Medical and Nursery Care with Endogenous Health and Longevity

Johannes Schünemann, Holger Strulik, and Timo Trimborn
Medical and Nursery Care with Endogenous Health and Longevity

Johannes Schünemann*, Holger Strulik† and Timo Trimborn§

August 2019.

Abstract. For the population over 65, nursery care expenditures constitute on average the largest share in total health expenditures. In this paper, we distinguish between medical care, intended to improve one’s state of health, and personal care required for daily routine. Personal care can be either carried out autonomously or by a third party. In the course of aging, autonomous personal care is eventually substituted by nursery care. We set up a life-cycle model in which individuals are subject to physiological aging, calibrate it with data from gerontology, and analyze the interplay between medical and nursery care. We replicate health behavior and life expectancy of individuals and in particular the empirically observed patterns of medical and nursery care expenditure. We then analyze the impact of better health and rising life expectancy, triggered by rising income and medical progress, on the expected cost of nursery care in the future. We predict an elasticity of nursery care expenditure with respect to life expectancy of 1/3. In terms of present value at age 20, life-time nursery care expenditure is predicted to decline with rising life expectancy.

Keywords: Health, Nursery Care, Health Behavior, Life Expectancy

JEL: D11, D91, I12, J11

* We would like to thank Gustav Feichtinger, Michael Kuhn, Yuliya Kulikova, and Klaus Prettner for helpful comments and suggestions.
† University of Fribourg, Department of Economics, Bd. de Perolles 90, 1700 Fribourg, Switzerland; email: johannes.schuenemann@unifr.ch
‡ University of Goettingen, Department of Economics, Platz der Goettinger Sieben 3, 37073 Goettingen, Germany; email: holger.strulik@wiwi.uni-goettingen.de.
§ Aarhus University, Department of Economics and Business Economics, Fuglesangs Allé 4, 8210 Aarhus V, Denmark; email: tt@econ.au.dk.
1. Introduction

The evolution of health care expenditure has attracted much attention in the economic literature over the past decades. Rapid population aging, predominantly caused by income growth and medical progress, has risen concerns about the future cost burden for the health care system (e.g. Hall and Jones, 2007; Di Matteo, 2005; see Chernew and Newhouse, 2011, for a review). Since the largest share of health care expenditure is spent in old age, the elderly population (here defined as the population over 65) plays an important role in this discussion.

When analyzing the (future) evolution of health care expenditure for the elderly, it is worth noting that nursery care expenditure constitutes on average the largest share in total health care expenditure (De Nardi et al, 2013). In fact, De Nardi et al. (2013) find that increasing health spending of the elderly in the course of aging is almost entirely driven by the increase in nursery care spending. Other categories of health expenditures like outpatient and inpatient care, professional services, or pharmaceutical expenditure stagnate around age 80 and even slightly decrease at later ages. We pool these latter categories of health spending and call it medical care such that the sum of nursery and medical care expenditure constitutes total health care expenditure. We synonymously use the terms nursery care and long-term care (LTC).

Despite its distinctive expenditure patterns and its quantitative importance, nursery care spending has received relatively little attention in the debate on the rising health sector. This is even more surprising when considering that nursery care fundamentally differs from medical care for health behavior and health outcomes of individuals. Medical care spending intends to cure and prevent health deficits which in turn improves the state of health and increases the life expectancy of the individual. Nursery care, on the other hand, assists the individual with activities of daily living (ADL) like cleaning or moving the body and with instrumental activities of daily living (IADL) like preparing meals. In other words, nursery care assists with daily routine that is needed to survive, but it is not intended to counteract the accumulation of health deficits in the course of aging. In this paper, we aim to analyze the (future) evolution of health care costs by differentiating between medical and nursery care and to quantify the channels through which rising life expectancy affects expenditure patterns of nursery care.

To this end, we set up a gerontologically founded life-cycle model of human aging based on Dalgaard and Strulik (2014). Individuals choose consumption and health care optimally over the life course where health care is divided into medical and personal care. Personal care is
provided autonomously by the individual and is eventually replaced by nursery care once the individual has accumulated a critical number of health deficits. We then calibrate the model such that it fits health behavior, health outcomes, and life expectancy for the average U.S. American in the year 2012. The model calibration allows us to study the interplay between medical and nursery care and its implication for life expectancy. With the model at hand, we then examine the future evolution of nursery care expenditure as a consequence of rising life expectancy through income growth and medical progress. To the best of our knowledge, this is the first study that follows a structural approach to causally investigate the relationship between medical and nursery spending.

Studying the effects of better health and higher life expectancy on nursery care expenditure is interesting for at least two reasons. First, nursery care expenditure accounts for the largest share in total health care expenditure for the elderly. Second, the effect of improving health and life expectancy on nursery care expenditure is a priori ambiguous as two counteracting mechanisms are at work. On the one hand, a better health enables individuals to carry out personal care autonomously until higher ages, thus demanding costly nursery care at a later point in time. Therefore, the dependency level on nursery care decreases for given age. This channel, taken for itself, decreases nursery care expenditure. On the other hand, higher life expectancy requires nursery care on average until higher ages as well, thereby c.p. increasing nursery care expenditure. By projecting future growth rates of income and medical technology and their impact on individual health, we examine the quantitative importance of each channel.

If the effects through the two channels balanced each other, our results would be in line with the prominent Red Herring Hypothesis (Zweifel et al., 1999) stating that better health and higher life expectancy do not lead to higher health expenditures per se, but only shift health expenditures to higher ages. We indeed find that the bulk of expected nursery care expenditures will be shifted to higher ages; however, this shift turns out to be not cost-neutral. We find that expected nursery cost will increase in the future, implying that the increase in nursery expenditure through higher life expectancy dominates the reduction in nursery expenditure through better health. Specifically, our model implies a 1/3-percentage increase in expected nursery expenditure for each percentage increase in life expectancy. This means that, compared to the predicted evolution of medical care expenditure, the increase in nursery care expenditure is rather small. Interestingly, the response of nursery care expenditure changes its direction when
we calculate it in terms of present value at the beginning of young adulthood. Since nursery

care spending is generally delayed to higher ages following income and technology growth, it gets
discounted more heavily. This capital market effect results in a reduction of expected nursery
care expenditure. Summarizing, the effect of higher income and better technology on nursery
care expenditure as compared to medical care spending is much more moderate since higher
medical spending and the resulting better health state are dampening the effect of higher life
expectancy on nursery care spending.

There exist a number of studies that provide projections for nursery care expenditure in the
future (e.g. Spillman and Lubitz, 2000; Comas-Herrera et al., 2006; Karlsson et al., 2006; de
la Maisonneuve and Martins, 2013). These studies typically use projection models to account
for higher dependency ratios in the course of demographic change due to population aging. We
are the first, however, to offer a theory-based approach where the demand for nursery care is
endogenously determined by the health behavior of the individual. Health behavior, in turn, is
affected by the economic environment which may vary in the future. This intricate relationship
between medical and nursery care allows us to causally investigate the impact of income and

technology on nursery care. Therefore, we are not only able to quantify the impact that lower
mortality and thus higher life expectancy has on nursery care spending, but also to take into
account the fact that the dependency on nursery care declines for given age with an improving
health status.

Our study is also related to a couple of papers analyzing the demand for nursery care, some
of them also theoretically (e.g. Stabile et al., 2006), see Bannenberg et al. (2019) for a compre-

hensive survey. As Bannenberg et al. (2019) point out, however, “there is little (theoretical)
understanding of the behavioral mechanisms behind the emergence of LTC needs and means
over the individual’s life-cycle”1. The survey identifies the missing inclusion of dynamics in eco-

nomic models of nursery care as a shortcoming of the existing literature. We aim to fill this gap
by proposing a biologically founded life-cycle model of human aging in which the demand for
nursery care is determined by preferences, health behavior, and external factors such as income
and medical technology.

Our approach is particularly suitable to analyze optimal behavior towards medical and nurs-
ery care because aging is conceptualized as a process of health deficit accumulation. The health
deficit model based on Dalgaard and Strulik (2014) has its foundation in gerontological research
and, in particular, builds on the so-called frailty index (Mitnitski et al., 2002a,b) which measures in a straightforward way the health state of an individual. Since the frailty index can be easily (and continuously) measured, our model can be easily quantified and calibrated. The alternative paradigm, the Grossman model (1972), offers a less suitable approach since it is based on the accumulation of health capital instead of health deficits. Health capital, however, is a latent variable unknown to doctors or medical scientists which confounds any serious calibration of the model (see also Hosseini et al. (2019) for a critique). Direct evidence on the association of the frailty index with the risk of institutionalization in nursing homes is provided by Rockwood et al. (2006) and Blodgett et al. (2016). Our model is methodologically related to other studies employing the health deficit model that study the adaptation to a deteriorating state of health (Schünemann et al., 2017a), the gender gap in mortality (Schünemann et al., 2017b), optimal aging in partnerships (Schünemann et al., 2018), the anticipation of deteriorating health (Schünemann et al., 2019), the historical evolution of retirement (Dalgaard and Strulik, 2017), and and the optimal design of social welfare systems (Grossmann and Strulik, 2019).

The paper is organized as follows. Section 2 presents the basic model of medical and nursery care. In Section 3, we calibrate the model to the health behavior and health outcomes of a reference U.S. American in the year 2012. In Section 4, we analyze the impact of better health and increasing life expectancy through income and technology growth on the evolution of nursery care expenditure. Section 5 concludes.

2. The Model

The individual maximizes expected life-time utility

$$V = \int_0^T e^{-\rho t} S(D(t)) U(c(t)) dt$$

where $U(c(t))$ denotes utility from consumption and is given by $U(c(t)) = (c(t)^{1-\sigma} - 1)/(1 - \sigma)$, with σ being the inverse of the intertemporal elasticity of substitution. The parameter ρ captures the time preference rate of the individual. The survival probability $S(\cdot)$ decreases in the number of health deficits $D(t)$ that the individual has accumulated up to age t. Intuitively, the individual calculates the expected utility stream by multiplying instantaneous utility at age t with the probability of living beyond that age (see Schünemann et al. (2017a)). T represents the (endogenous) maximum lifespan of the individual. Our modeling of the survival
probability implies that mortality directly depends on the number of accumulated health deficits, as emphasized by biologists (e.g. Arking, 2006), rather than on chronological age.

Besides an optimal consumption plan, the individual chooses optimal health care over the life cycle. With regard to health care, we distinguish between medical care and personal care. Medical care is defined as health investments which intend to cure and prevent health deficits in the course of aging, e.g. doctor visits, hospital stays or drugs. We assume that the individual is subject to physiological aging according to Dalgaard and Strulik (2014) such that health deficits accumulate over time as

\[\dot{D} = \mu(D - Ah^{\gamma} - a) \]

where \(\mu \) denotes the inherent biological force of aging.\(^1\) The maximum lifespan is associated with a critical deficit level \(\bar{D} \) at which the individual dies with certainty. The accumulation of health deficits can be slowed down by investing in medical care \(h \) where the health technology is captured by the parameters \(A \) (scale) and \(\gamma \) (curvature) with \(0 < \gamma < 1 \). The parameter \(a \) denotes environmental influences that affect the speed of aging but are beyond the individual’s control. Investments in medical care reduce the speed of deficit accumulation, improve the state of health and thus increase the survival probability for given age. Therefore, medical care serves to increase the life expectancy of the individual.

Personal care, on the other hand, is needed to survive but does not improve the state of health. It is required to accomplish activities of daily living (ADL) like cleaning or moving the body as well as instrumental activities of daily living (IADL) like preparing meals, but it is not intended to affect the deficit accumulation process and thus life expectancy of the individual. Depending on the number of health deficits, personal care can be provided autonomously by the individual \((P_d(D)) \) or by a third party in which case we call it nursery care \((P_n) \). Naturally, the ability for autonomous care declines as individuals develop more health deficits and thus \(P_d'(D) < 0 \). We assume that a minimum of personal care \(P_{min} \) is needed in order to survive and that this minimum level is always provided, either autonomously or by nursery care. Therefore,

\[P_{min} = P_d(D) + P_n. \]

\(^1\)For better readability, we suppress, from now on, the fact that all variables are age \((t)\)-dependent.
The equation implies that once $P_a(D) < P_{\text{min}}$ the individual demands nursery care P_n. While autonomous care can be provided at no monetary cost, nursery care expenditure enters the budget constraint which reads

\[
\dot{k} = \begin{cases}
 w + (r + m)k - c - p_nh - p_nP_n & \text{for } t < R \\
 \tau w + (r + m)k - c - p_nh - p_nP_n & \text{for } t \geq R.
\end{cases} \tag{4}
\]

Individuals allocate labor income w and capital income $(r + m)k$ to savings, consumption c, medical care expenditure p_nh, and nursery care expenditure p_nP_n where p_h and p_n denote the respective relative prices. Once individuals reach retirement age R, they receive a pension income τw, where τ denotes the replacement rate. For simplicity, we assume perfect annuity markets such that the effective interest rate is given by the sum of the rate of return on capital r and the instantaneous mortality rate $m = -\dot{S}/S$.

Summarizing, individuals maximize (1) with respect to (2), (3), (4), and the boundary conditions $D(0) = D_0$, $D(T) = \bar{D}$, $k(0) = k_0$, and $k(T) = \bar{k}$. The Hamiltonian associated with this maximization problem is given by

\[
\mathcal{H} = S(D)U(c) + \lambda_D(D - Ah^\gamma - a) + \lambda_k(w + (r + m)k - c - p_nh - p_n(P_{\text{min}} - P_a(D))) \tag{5}
\]

where λ_D and λ_k denote the shadow prices of deficits and capital, respectively, and where we have substituted (3) into (4). The transversality condition for the optimal control problem is given by $\mathcal{H}(T) = 0$. From the first-order conditions, we can derive the well known Euler equation for optimal consumption growth over the life cycle:

\[
\frac{\dot{c}}{c} = \frac{r - \rho}{\sigma}. \tag{6}
\]

Whether consumption rises or falls depends only on the relative size of the rate of return on capital r and the time preference rate ρ while the (inverse of the) intertemporal elasticity of substitution σ captures the degree of consumption smoothing. The optimal growth of medical care over time is given by

\footnote{One could also argue that personal care provides utility directly. One direct implication of this feature would be that rich individuals would demand more (or better) nursery care. Since we consider a representative agent and thus do not have any source of income heterogeneity, we do not include personal care into the utility function. It could also be the case that relying on nursery care provides disutility through the loss of autonomy. In order to flesh out the core mechanisms of the model, however, we keep it as simple as possible and neglect this feature as well.}
\[
\frac{\dot{h}}{h} = \begin{cases}
\frac{(r+m) - \mu - \frac{1}{\gamma} S'(D)U(c)}{1-\gamma} & \text{for } P_u = 0 \\
(r+m) - \mu - \frac{1}{\gamma} \left(\lambda k q P_u'(D) + S'(D) \frac{\partial U(c)}{\partial c} \right) & \text{for } P_u > 0.
\end{cases}
\] (7)

The first determinant of medical care expenditure growth is given by the relative size of the effective interest rate \(r+m\) and the force of aging \(\mu\). Intuitively, if the benefit of delaying medical care \((r+m)\) is greater than the resulting harm of deficit accumulation \((\mu)\), individuals substitute present for future medical care and expenditure growth increases. The third term of Equation (7) unambiguously affects expenditure growth negatively. To see this, note that deficits are a "bad" rather than a "good" so that the associated shadow price \(\lambda_D\) is negative. Further, \(P_u'(D) < 0\) and \(S'(D) < 0\) follow by assumption. The economic explanation for this observation is twofold. First, the state of health enters life-time utility through the survival probability \(S(D)\), implying that medical care not only increases expected life-time utility through a higher expected life time, but also through a higher (discounted) instantaneous utility stream through better health. This induces individuals to shift medical care to earlier life stages in order to lead an overall healthier life (the effect of \(S'(D)\)). The second effect sets in once individuals demand nursery care. Individuals tend to substitute future for present medical care in order to counteract the rising and costly need for nursery care (the effect of \(P_u'(D)\)). It is important to note that individuals understand that higher medical spending at younger ages delays the onset of nursery care expenditure in old age. The effect of \(P_u'(D)\) apparent in the lower part of Equation (7) is an additional effect which is triggered by the decreasing ability to carry out personal care autonomously which, once nursery care is required, directly leads to higher cost for nursery care. Finally, the curvature parameter of the health technology \(\gamma\) captures the degree of diminishing returns of health investments and thus affects the willingness to smooth health investments over the life cycle.

Our model is determined by the dynamic system consisting of Equations (2), (4), (6), and (7), together with the mentioned initial and final conditions as well as the transversality condition. Given that nursery care depends on the amount of deficits accumulated, medical care directly affects expenditure for nursery care. Higher medical spending slows down the accumulation of health deficits, which in turn delays the dependency on nursery care and subsequently leads to lower nursery care expenditure for any given age. Since the model cannot be solved analytically,
we rely on numerical solution techniques to scrutinize the interplay between medical and nursery care.

3. Calibration

We calibrate the model to match health behavior and health outcomes for a reference U.S. American in the year 2012. We begin by explaining our calibration strategy for the survival function. As stated above, biologists emphasize that mortality does not depend directly on chronological age but only implicitly through the accumulated health deficits $D(t)$ (e.g. Arking, 2006). We conceptualize health deficits with the help of a study by Mitnitski et al. (2002a) who built a straightforward and well-established health deficit index, the so-called frailty index. In simple words, the index measures a share of deficits that an individual has accumulated from a potential set of health deficits. We take into account the biological understanding of mortality and assume that survival is directly determined by health deficits. As in Schünemann et al. (2017a) we assume that the survival probability is given by

$$S(D) = \frac{1 + \omega}{1 + \omega e^{\xi D}}.$$

Our parametrization of the survival function implies that the survival probability follows a logistic function which is one for the state of best health ($D = 0$) and approaches zero for high deficit levels (the first panel of Figure 1). Since we lack data on the association between health deficits and survival probability, we proceed as follows to calibrate the parameters of the survival function. First, we take up the study from Mitnitski et al. (2002a) who estimate a power-law association between the frailty index and age. Since the study estimates this association separately for men and women, we take as the relevant health deficit index the average of the health deficit index of men and women which is weighted according to their respective survival probabilities (the second panel in Figure 1). We then feed this relationship into Equation (8). This allows us to predict the association between age and survival probability which can be confronted with actual data from life tables (the third panel of Figure 1). The parameter values which provide the best fit to the data are given by $\omega = 0.11$ and $\xi = 34$. The dots in the last panel of Figure 1 indicate the data points from U.S. life tables for the year 2012 (NVSS, 2016), implying that the model predictions are fairly accurate.
With regard to the initial deficit level, we again rely on the frailty index by Mitnitski et al. (2002a). From their regression analysis, we can back out the average initial deficit level between men and women at age 20, the starting age of our model, which yields $D_0 = 0.0328$.

We further assume that autonomous personal care declines with health deficits according to $P_a(D) = E - BD$. Moreover, we set $\gamma = 0.2$ according to Schünemann et al. (2017b) and Hall and Jones (2007). From the Consumer Expenditure Survey (BLS, 2014), we calculate average wages and salaries in 2012 of single-person households younger than 65 (the retirement age R) which yields $w = 30324$. According to OECD (2013), we set the gross replacement rate to $\tau = 0.383$. As far as the interest rate is concerned, we set $r = 0.07$ according to Jorda et al. (2017). In order to confine the savings motive to consumption and health expenditure, we abstract from receiving and leaving bequests and set $k_0 = \bar{k} = 0$. Finally, we normalize the relative prices to $p_h = p_n = 1$.

We simultaneously calibrate the seven free parameters $\sigma, \rho, \mu, A, a, B,$ and $P_{\min} - E$ to fit the following seven data moments: i) medical care expenditure at age 30, 50, 70, 90 (MEPS, 2012), ii) nursery care expenditure at age 75, 93 (CMS, 2014), and iii) a life expectancy at 20 of 59.6 years (i.e. death at 79.6) (NVSS, 2016). Finally, we adjust D such that the model provides a maximum lifespan of 100 years (according to De Nardi et al., 2016).

3Nursery care services refer to any services provided by professionals to individuals who need assistance with activities of daily living (ADL) and instrumental activities of daily living (IADL). We thus identify the following categories as nursery care in the data: "Nursing Care Facilities and Continuing Care Retirement Communities Spending", "Home Health Care Spending", and "Other Health Residential and Personal Care Spending". Since the data on medical spending from MEPS (2012) includes home health spending, we deduct this expenditure type from medical spending to avoid double accounting.
The parameter values for the best model fit are given in Table 1a while Table 1b summarizes the parameters which were set externally.

<table>
<thead>
<tr>
<th>σ</th>
<th>ρ</th>
<th>μ</th>
<th>A</th>
<th>a</th>
<th>D</th>
<th>B</th>
<th>$P_{\text{min}} - E$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.22</td>
<td>0.06</td>
<td>0.33</td>
<td>0.00125</td>
<td>0.011</td>
<td>0.23</td>
<td>16200</td>
<td>-14800</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>D_0</th>
<th>γ</th>
<th>w</th>
<th>r</th>
<th>p_h</th>
<th>p_n</th>
<th>τ</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0328</td>
<td>0.02</td>
<td>30,324</td>
<td>0.07</td>
<td>1</td>
<td>1</td>
<td>0.383</td>
</tr>
</tbody>
</table>

While some of the parameters are of latent nature and thus cannot be directly compared to the empirical literature, our value for σ is consistent with a study by Chetty (2006) who estimates the "true" values for σ to be close to unity. Our value for the force of aging μ implies that in the absence of any medical expenditure and environmental influences, the individual accumulates 3.3% new deficits from one year to another. This pooled estimate for men and women lies well in between the estimates in Mitnitski et al. (2002a) who report values of 0.31 for women and 0.43 for men. Further, our value for a fits well with a recent estimate in Dalgaard and Strulik (2014) of $a = 0.13$. We solve the model by numerically applying the relaxation method by Trimborn et al. (2008).

4. RESULTS

Figure 2 shows the predicted life-cycle trajectories for the model variables of interest. The first panel shows medical care spending of the individual over the life course. The model fits the data points, as indicated by the dots, reasonably well. In particular, medical spending is increasing throughout most parts of life and flattens out around age 80. In contrast, nursery care spending is virtually zero until age 70 and then rises exponentially for older ages. As the second panel illustrates, our model is also able to match nursery care data in a satisfactory manner.

The third panel combines the first two panels and illustrates expenditure patterns for the elderly population over 65, thereby replicating Figure 3 of De Nardi et al.’s (2016) study. The authors find that medical care spending for people over 80 starts to stagnate or even slightly decreases for some ages, implying that increasing health expenditure during these ages is entirely
Figure 2: Life-Cycle Trajectories: Benchmark Run

Dots indicate data points. Data for medical care spending are from MEPS (2010) and data on nursery care spending are from De Nardi et al. (2016).

Driven by nursery care expenditures. As can be seen in the third panel, our model is capable of capturing these exceptional disaggregated patterns in health spending. The fourth panel shows that, consistent with the findings of Mitnitski et al. (2002a), deficits accumulate exponentially over the life cycle. Note that although we only take the initial deficit level directly from the Mitnitski et al. study, our model matches the empirically observed health deficit index as indicated by the dots reasonably well.

5. The Future Cost of Nursery Care

With the model at hand, we now predict the future cost of nursery care. In particular, we are interested in the impact that better health and life expectancy have on expected per capita nursery care spending. A priori, this effect is ambiguous as two counteracting mechanisms are triggered by an improving health status. On the one hand, through better health individuals
start demanding nursery care at later ages and thus exhibit lower dependency on nursery care for given age which leads to a reduction of nursery care spending. On the other hand, the resulting higher life expectancy and life span of the individual requires nursery care on average until higher ages, thereby increasing expected nursery care expenditures. We aim to investigate which of these effects quantitatively dominates by analyzing the impact of future income growth and medical technological progress.

As a benchmark for the growth rate of wages (w in our model), we calculate the compound annual growth rate of average wages in the U.S. of the last 20 years from our baseline year (2012). This procedure yields an annual growth rate of $\hat{\omega} = 1.21\%$ (OECD, 2019). With regard to medical technology, we fit the medical technology parameter A such that our model matches the average life expectancy at age 20 in the year 1992 of 56.9 years (VS, 1992), taking into account also the lower income level in that year. This gives a value of approximately $A = 0.00102$ which in turn implies an annual rate of medical progress of $\hat{A} = 1.00\%$. This value fits nicely with the result by Abeliantsky et al. (2019) who – using the frailty index approach – estimate that Americans born between 1904 and 1966 experienced health deficit reducing medical progress at a rate of 0.84 percent per year with a standard deviation of 0.16 percent. As a sensitivity check we will also consider lower and higher rates of technological progress in a comparative dynamic analysis.

5.1. **Medical Progress.** Figure 3 shows the effect of medical technological progress on medical care expenditures (first panel), nursery care expenditures (second panel), expected nursery expenditures, i.e. nursery expenditures adjusted by the survival rate (third panel), and the share of nursery care expenditures in total health expenditures (fourth panel). Blue (solid) lines represent the benchmark run from Figure 2. Red (dashed) lines show results after 10 years, green (dash-dotted) lines after 20 years of technological progress of 1.00\% per year. It should be noted that the individual still faces a constant health technology A in all three runs. When solving the model after 10 (20) years of technological progress, however, the individual experiences a (constant) level of A that has increased for 10 (20) years by 1.00\% from the benchmark run. In other words, the individual faces a health technology of $A = 0.0125$ in the benchmark run and $A = 0.0125 \times 1.01^{10}$ ($A = 0.0125 \times 1.01^{20}$) when it solves the life cycle 10 (20) years after technological progress.
Due to technological advances in curing and preventing health deficits, people spend more on medical care since the marginal return to medical care increases. In other words, the higher productivity of medical treatment triggers a substitution effect towards medical care. Through the combined effect of greater efficacy and higher utilization of medical care, people accumulate deficits more slowly and are thus healthier at any given age. This enables them to carry out personal care autonomously until higher ages such that the age at which individuals first require nursery care increases accordingly. As can be seen in the second panel of Figure 3, the age of first demanding nursery care increases from 68.8 to 69.8 (71.0) years after 10 (20) years of technological progress. In the aftermath, nursery care expenditure remains lower in the high-technology regimes because individuals stay healthier at any given age and need less support. This effect, taken for itself, reduces the cost of nursery care in the future.

Figure 3: Medical Progress and Health and Nursery Care

On the other hand, the fact that people exhibit better health through medical progress increases their life expectancy. The calibrated model predicts that life expectancy at 20 increases from 59.6 to 61.0 (62.7) years due to the experience of 10 (20) years of technological progress. This in turn increases the average age until people require nursery care. This effect, taken for itself, increases expenditure for nursery care.
Multiplying nursery care expenditure by the survival rate yields for any given age the expected nursery care expenditure. The third panel of Figure 3 shows the associated trajectories for the three different scenarios. Expected nursery care expenditure exhibits an inverse u-shaped profile. The dominating effect on the rising part of the trajectories is that people demand more nursery care as they age. After a certain point, this mechanism is balanced out by the fact that the survival probability declines more and more. In the course of technological progress and the associated improvements in health and life expectancy, the peak of expected nursery care expenditures moves to higher ages. This finding is qualitatively consistent with the seminal Red Herring Hypothesis brought up by Zweifel et al. (1999). The authors argue that increasing life expectancy is neutral for health care costs as age per se does not affect health expenditure once time to death is controlled for. Instead, the bulk of health expenditure is simply shifted to higher age groups in the population as mortality decreases. We see a similar picture when we look at the impact of technological progress on expected nursery expenditures. As individuals become healthier, the peak of expenditures moves from approximately 84 years to around 86 (88) years after 10 (20) years of medical progress. In contrast to the Red Herring Hypothesis, however, we find that this shift of expenditures is not entirely neutral for expected nursery expenditures. The first column of the upper part of Table 2 shows the net effect for total expected nursery care expenditures, i.e. the sum of the expected nursery expenditures over the life cycle. All numbers represent percentage deviations from the benchmark run. Our model predicts a 0.80% (1.87%) increase after 10 (20) years of technological progress. In other words, our projections suggest that the effect of higher life expectancy on nursery care expenditures mildly dominates the effect of later demand for nursery care.

The second column shows that the relative change in expected medical care expenditure is of considerably greater magnitude, indicating an increase of 15.4% or 33.4% depending on the time horizon. This implies a change in total health expenditure of 12.7% or 27.6%. As a result, the share of nursing home expenditure in total health expenditure decreases by 10.6% or 20.2% as can be seen in the fourth column and in the fourth panel of Figure 3. Since we abstract from demographic changes through lower fertility in our model, this result is consistent with a historically constant share of nursery care expenditure as found by De Nardi et al. (2016) for recent years. The last column shows that life expectancy increases by 2.38% or 5.23% through medical progress, implying that the increase in life expectancy is of higher magnitude.
than the relative increase in expected nursery expenditure. This finding is consistent with our argument that the effect of higher life expectancy on expected nursery care expenditure is partly compensated by the effect of better health and thus later demand for nursery care. Interestingly, the ratio between the relative increase in nursery care expenditure and life expectancy stays considerably constant over time. Both after 10 and 20 years of medical progress, a 1% increase in life expectancy is associated with a 1/3% increase in expected nursery care expenditure.

This picture changes, however, when considering the present value of expected nursery cost. The values in parentheses show the respective relative change in costs when expenditures are discounted by the effective interest rate \((r + m)\) to the beginning of the individual’s life cycle. As the table shows, the present value of expected nursery expenditure decreases by 11.2% (21.2%) after 10 (20) years of technological progress. The reason for this results can be readily seen in the third panel of Figure 3. As expected nursery expenditures are shifted to higher ages, their present value declines. This capital market effect leads to a reduction in expected costs. Specifically, a one-percent increase in life expectancy is approximately associated with a 4-5% decrease in the present value of expected nursery expenditure. When looking at column 2, the table implies that calculating the present value also reduces the increase in expected medical expenditure to 10.8% or 22.0%. The same explanation as in the case of nursery care expenditure also applies here. The first panel of Figure 3 shows that medical expenditure increases relatively more for higher ages through technological progress, implying that the bulk of the increase in medical care is discounted more heavily. As a consequence, the predicted increase in total health expenditure declines to 10.7% or 22.0%.

<table>
<thead>
<tr>
<th>case</th>
<th>exp nursery (PV)</th>
<th>exp medical (PV)</th>
<th>exp total (PV)</th>
<th>share nursery (PV)</th>
<th>life expectancy</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A = 0.01)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 years</td>
<td>0.80 (-11.2)</td>
<td>15.4 (10.8)</td>
<td>12.7 (10.7)</td>
<td>-10.6 (-10.8)</td>
<td>2.38</td>
</tr>
<tr>
<td>20 years</td>
<td>1.87 (-21.2)</td>
<td>33.4 (22.0)</td>
<td>27.6 (22.0)</td>
<td>-20.2 (-35.4)</td>
<td>5.23</td>
</tr>
<tr>
<td>(0.5 \times A)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 years</td>
<td>0.38 (-5.57)</td>
<td>7.40 (5.33)</td>
<td>6.11 (5.31)</td>
<td>-5.40 (-10.3)</td>
<td>1.14</td>
</tr>
<tr>
<td>20 years</td>
<td>0.80 (-11.2)</td>
<td>15.4 (10.8)</td>
<td>12.7 (10.8)</td>
<td>-10.6 (-19.8)</td>
<td>2.39</td>
</tr>
<tr>
<td>(2 \times A)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 years</td>
<td>1.86 (-21.1)</td>
<td>33.2 (22.0)</td>
<td>27.5 (21.8)</td>
<td>-20.0 (-35.2)</td>
<td>5.20</td>
</tr>
<tr>
<td>20 years</td>
<td>4.32 (-45.1)</td>
<td>82.0 (46.2)</td>
<td>67.8 (46.0)</td>
<td>-37.8 (-62.4)</td>
<td>12.9</td>
</tr>
</tbody>
</table>
In order to illustrate the impact of different rates of medical progress, we conduct a comparative analysis with regard to the growth rate \hat{A}. Specifically, in Table 2 we show the results for both halving and doubling the rate of medical progress. As can be seen in the table, the effects described above increase in the rate of technological progress. In particular, moving from the lowest to the highest rate considered here, the relative increase in expected nursery care expenditure rises from 0.38% (0.80%) to 1.86% (4.32%), while the relative change in life expectancy increases from 1.14% (2.39%) to 5.20% (12.9%) after 10 (20) years of technological progress. Again, the ratio between the relative increase in expected nursery care expenditure and life expectancy remains remarkably constant at 1/3 in any case considered. As far as the present value of nursery care expenditure is concerned, we find throughout that a 1% increase in life expectancy is associated with a 4-5% decrease in spending.

5.2. Income Growth. Figure 4 shows results for a similar experiment in which we analyze the effect of income growth of 1.21% after 10 and 20 years. Again, the individual still faces a constant wage rate w in all three runs. When solving the model after 10 (20) of income growth, however, the individual experiences a (constant) level of w that has increased for 10 (20) years by 1.21% from the benchmark run. Therefore, the individual faces a wage rate of $w = 30,324$ in the benchmark run and $w = 30,324 \times 1.01^{10}$ ($w = 30,324 \times 1.01^{20}$) when it solves the life cycle 10 (20) years following income growth.

The effects are qualitatively similar to those from advancing medical technology, though somewhat lower in magnitude. As a result to higher income, individuals spend more on medical care. Medical care also rises relative to consumption. The reason is that life-time utility is concave in per-period consumption but linear in longevity. When income increases, individuals spend a lower share on per-period consumption because decreasing marginal utility sets in more quickly while they spend a higher share on medical care which makes them smooth consumption over a longer period of life. As stated already for the case of technological progress, better health induces individuals to start demanding nursery care at higher ages while the resulting higher life expectancy makes them more likely to demand nursery care until higher ages. The first column in the upper part of Table 4 shows the net effect on expected nursery care expenditures. According to our model predictions, expected nursery care spending increases by 0.21% (0.43%) after 10 (20) years of income growth relative to the benchmark run. Since expected medical care
expenditures increase to a much higher degree (19.7% or 43.2%), expected total health expenditure increase by 16.1% or 35.4%. As a result, the share of nursing home expenditure declines. Although the increase in medical expenditure is more pronounced under income growth than under technological progress, the impact on life expectancy is more modest (0.63% or 1.29%). The reason is that although in both regimes people spend more on medical care, under medical progress medical care becomes additionally more efficient.

As we have already seen before, discounting the different expenditure types reduces the relative change in expected medical and nursery spending and, in the case of expected nursery expenditures, leads to a reduction in costs. We also report results for halving and doubling the rate of income growth. As Table 4 illustrates, the effects increase in the rate of income growth. Comparing the lowest to the highest rate, the relative change in expected nursery care expenditure increases from 0.11% (0.21%) to 0.43% (0.91%) after 10 (20) years of income growth. In all specifications, the ratio between the relative increase in expected nursery care expenditure and life expectancy remains constant at 1/3 as already observed in the case of medical progress, while in present value terms the ratio stays between -4% and -5%.
Table 3: Evolution of Expenditures: Income Growth

<table>
<thead>
<tr>
<th>case</th>
<th>exp nursery (PV)</th>
<th>exp medical (PV)</th>
<th>exp total (PV)</th>
<th>share nursery (PV)</th>
<th>life expectancy</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\hat{\omega} = 0.0121$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 years</td>
<td>0.21 (-3.08)</td>
<td>19.7 (18.4)</td>
<td>16.1 (18.4)</td>
<td>-13.7 (-18.1)</td>
<td>0.63</td>
</tr>
<tr>
<td>20 years</td>
<td>0.43 (-6.27)</td>
<td>43.2 (40.2)</td>
<td>35.4 (40.1)</td>
<td>-25.8 (-33.1)</td>
<td>1.29</td>
</tr>
<tr>
<td>$0.5 \times \hat{\omega}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 years</td>
<td>0.11 (-1.53)</td>
<td>9.43 (8.86)</td>
<td>7.72 (8.84)</td>
<td>-7.06 (-9.53)</td>
<td>0.31</td>
</tr>
<tr>
<td>20 years</td>
<td>0.21 (-3.09)</td>
<td>19.7 (18.5)</td>
<td>16.2 (18.5)</td>
<td>-13.7 (-18.2)</td>
<td>0.63</td>
</tr>
<tr>
<td>$2 \times \hat{\omega}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 years</td>
<td>0.43 (-6.23)</td>
<td>42.9 (39.9)</td>
<td>35.1 (39.8)</td>
<td>-25.7 (-25.7)</td>
<td>1.28</td>
</tr>
<tr>
<td>20 years</td>
<td>0.91 (-12.2)</td>
<td>104 (94.6)</td>
<td>84.7 (94.4)</td>
<td>-45.4 (-54.9)</td>
<td>2.67</td>
</tr>
</tbody>
</table>

All values as percentage deviation from the benchmark run in the year 2012. exp nursery, exp medical, and exp total refer to expected nursery care expenditure, expected medical care expenditure, and expected total health expenditure, respectively. share nursery refers to the share of nursery care expenditure in total health expenditure. PV refers to present value.

5.3. Medical Progress and Income Growth. In order to wrap up the results, we also show the benchmark implications of the model for medical progress combined with income growth. The results are shown in Table 4.

Table 4: Evolution of Expenditures: Medical Progress and Income Growth

<table>
<thead>
<tr>
<th>case</th>
<th>exp nursery (PV)</th>
<th>exp medical (PV)</th>
<th>exp total (PV)</th>
<th>share nursery (PV)</th>
<th>life expectancy</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A = 0.01, \hat{\omega} = 0.0121$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 years</td>
<td>1.09 (-13.8)</td>
<td>37.7 (30.6)</td>
<td>31.0 (30.5)</td>
<td>-22.8 (-34.0)</td>
<td>3.12</td>
</tr>
<tr>
<td>20 years</td>
<td>2.51 (-27.4)</td>
<td>91.3 (69.7)</td>
<td>75.0 (69.5)</td>
<td>-41.4 (-57.2)</td>
<td>7.07</td>
</tr>
</tbody>
</table>

All values as percentage deviation from the benchmark run in the year 2012. exp nursery, exp medical, and exp total refer to expected nursery care expenditure, expected medical care expenditure, and expected total health expenditure, respectively. share nursery refers to the share of nursery care expenditure in total health expenditure. PV refers to present value.

Combining medical progress and income growth does not change the main results of the experiment. A 1% increase in life expectancy is still associated with a 1/3% increase in expected nursery care expenditures and a 4-5% decline in the present value of expected nursery care expenditures. Compared to the change in medical care, the change in nursery care is rather modest (or even in the opposite direction), since better health of the individual and thus lower dependency on nursery care for given age counteracts the cost-increasing effect of rising life expectancy.

6. Conclusion

In this paper, we proposed a gerontologically founded life-cycle model of human aging in which we studied the interplay between medical and nursery care over the life-cycle. We calibrated the model to the reference American in the year 2012 and analyzed the impact of better health and increasing life expectancy, triggered by income growth and medical technological progress, on
expected nursery care expenditure. Projecting future growth rates of income and technology, we found that each percentage increase in life expectancy is associated with 1/3 percentage point increase in expected nursery spending. Compared to the increase in medical care spending, however, the increase in nursery spending is expected to be moderate since, for given age, the level of dependency on nursery care reduces with better health. This effect partially offsets the cost-increasing effect of higher life expectancy. Discounting expected nursery spending to the beginning of the individual’s life cycle even showed that the present value of expected nursery expenditure is expected to reduce in the future as nursery expenditures tend to be shifted to higher ages with improving health status over time.

Our model of medical and nursery care can be extended in various direction. One natural extension could analyze the demand for nursery care when personal care is partially provided by the family. Given that women on average outlive their male partners, the provision of informal care by spouses may have interesting effects on the gender-specific demand for nursery care. Another interesting topic is given by the insurance system with respect to nursery care. Since in the U.S. nursery care is not covered by Medicare (and only by Medicaid as a last resort), a large part of nursery care spending is financed out of pocket. The introduction of a compulsory long-term care insurance may thus entail huge effects on welfare.

Authors
Johannes SCHÜNEMANN
University of Fribourg, Faculty of Economics and Social Sciences, Department of Economics, Bd. de Perolles 90, 1700 Fribourg, Switzerland; email: johannes.schuenemann@unifr.ch

Holger STRULIK
University of Goettingen, Department of Economics, Platz der Goettinger Sieben 3, 37073 Goettingen, Germany; email: holger.strulik@wiwi.uni-goettingen.de

Timo TRIMBORN
Aarhus University, Department of Economics and Business Economics, Fuglesangs Alle 4, 8210 Aarhus V, Denmark; email: tt@econ.au.dk

Abstract
For the population over 65, nursery care expenditures constitute on average the largest share in total health expenditures. In this paper, we distinguish between medical care, intended to improve one’s state of health, and personal care required for daily routine. Personal care can be either carried out autonomously or by a third party. In the course of aging, autonomous personal care is eventually substituted by nursery care. We set up a life-cycle model in which individuals are subject to physiological aging, calibrate it with data from gerontology, and analyze the interplay between medical and nursery care. We replicate health behavior and life expectancy of individuals and in particular the empirically observed patterns of medical and nursery care expenditure. We then analyze the impact of better health and rising life expectancy, triggered by rising income and medical progress, on the expected cost of nursery care in the future. We predict an elasticity of nursery care expenditure with respect to life expectancy of 1/3. In terms of present value at age 20, life-time nursery care expenditure is predicted to decline with rising life expectancy.

Citation proposal
Johannes Schünemann, Holger Strulik, Timo Trimborn. 2019. «Medical and Nursery Care with Endogenous Health and Longevity». Working Papers SES 505, Faculty of Economics and Social Sciences, University of Fribourg (Switzerland)

Jel Classification
D11, D91, I12, J11

Keywords
Health, Nursery Care, Health Behavior, Life Expectancy.