Faculté des sciences économiques et sociales

A note on chromatic properties of threshold graphs

Ries, Bernard ; de Werra, Dominique ; Zenklusen, Rico

In: Discrete Mathematics, 2012, vol. 312, no. 10, p. 1838-1843

In threshold graphs one may find weights for the vertices and a threshold value t such that for any subset S of vertices, the sum of the weights is at most the threshold t if and only if the set S is a stable (independent) set. In this note we ask a similar question about vertex colorings: given an integer p, when is it possible to find weights (in general depending on p) for the vertices and... More

Add to personal list
    Summary
    In threshold graphs one may find weights for the vertices and a threshold value t such that for any subset S of vertices, the sum of the weights is at most the threshold t if and only if the set S is a stable (independent) set. In this note we ask a similar question about vertex colorings: given an integer p, when is it possible to find weights (in general depending on p) for the vertices and a threshold value tp such that for any subset S of vertices the sum of the weights is at most tp if and only if S generates a subgraph with chromatic number at most p − 1? We show that threshold graphs do have this property and we show that one can even find weights which are valid for all values of p simultaneously.