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Abstract Lymphatic vessels have traditionally been regar-

ded as a rather inert drainage system, which just passively

transports fluids, leukocytes and antigen. However, it is

becoming increasingly clear that the lymphatic vasculature is

highly dynamic and plays a much more active role in

inflammatory and immune processes. Tissue inflammation

induces a rapid, stimulus-specific upregulation of chemokines

and adhesion molecules in lymphatic endothelial cells and a

proliferative expansion of the lymphatic network in the

inflamed tissue and in draining lymph nodes. Moreover,

increasing evidence suggests that inflammation-induced

changes in the lymphatic vasculature have a profound impact

on the course of inflammatory and immune responses, by

modulating fluid drainage, leukocyte migration or the removal

of inflammatory mediators from tissues. In this review we will

summarize and discuss current knowledge of the inflamma-

tory response of lymphatic endothelium and of inflammation-

induced lymphangiogenesis and the current perspective on the

overall functional significance of these processes.
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Introduction

Lymphatic vessels (LVs) are present in most vascularized

tissues. By absorbing excess tissue fluid and returning it to

the blood vascular circulation, LVs essentially contribute to

tissue fluid homeostasis [1, 2]. Moreover, LVs transport

soluble antigen and leukocytes and therefore are important

for immune function [3]. Afferent LVs begin as blind-

ended capillaries, which give rise to collecting vessels that

eventually merge and connect with draining lymph nodes

(dLNs) (Fig. 1a). Initial lymphatic capillaries are com-

posed of oak-leaf shaped lymphatic endothelial cells

(LECs) that are connected by discontinuous, button-like

cell junctions [4]. This setup gives rise to characteristic

flaps, which represent the prime sites of leukocyte and fluid

entry into LVs [4, 5]. By contrast, collecting LVs are

ideally adapted for the transport of lymph; here, cuboidal

LECs are tightly connected by continuous, zipper-like cell

junctions. Moreover, collecting LVs contain valves and are

surrounded by a continuous basement membrane and a

smooth muscle cell layer [1].

Research of the last 15 years has revealed that the

lymphatic network in peripheral tissues and in LNs is

highly plastic and undergoes substantial changes under

pathologic conditions [1, 2]. For example, tissue inflam-

mation induces rapid, stimulus-specific changes in LEC

gene expression and a stimulus-specific expansion and

remodeling of the lymphatic network. In humans, inflam-

mation-induced lymphangiogenesis has been reported for

psoriasis [6], rheumatoid arthritis [7], inflammatory bowel

disease [8], atherosclerosis [9], chronic airway inflamma-

tion [10] as well as for transplant rejection [11, 12] and

lymphedema [13]. Furthermore, recent animal studies have

revealed that inflammation-induced lymphangiogenesis

directly impacts the course of inflammatory and immune

responses, by modulating fluid drainage, leukocyte migra-

tion or the removal of inflammatory mediators from tissues

[10, 14–19]. Increasing evidence also suggests that LVs

and LECs directly crosstalk with the immune system and
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are involved in antigen presentation and tolerance induc-

tion in LNs [20–22]. The latter processes have been the

focus of excellent recent reviews [23, 24] and therefore

will not be discussed in further detail.

In this review we will introduce the best characterized

mediators of inflammatory lymphangiogenesis and sum-

marize current knowledge about inflammation-induced

gene expression changes in LECs. Furthermore, we will

focus on the morphologic and structural changes of LVs in

inflamed tissues and in dLNs. Finally, we will summarize

how inflammation-induced lymphangiogenesis and lym-

phatic remodeling are thought to impact the inflammatory

process, by modulating leukocyte trafficking, fluid drainage

and chemokine levels in inflamed tissues.

Mediators of inflammation-induced lymphangiogenesis

The best-studied mediators of inflammation-induced lym-

phangiogenesis are vascular endothelial growth factor

(VEGF)-C and VEGF-A, which are produced by stromal

cells like keratinocytes or fibroblasts as well as by

leukocytes in inflamed tissues [1, 2, 25]. Particularly

macrophages are a major source of VEGF-A and VEGF-C

[26–28]. In various inflammatory models, depletion of

macrophages was shown to significantly reduce lymphan-

giogenesis [26–29]. Notably, macrophages may also

physically contribute to lymphangiogenesis by up-regulat-

ing lymphatic marker genes and incorporating into LVs

[11, 29]. Besides VEGF family members, also other leu-

kocyte-derived cytokines contribute to inflammation-

induced lymphangiogenesis (Table 1). For example, lym-

photoxin (LT)a and LTab2 have been implicated in

inflammatory lymphangiogenesis during infection or ter-

tiary lymphoid organ formation [30, 31]. Similarly, inter-

leukin 17 (IL-17) was shown to induce lymphangiogenesis

in a mouse model of ocular autoimmunity [32], whereas

IL-8 promoted LV regeneration and reduced post-surgical

lymphedema formation [33]. Interestingly, also some

inflammatory cytokines with anti-lymphangiogenic activity

have been identified (Table 1). For example, IFNc, a

mainly T cell-derived cytokine, reportedly inhibits LECs

in vitro and in vivo [34–36]. Moreover, inhibition of

transforming growth factor beta (TGFb) was shown to

Fig. 1 Inflammation-induced lymphangiogenesis in peripheral tis-

sues and in dLNs. a Anatomy of the lymphatic vasculature at steady

state: afferent LVs are composed of initial capillaries and collecting

vessels. The lymphatic network in LNs mainly comprises the

subcortical and medullary sinus. b During tissue inflammation,

lymphangiogenic growth factors, such as VEGF-C/D or VEGF-A, are

secreted by tissue-infiltrating leukocytes or by stromal cells. These

factors induce a proliferative growth of the lymphatic vasculature by

lymphatic sprouting or enlargement of preexisting vessels. At the

same time, lymphangiogenesis occurs in dLNs. LN lymphangiogen-

esis-inducing factors are either produced locally (e.g. VEGF-A

produced by B cells) or drained to the LN from the inflamed tissue.

Depending on the type of inflammatory response induced, LN

lymphangiogenesis may be counterbalanced by inhibitory factors (i.e.

IFNc produced by activated T cells)
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enhance lymphangiogenesis in thioglycollate-induced

peritonitis [37] and to induce lymphangiogenesis and

lymphatic drainage in a murine lymphedema model [38].

Overall, the balance of pro- and anti-lymphangiogenic

cytokine expression appears to determine the extent and

nature of inflammation-induced lymphangiogenesis. This

generates a very flexible system, in which tailored

lymphangiogenic responses are initiated, depending on the

type of inflammatory immune response elicited.

Inflammation-induced changes in LEC gene expression

In vitro many inflammatory mediators, such as growth

factors, cytokines or pathogen-derived molecules induce

LEC proliferation, migration or tube formation and there-

fore exert a pro-lymphangiogenic activity (Table 1). Con-

versely, other mediators appear to rather suppress these

processes or to mainly modulate the gene expression phe-

notype of LECs. For example, inflammatory cytokines such

as TNFa, IFNc, IL-1 induce no or little LEC proliferation

[35], but are strong inducers of inflammatory chemokines

and adhesion molecules like ICAM-1 and VCAM-1, which

participate in leukocyte trafficking [35, 39–41]. In fact,

leukocyte trafficking via afferent LVs is typically enhanced

in the context of inflammation [3, 42, 43].

Adhesion molecules

Inflammatory signals have been shown to modulate the

expression of ICAM-1 and VCAM-1 [39, 40], P-selectin

[40], E-selectin [39, 44], L1CAM [45], ALCAM [46] or

CAR [47] in LECs. While some of these molecules con-

tribute to lymphangiogenesis [46, 47], others mediate leu-

kocyte trafficking via afferent LVs [39, 45, 48]. Particularly

inflammation-induced ICAM-1 or VCAM-1 were shown to

be important for dendritic cell (DC) transmigration into [39,

48] and migration within LVs [49]. LVs in resting tissues

express very low levels of ICAM-1 and VCAM-1, but these

adhesion molecules are strongly upregulated in LECs dur-

ing tissue inflammation. This might explain why DC

migration in absence of inflammation occurs independently

of ICAM-1 or VCAM-1 binding integrins [50]. By contrast,

blockade of ICAM-1, VCAM-1 or of the DC-expressed

integrin LFA-1 significantly reduced DC migration to dLNs

in the context of skin inflammation [39, 48]. Interestingly,

interactions between LEC-expressed ICAM-1 and DC-

expressed Mac-1 (CD11b) occurring in the process of DC

migration to dLNs were also shown to modulate the mat-

uration state and function of DCs [51].

Chemokines

Various chemokines are upregulated in LECs in response

to inflammatory signals (Table 2). The chemokine with the

best documented role in leukocyte trafficking into LVs is

CCL21, which attracts CC-chemokine receptor 7 (CCR7)

expressing leukocytes, such as DCs or T cells [3]. Tissue

inflammation was shown to upregulate CCL21 protein

expression in vivo [40]. Moreover, TNFa, VEGF-C as well

as transmural flow were identified as inducers of CCL21

expression in LECs [42, 52, 53] (Table 2). Interestingly, a

substantial fraction of CCL21 is stored intra-cellularly in

vesicles of the Trans-Golgi Network [40, 54]. In vitro

treatment of LECs with TNFa was shown to induce rapid

secretion of CCL21 from its intracellular stores [55], but it

is still unclear how tissue inflammation affects CCL21

secretion in vivo. Interestingly, also neutrophil migration

via afferent LVs, which occurs during acute inflammation,

is mainly CCR7-dependent [56]. Similarly, CCR7 expres-

sion was shown to be the main determinant of regulatory

and effector T cell migration into LVs during acute

inflammation [3, 43]. However, the CCR7-dependence of T

cell migration into lymphatics appears to be less strong in

Table 1 Inflammatory mediators with documented pro- or anti-

lymphangiogenic activity

Mediator Lymphangiogenic

activity

In vitro (1)

In vivo (2)

References

VEGF-C ? 1 & 2 [72, 105]

VEGF-A ? 1 & 2 [72, 105]

LTa ? 2 [31]

LTab2 ? 1 & 2 [30, 106]

IL-17 ? 1 & 2 [32]

IL-8

(CXCL8)

? 1 & 2 [33, 107]

HGF ? 1 & 2 [108]

IL-3 ? 1 [66]

FGF-2

(bFGF)

? 1 & 2 [65]

LPS ? 1 & 2 [61, 66]

CXCL12 ? 1 & 2 [59]

S1P ? 1 & 2 [109]

TNFa - 1 [35]

IL-27 - 1 [60]

IFNa - 1 [34]

IFNc - 1 & 2 [34–36]

TGFb - 1 & 2 [37, 38]

CXCL10/11 - 1 [60]

Various inflammatory mediators have been shown to induce or inhibit

lymphangiogenesis in vitro or in vivo. Lymphangiogenic activity: (?)

pro-lymphangiogenic activity, (-) anti-lymphangiogenic activity.

In vitro/in vivo activity: (1) shown to modulate LEC in vitro prolif-

eration, migration, or tube formation, (2) shown to modulate lym-

phangiogenesis in vivo. HGF hepatocyte growth factor, S1P

sphingosine-1-phosphate
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the context of chronic inflammation [43], suggesting a role

for other inflammation-induced chemokines or other che-

motactic molecules under this condition.

Besides CCL21, various other chemokines are upregu-

lated in LECs in response to inflammatory signals

(Table 2), but thus far only two further chemokines have

been shown to support leukocyte migration into afferent

LVs. Inflammation-induced CXCL12 reportedly enhanced

the migration of CXCR4-expressing dermal DCs and

Langerhans cells to dLNs [57]. Moreover, LEC-expressed

CX3CL1 (fractalkine) was recently shown to support DC

transmigration across lymphatic endothelium and the

overall trafficking process from inflamed tissue to dLNs

[58]. On the other hand, experiments performed in

CCR7-/- mice revealed that DC migration to dLNs

remained strictly CCR7-dependent in the context of skin

inflammation [40]. Thus, although CCL21/CCR7 signaling

remains of key importance for DC migration during

inflammation, also other LEC-expressed chemokines con-

tribute to this process, possibly by affecting distinct steps in

the migration cascade.

In analogy to the role of chemokines in angiogenesis,

increasing evidence suggests that inflammation-induced

chemokines may be involved in the regulation of lym-

phangiogenesis. For example CXCL12 reportedly induces

lymphangiogenesis in vitro and in vivo [59]. Similarly,

CXCL8 (IL-8), which is upregulated in LECs in response

to various inflammatory stimuli, reportedly enhances

lymphangiogenesis [33, 41]. By contrast, inflammation-

induced CXCL10 and CXCL11 (Table 2) were shown to

exert anti-lymphangiogenic activity in vitro [60]. It has

also been suggested that the upregulation of chemokines

might serve to indirectly support lymphangiogenesis. In a

murine peritonitis model, inflammation-induced chemo-

kine expression in LECs was responsible for the attraction

and association of macrophages with LVs, what in turn

induced lymphangiogenesis by macrophage-derived

lymphangiogenic growth factors [61].

Stimulus-specific changes in LEC gene expression

Several studies have revealed that many changes in LEC

gene expression occur in a highly stimulus-specific manner

[35, 39–41, 62]. For example, performing gene expression

analyses of LECs isolated from inflamed or resting murine

Table 2 Inflammatory

mediators inducing chemokine

expression in LECs

Various inflammatory stimuli

have been shown to induce

chemokine expression in LECs

in vitro or in vivo. Chemokines

written in bold font: protein

expression reported.

Chemokines written in regular

font: mRNA expression

reported

MDP muramyl dipeptide, LTA

lipoteichoic acid, DNFB

dinitrofluorobenzene

Inflammatory 
stimulus 

Chemokines
induced Comment Ref. 

in vitro 
TLR ligands 
(TLR2/3/4/6/8/9) 

CCL5, 20, 21; 
CXCL8/9/10/11/12 

stimulus-specific 
responses [41] 

TLR ligands 
(TLR1/2/3/4/6/9) 

CCL2/5 
CXCL8

stimulus-specific 
responses [62] 

LPS 
CCL2/3/5/7/8/20 
CXCL1/3/5/6/8

[44] 

LPS 
CCL2/5 
CX3CL1 [61] 

TNFα
CCL2/5/20/21 

CXCL2/5 
CX3CL1 

[39 ] 

TNFα CCL21 [55] 

TNFα / IFNγ CCL2/7 
CXCL5/9/10 

[40] 

MDP / LTA 
CCL2/7 
CXCL5 [40] 

Transmural flow CCL21 [53] 

VEGF-C CCL21 [52] 

in vivo

LPS injection CCL2 peritoneal 
inflammation [61] 

CHS response to 
DNFB 

CXCL12 skin inflammation [57] 

CHS response to 
oxazolone 

CCL2/7/8/21
CXCL1/5/9/10 

skin inflammation [40] 

CFA injection 
CCL2/7/21

CXCL5
skin inflammation [40] 

VEGF-C CCL21 Intradermal 
injection  [52] 

TNFα CCL21 Intradermal 
injection [42] 

Lymph flow CCL21 lymphedema or 
overhydration [53] 

Pancreatic islet 
inflammation 

CCL2, CCL21 
CXCL10 

mouse model of 
autoimmune 
diabetes 

[110] 
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ear skin we have recently observed that inflammation

elicited by a contact hypersensitivity (CHS) response to

oxazolone or by CFA injection induced a similar degree of

tissue swelling, but a differential upregulation of inflam-

matory chemokines (Table 2) and of adhesion molecules

(e.g. ICAM-1, P-selectin) [40]. Stimulus-specific upregu-

lation of chemokines and of ICAM-1 or VCAM-1 was also

observed in other studies when treating LECs in vitro with

different cytokines or with Toll-like receptor (TLR) ligands

[35, 39–41, 62]. It is likely that stimulus-specific upregu-

lation of trafficking molecules serves to fine-tune leukocyte

migration or other chemokine-induced responses in LECs

in the context of the ongoing immune response.

Inflammation also modulates the expression of lym-

phatic marker genes in a stimulus-specific manner. Various

stimuli reportedly induce down-regulation of the hyaluro-

nan receptor LYVE-1 in LECs [10, 40, 63]. The signifi-

cance of this down-regulation is presently unclear, but

recent findings suggest that loss of LYVE-1 may alter LEC

barrier function [64]. Interestingly, LYVE-1 was also

shown to bind and to enhance the activity of fibroblast

growth factor-2 (FGF2), an inflammation-induced factor

with reported lymphangiogenic activity [65]. Also the

transcription factor Prox-1 and its target gene VEGFR-3

were shown to be down-regulated in LECs in the context of

CHS-induced skin inflammation [15, 40]. By contrast,

Prox-1 and VEGFR-3 expression remained constant during

tissue inflammation induced by CFA injection [40],

whereas both genes were upregulated in LVs in a mouse

model of thioglycollate-induced peritonitis [66]. It is per-

ceivable that modulation of Prox-1 affects lymphatic dif-

ferentiation, whereas changes in VEGFR3 expression

likely affect LEC responsiveness towards inflammation-

induced VEGF-C.

Inflammation-induced changes in afferent LVs

Inflammation leads to a rapid dilation of LVs in tissues [1,

67, 68]. Additionally, the size of the lymphatic network

increases due to proliferative expansion [68–70]. This may

feature a proliferative enlargement of preexisting vessels

[67] or the sprouting of new LVs [27, 28, 66] (Fig. 1b).

Interestingly, the extent of lymphangiogenic sprouting

versus expansion of preexisting vessels appears to depend

on the lymphangiogenesis-inducing stimuli. VEGF-A was

shown to mainly induce LV enlargement [71, 72], whereas

VEGF-C induced sprouting lymphangiogenesis [72, 73].

Besides changing lymphatic morphology, persistent

inflammation may also alter the typical organization of

lymphatic cell junctions [4]. In a model of chronic airway

inflammation induced by infection with Mycoplasma pul-

monis, the characteristic button-like cell junctions were

replaced by continuous, zipper-like junctions [74]. The

functional significance of this conversion is not known, but

it is likely that these structural differences affect lymphatic

drainage or leukocyte migration.

Inflammation-induced changes in the lymphatic

network in dLNs

Inflammation-induced lymphangiogenesis does not only

affect the inflamed tissue but also extends to dLNs [36, 68–

70, 75] (Fig. 1b). In a mouse model of skin inflammation

induced by immunization with complete Freund’s adju-

vants (CFA), LN lymphangiogenesis was mainly driven by

VEGF-A secreted from LN-resident B cells. By contrast, in

a mouse model of chronic skin inflammation induced by a

CHS response to oxazolone, LN lymphangiogenesis was

shown to be mediated by VEGF-A that was drained to the

LN from its production site in the inflamed skin [68].

Different from nodal B cells, activated T cells appear to

have a negative impact on LN lymphangiogenesis. IFNc
secreted by activated T cells reportedly inhibits LN lym-

phangiogenesis and limits the size of the lymphatic net-

work in the LN T cell area in steady state and in

inflammation [36, 75]. Thus, it appears that depending on

the inflammatory stimulus and the type of immune

response induced, the pattern and extent of LN lymphan-

giogenesis may vary. As a further illustration of this

hypothesis; lipopolysaccharide (LPS) injection into the

skin was shown to promote LN lymphangiogenesis,

whereas injection of the T cell mitogen concanavalin-A did

not increase the lymphatic vasculature in the dLN,

although both agents accounted for potent inflammatory

reactions at the site of injection [36].

Intriguingly, experiments in mouse models of lymphe-

dema have revealed that lymphedema formation was

reduced and lymphatic regeneration and drainage were

enhanced in mice devoid of T cells [75] or upon depletion

of CD4? T cells [76]. The latter findings suggest that

T-cell-derived mediators might also negatively impact

lymphangiogenesis and LV function outside of the LN.

Regarding to functional significance of inflammation-

induced LN lymphangiogenesis, experimental evidence

suggests that this process serves to regulate leukocyte

migration to and from LNs. In the context of CFA-induced

inflammation, VEGFR-2- and VEGFR3-mediated blockade

of LN lymphangiogenesis was shown to reduce DC

migration to dLNs [69] as well as lymphocyte egress via

efferent lymphatics [70]. On the other hand, LECs in LNs

have been shown to present antigen to T cells and to par-

ticipate in tolerance induction [21, 22]. Thus, it is likely

that LN lymphangiogenesis directly modulates the induc-

tion of adaptive immunity in LNs [23, 24].
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Role of afferent LVs in modulating inflammatory

and immune responses

Several studies have shown that tissue inflammation not

only alters LV morphology but also changes lymphatic

function, for example the capacity of LVs to mediate leu-

kocyte migration or to drain tissue fluids [10, 14–19]. Such

changes in LV function profoundly impact the persistence

or resolution of tissue inflammation. In the following sec-

tions, the impact of alterations in LV immune and drainage

functions on the inflammatory response shall be discussed

in greater detail.

Leukocyte trafficking

Besides removing tissue fluids and inflammatory media-

tors, the lymphatic network is also thought to contribute to

the downregulation and resolution of inflammation by

facilitating tissue exit of leukocytes. For example, regula-

tory T cells have been identified as a major cell type

emigrating from inflamed skin to dLNs, where they are

thought to downregulate cutaneous immune responses [77].

Moreover, the clearance of tissue-infiltrating macrophages

via LVs has been discussed as an important step in the

resolution of inflammation [78, 79], but also contradicting

data exist on this topic [80].

On the other hand, tissue exit of leukocytes via LVs may

also enhance the inflammatory process. For example, an

activated and expanded lymphatic network is known to

increase the migration of antigen-presenting DCs to dLNs,

what may support the induction of adaptive immunity [16, 69].

This is particularly relevant during organ transplantation,

where studies in humans have revealed a positive correlation

between lymphangiogenesis and transplant rejection [11, 12].

Moreover, in animal models, blocking lymphangiogenesis

was shown to significantly reduce DC migration and graft

rejection [16–19]. However, organ transplantation represents

a special condition, in which lymphatic connectivity with

dLNs need to be formed de novo, and additionally strong allo-

immune responses may be induced. By contrast, in the context

of endogenous tissues with preexisting lymphatic vasculature

and immune connectivity with dLNs, blockade of inflamma-

tion-induced lymphangiogenesis was shown to exacerbate the

inflammatory response, likely due to the enhancement of tis-

sue edema [10, 14, 15].

LV drainage

Increasing evidence suggests that lymphatic drainage is

frequently compromised in the context of chronic inflam-

mation, such as in psoriasis [81, 82] or Morbus Crohn [83,

84]. However, in animal models, both inflammation-

induced enhancement and reduction of lymphatic drainage

has been observed. For example, injection of LPS [27],

reportedly enhanced lymphatic drainage in the skin,

whereas in the diaphragm drainage was reduced in a model

of LPS-induced peritonitis [28], suggesting that the

response of the lymphatic vasculature to an inflammatory

stimulus might not be uniform but organ-specific. How-

ever, such organ-specific differences, have not been studied

in great detail thus far. By contrast, an abundant literature

indicates that the nature of the inflammatory stimulus has a

great impact on lymphatic drainage function. For example,

in the skin, LV drainage reportedly was reduced in the

context of CHS- [85, 86] and UVB-induced [15, 87] skin

inflammation, whereas skin inflammation induced by

transgenic overexpression of interleukin-4 [88] lead to

enhanced lymphatic drainage. Several studies have also

shown that VEGF-A-induced lymphangiogenesis gener-

ated less functional LVs as compared to lymphangiogen-

esis induced by VEGF-C and VEGF-D [15, 71, 87, 89]. In

general, activation of the VEGFR-3 pathway appears to be

an effective way of stimulating productive lymphangio-

genesis and stimulating lymphatic drainage: genetic over-

expression or injection of recombinant VEGF-C was

shown to alleviate UV-B or CHS-induced acute and

chronic skin inflammation [15, 89, 90] as well as chronic

inflammatory arthritis [91], likely by enhancing lymphatic

drainage function. By contrast, inhibition of VEGFR-3

signaling impaired lymphatic growth and exacerbated

inflammation in mouse models of airway inflammation

[10], inflammatory arthritis [14] or chronic skin inflam-

mation [15], likely by promoting tissue edema formation.

Many inflammatory mediators are known to enhance

permeability of BVs, but only few in vivo reports about

effects on LV permeability exist. Nitric oxide (NO) and

VEGF-A were shown to contribute to the leakiness of

dermal LVs in the context of UV-B-induced inflammation

[87, 92]. In vitro, inflammatory mediators such as TNFa,

IL-1, histamine, thrombin and VEGF-C were shown to

decrease the barrier function of LEC monolayers [35, 93,

94]. Moreover, inflammation was also shown to impact the

pumping function of lymphatic collectors. Specifically,

various inflammatory mediators, such as histamine, pros-

taglandins or NO were shown to reduce lymphatic pumping

[95–97], whereas VEGF-C enhanced pumping [98].

Chemokine scavenging

In addition to passively draining tissue fluids and inflam-

matory mediators, LVs have been shown to actively

remove chemokines from inflamed tissues. In particular,

the chemokine scavenging receptor (CSR) D6, which is

expressed by LECs and is upregulated during inflammation

[99], was shown to be important for the resolution of tissue

inflammation [100, 101]. D6 internalizes and degrades
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inflammatory chemokines (i.e. CCL2, 3, 5, 8, 12, 17, 22),

thereby accelerating their elimination from tissues. More-

over, it was recently proposed that D6 functions to ensure

selective presentation of CCL21 on LECs, by suppressing

inflammatory chemokine binding and accumulation. In

inflamed tissues of D6-deficient mice, a massive associa-

tion of myelomonocytic cells around LVs was observed,

leading to obstructed lymphatic drainage and reduced DC

migration to dLNs [100]. Thus far, only the function of D6

in LECs has been analyzed. However, it was recently

reported that another CSR, namely the CXCL11- and

CXCL12-binding CXC chemokine receptor 7 (CXCR7),

was upregulated in inflamed LVs [102]. Thus, it is likely

that besides D6, further CSRs contribute to the inflamma-

tion- and immune-modulating functions of LVs.

Conclusion

Over the last 15 years a lot of progress has been made in

understanding how tissue inflammation alters gene

expression in LECs as well as LV morphology and func-

tion. The emerging view is that the inflammatory response

of the lymphatic endothelium and its impact on LV func-

tionality is very much stimulus-specific and context-

dependent. Depending on the inflammatory stimulus and

the resulting immune response, different pro-/anti-lym-

phangiogenic mediators are produced in the tissue. This

generates a unique milieu, which impacts the inflammatory

response of LECs and the overall nature and extent of

lymphangiogenesis. Such stimulus-specific changes in the

lymphatic vasculature may greatly influence LV function-

ality, such as fluid drainage and leukocyte trafficking.

Recent data also indicate that the same inflammatory

stimulus may have different effects on LV function in

different organs [27, 28]. The latter might be explained by

the fact that clear morphologic [103] and gene expression

[104] differences exist between LVs in different body

parts. However, many of these differences are only now

starting to be unraveled. By contrast, already to date

abundant evidence suggests that the impact of lymphan-

giogenesis on tissue inflammation is very much context-

dependent. Lymphangiogenesis occurring within trans-

planted organs (e.g. cornea [16, 17], heart [18], pancreatic

islands [19] or kidney [11, 12]) has been shown to exac-

erbate tissue inflammation, supposedly by re-establishing

connectivity with the immune system in the dLNs and

hence contributing to the rejection process. On the other

hand, various recent studies reveal that in tissues with a

pre-established LV network (e.g. the skin [89], lung [10] or

joints [14, 91]) productive, in particular VEGF-C-medi-

ated, lymphangiogenesis contributes to the resolution of

inflammation, supposedly by promoting tissue drainage.

Thus, stimulation or inhibition of lymphangiogenesis could

represent an attractive novel therapeutic strategy for

reducing chronic inflammation or transplant rejection,

respectively.
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