities nor in functional similarities. The proteins have no common ferredoxin binding site, which might have been anticipated. All conserved residues in the variable chain are either internal or glycines that are conserved for structural reasons, and residues in the interaction area with the catalytic subunit.

The catalytic subunit has an overall α-helical structure with loops between the helices containing the iron-sulfur ligands and redox-active cysteines. The variable subunit (green) is heart shaped with the β barrel forming the main body and with two loops forming the upper, outer parts of the heart. The iron-sulfur cluster is located (Fig. 2A). The NH$_2$-terminal half of the subunit, together with the COOH-terminal residues, forms an α-helical cap on top of the iron-sulfur center, while the intervening 40 residues contain all the iron ligands and redox-active cysteines. This part contains two additional short helices and intervening loops.

The interaction between the catalytic and variable chains involves the very thin center of the molecule where only a small hydrophobic core is formed. However, most of the interactions between the subunits occur between charged and polar residues that form hydrogen bonds. Practically all residues in the catalytic subunit that participate in subunit interactions are strictly conserved. One important function of the variable subunit seems to be the stabilization of the Fe-S cluster, which might ensue from the observation that most residues involved in subunit interaction are conserved. We have seen that upon treatment of FTR with increasing concentrations of urea or guanidine-HCl, the color of the FTR disappears when the FTR dissociates into subunits. Production of only recombinant catalytic subunit yields neither colored nor active protein.

The iron-sulfur center (Fig. 2B) is coordinated by cysteines 55, 74, 76, and 85 in a normal cubane-type geometry. The active-site disulfide bridge between residues 57 and 87 is in van der Waals contact with the iron center. The sulfur atom of Cys87 contacts the iron atom bound by Cys55 and the sulfur atom of Cys55, both of which are at 3.1 Å distance. The closest sulfide ion of the cluster is 3.5 Å away from Cys87. Besides the active-site cysteines, Pro75 is also shown in ball-and-stick models. Incoming electrons can pass from ferredoxin onto the main chain of Cys74 to the disulfide bridge by way of the iron center. The oxygen atom in the cis-peptide bond between Cys74 and Pro75 is labeled.
structure) in one CPC motif. The main chain of this motif is exposed toward the ferredoxin side and provides excellent candidates for through-bond electron transfer from the bound ferredoxin to the iron-sulfur center (Fig. 2B).

All other biological disulfide reactions occur by means of flavoproteins or thiol-disulfide exchange reactions. The close proximity of iron-sulfur cluster and disulfide is evidently a prerequisite for FTR’s unique property of being able to reduce the disulfide by an iron-sulfur center. The disulfide that is adjacent to one iron atom of the cluster can pick up an electron delivered by ferredoxin to the iron-sulfur cluster of FTR but it can also attract one additional electron from the iron-sulfur center to break the disulfide bond. One of the cysteines, Cys57, becomes then the reactive sulfur center. The disulfide that is adjacent to the other side of the molecule, while the second cysteine thiol is protected by binding to the iron-sulfur cluster. Therefore, the one-electron reduction of FTR by ferredoxin surprisingly results in an oxidation of the [4Fe-4S]2+ cluster to an [4Fe-4S]3+ cluster (4) (Fig. 3). Two structures for this intermediate stage have been suggested: with Cys57 covalently attached to the cluster either through an Fe atom or a sulfide ion (4). Staples et al. (4) favor an intermediate disulfide of Cys57 with the sulfide ion. The tight interaction by Cys57 with one of the irons of the cluster in the FTR structure instead implicates that Cys57 coordinates the iron in a five-coordinated cluster (Fig. 3). Although there is no example to our knowledge of a cysteine-sulfide bridge in an iron-sulfur cluster, there is some precedence for this type of pentacoordinated iron given that five-coordinated subsites of [4Fe-4S] clusters have been synthesized (13). Higher coordination of iron in iron-sulfur clusters occurs also for aconitase-substrate complexes (14). Furthermore, five-coordinated iron clusters show modified redox potentials (13) analogous to those found for FTR (4). For the FTR intermediate, the redox potential of the [4Fe-4S]3+ cluster is lowered from +420 to −210 mV, which is in the same range as the redox potential for the active-site disulfide (4, 5, 13). A similar lowering of redox potential by about 300 to 700 mV is observed for five-coordinated iron clusters compared with four-coordinated iron clusters (13).

The one-electron reduced intermediate, with its nucleophilic thiol Cys57, is able to attack the disulfide bridge of thioredoxin to form a hetero-disulfide. The next electron delivered by a new ferredoxin molecule reduces the iron-sulfur center back to its original oxidation state, thereby reducing the disulfide bridge between FTR and thioredoxin and releasing the fully reduced thioredoxin. Such a mechanism, which requires the simultaneous docking of thioredoxin and ferredoxin, is entirely compatible with the disulfide bridge between FTR and thioredoxin and releasing the fully reduced thioredoxin.

Fig. 3. The proposed mechanism of action of ferredoxin:thioredoxin reductase. Modified from (4).

References and Notes

6. Crystals were obtained by hanging drop vapor diffusion with equal volumes of concentrated protein (17 mg/ml) containing 20 mM triethanolamine-HCl (pH 7.3) and reservoir solution containing 2.0 M ammonium sulfate, 0.1 M NaCl (pH 5.1), and 100 mM MgCl2. These crystals belong to space group P4222 with cell constants a = b = 452 Å and c = 172.6 Å. MAD data at three wavelengths on the iron edge were collected on beamline BM14 at the European Synchrotron Radiation Facility, Grenoble, France. The images were processed with DENZO (16) and merged and scaled with AGROVISTA from CCP4 programs (17). EMTS, UO2Ac2, and KAu(CN)2 derivative data were collected at BL-711, MAXI lab in Lund, Sweden. A 1.6 Å native data set was collected at the BW78 beamline at the European Molecular Biology Laboratory, Desy, Hamburg. The Rmerge was 0.05 for all data and 0.20 for the highest resolution shell (1.7 to 1.6 Å). The corresponding redundancy was 3.0 and 2.6, respectively. The four Fe sites and heavy atom sites from three derivatives were refined together in SHARP (18) and MLPHARE (19). The initial MIR phases could be improved by solvent flattening, histogram matching, and skeletonization in DM (20). Models were constructed in program O (21). The FTR structure was refined with REFMAC (22) at 1.6 Å resolution. Waters were added with the program ARP (23). The well-ordered protein atoms and the [4Fe-4S] cluster have been refined with restrained individual isotropic temperature factors. One hundred and forty-seven water molecules and one sulfate ion have been added. The R value for all reflections in the resolution range 15 to 1.6 Å is 23% (Rmerge of 28%). Ninety-two percent of all residues are in the most favorable area and there are no residues in generously allowed or disallowed regions (24). One proline (Pro57) is located between the Cys47 and Cys57 that are liganded to the [4Fe-4S] cluster.

12. The surfaces on both sides of the molecule are highly conserved. The potential ferredoxin interaction area contains three positively charged residues at about 10 Å from the cluster edge with hydrophobic residues around the Fe-S cluster they form a docking area for the negatively charged ferredoxin. The thio-redox interaction area is different and contains many more hydrophobic residues and three histidines, one
of them very close to the active site. There is one negatively charged residue, Glu84, about 12 Å away from the FTR disulfide, which fits with a positively charged residue in thioredoxin. The absence of charged groups, except for the one, makes the thioredoxin interaction area less specific, which might be important because FTR reduces different thioredoxins present in the cell, as is the case in the spinach chloroplast. Even Synechocystis FTR is capable of reducing spinach thioredoxin f. The ferredoxin interaction area, by contrast, is more specific owing to the presence of several charged residues. We observed a lower affinity between spinach ferredoxin and Synechocystis FTR than was reported for the homologous couple spinach ferredoxin and FTR [M. Hirasawa et al., Biochim. Biophys. Acta 935, 1 (1988)].

29. Supported by grants from the Swedish Council for Forestry and Agricultural Research and Swedish Natural Science Research Council (to H.E) and the Schweizerischer Nationalfonds [31-47107.96 to P.S]. Coordinates have been deposited in the Protein Data Bank (accession code 1dj7).