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Abstract We present a computational methodology to value and hedge long term

zero-coupon bonds trading in short and medium term ones. For this purpose we

develop a discrete time stochastic yield curve model with limited availability of

maturity dates at a fixed time point and newly issued bonds at future time points.

This involves reinvestment risk and there is no perfect hedging strategy available for

long term liabilities. We calibrate the model to market data and describe optimal

hedging strategies under a given risk tolerance. These considerations provide a

natural extrapolation of the yield curve beyond the last liquid maturity date, and a

framework which allows to value long term insurance liabilities, for instance, under

Solvency 2. Moreover, we determine the optimal trading strategy replicating the

liabilities under the given risk tolerance.

1 Introduction

This paper is motivated by the problem of valuing and hedging long term insurance

liabilities. Solvency directives require to value liabilities in a market-consistent

way. That is, insurance cash-flows should be optimally replicated by an appropriate

investment strategy of liquid financial instruments. This replication might prove

difficult when considering long term liability cash-flows such as life insurance

contracts or pension liabilities. This is because the value of these cash-flows may

depend on factors, such as mortality rates, which cannot be traded in a liquid

market. Therefore the insurer is facing underwriting risk. Moreover, the value of

these cash-flows may also depend on yields beyond the maturities available in the

liquid bond market. In that case, securities with shorter times to maturity need to be

rolled over and the insurer is also subject to reinvestment risk. Because of the
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absence of liquid markets for these risks, the insurer cannot hedge the liabilities

completely, or complete hedging may be highly capital inefficient. A possible

approach is to value long term contracts as the minimal capital which must be

invested in liquid financial instruments to cover the contract at an acceptable level

of risk, see Hilli et al. [9]. In the literature this type of hedging technique is known

as acceptable hedging. A mathematical presentation can be found in Artzner et al.

[1].

In this paper we apply this valuation approach to a specific sub-problem of the

one outlined above. We aim to value long term deterministic cash-flows with short

and medium term zero-coupon bonds. This means that we only consider

reinvestment risk. Our valuation methodology is not based on simple yield curve

extrapolation using families of parametrized curves, such as the Svensson family

(see e.g. Müller [14]), but rather on replication with actual investment strategies.

We assume that we can trade short and medium term zero-coupon bonds in a liquid

market. In practice, this is not entirely the case, since most of the medium term

securities in the liquid government and corporate bond market are coupon bearing.

Because coupon bonds are simply linear combinations of zero-coupon bonds with

different maturities, our methodology can be modified for that case. However, the

valuation algorithm becomes more complex from the computational point of view.

The first step of our work is to model the yield curve process appropriately.

Classical stochastic term structure models, which assume that bonds with unlimited

times to maturity are traded at each point in time, do not provide the right

framework for our problem and do not seem appropriate for real world solvency

modeling. In our set-up we can only trade bonds up to a certain time to maturity, and

at each point in time a new bond is issued into the market with maturity date

unavailable at the previous time points. This involves roll over and reinvestment

risk in a natural way. To our knowledge there are only a few papers in the literature

dealing with the problem of modeling bonds up to a finite time to maturity with

newly issued bonds as time passes. See Sommer [19], and Dahl [4, 5]. In Sommer

[19] a continuous time model with new bonds being issued continuously in time is

considered, whereas in the continuous time setting of Dahl [5] new bonds are issued

at a fixed set of time points. In Dahl [4] reinvestment risk is introduced in a discrete

time non-recombining binomial model.

We work in a discrete time set-up and present a Heath-Jarrow-Morton type model

with time-dependent volatility structure based on ideas developed in Ortega et al.

[16], and Teichmann and Wüthrich [20]. In particular, we modify the model

presented in [20] introducing the restriction of finitely many available times to

maturity, and modeling newly issued zero-coupon bonds using an additional

stochastic structure. In this way we obtain a market model with reinvestment risk.

Except for the market price of risk, the calibration of the model to market data is

straightforward. The model has two essential features for the problem of valuing

long term liabilities: its calibration is consistent over a long period of time and it

does not require nested simulations to generate yield curve scenarios. The model is

presented in Sect. 2 and the calibration procedure in Sect. 5. The rest of the paper is

organized as follows. In Sect. 3 we introduce trading strategies in this market model

and prove formally that deterministic long term cash-flows are unattainable. Then,
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we define the concept of acceptable hedging in the context of our model and

formulate the corresponding dynamic stochastic optimization problem. In Sect. 4.1

we apply the Galerkin approximation technique which allows to efficiently solve the

optimization problem numerically, see e.g. Koivu and Pennanen [13]. To apply this

technique, classes of parametric trading rules need to be considered. In Sect. 4.2 we

consider four classes and derive their properties. Finally, in Sect. 6 we apply the

methodology to zero-coupon bond price time series derived from Swiss government

bonds.

2 Bond market model with reinvestment risk

2.1 Bond market model with finitely many instruments

We propose a discrete-time bond market model. Choose a fixed grid size d[ 0 and

d; n 2 N with d \ n. Let J ¼ f0; d; . . .; ndg be the set of discrete time points with

final time horizon T = nd. Let D ¼ f1; . . .; dg and assume that at each time point

t 2 J zero-coupon bonds with times to maturity jd for j 2 D are available at the

financial market. Define the sets J0 ¼ J n f0g ¼ fd; . . .; ndg and D� ¼ D n fdg ¼
f1; . . .; d � 1g: Our aim is to model the d zero-coupon bond prices stochastically at

each t 2 J0 taking into account that the zero-coupon bonds with maturities t ? jd for

j 2 D� are available at the market at time t - d, whereas the one with maturity

t ? dd is not.

Let ðX;F ;P;FÞ be a filtered probability space with real-world probability

measure P and filtration F ¼ ðF tÞt2J : We aim to model the d-dimensional F-

adapted yield curve process

ðYtÞt2J ¼ ððYt;1; . . .; Yt;dÞ0Þt2J :

Note that for t 2 J close to T the yield curve Yt refers to securities which may expire

after the final time horizon T. The zero-coupon bond price process is defined by

ðPtÞt2J ¼ ððPt;1; . . .;Pt;dÞ0Þt2J ;

where Pt;j ¼ expð�jdYt;jÞ for j 2 D: This price process is by assumption F-adapted

and observable at the market. Let ðetÞt2J0 ¼ ððet;1; . . .; et;dÞ0Þt2J0 be F-adapted, d-

dimensional independent standard Gaussian innovations under P; i.e. et is F t-

measurable, independent of F t�d and et �Nð0; IdÞ under P for all t 2 J0:
Define a probability measure P

� equivalent to P via the density process ðntÞt2J0

given by

nt ¼
Yt=d

s¼1

exp � 1

2
jjlsdjj

2 þ l0sdesd

� �
;

where ðltÞt2J0 is a d-dimensional previsible process called the market price of risk

process. Let ðe�t Þt2J0 be F-adapted, d-dimensional independent standard Gaussian

innovations under P�: For t 2 J0 we have under P�
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et � lt ¼
ðdÞ

e�t ; given F t�d: ð1Þ

For more details concerningP�we refer to Wüthrich and Merz [21], Sects. 2.3 and 2.4.

The bank account process is defined by B0 = 1 and for t 2 J0

Bt ¼ exp
Xt=d

s¼1

dYðs�1Þd;1

 !
¼
Yt=d

s¼1

P�1
ðs�1Þd;1:

This process is previsible and describes the one period risk-free roll over, also called

locally riskless investment (see Example 5.5 in Föllmer and Schied [7]). In order to

obtain a model which is free of arbitrage we require under P� for all t 2 J0 and j 2 D�

B�1
t�dPt�d;jþ1 ¼ E

�½B�1
t Pt;jjF t�d�: ð2Þ

The existence of an equivalent probability measure P
� �P such that the price

process fulfills (2) rules out arbitrage in the resulting pricing model, we refer to

Delbaen and Schachermayer [6] for the general version of the no-arbitrage condi-

tion. In our setting condition (2) is formulated for j 2 D� because the bond with

time to maturity dd is not available at previous time points. As we discuss below,

the extension of the model to bonds that are only available at later time points

immediately leads to an incomplete market model with infinitely many equivalent

measures which satisfy (2). Our aim is to price these bonds using dynamic hedging

arguments with instruments available at the market.

2.2 Stochastic yield curve modeling

First, we formulate our model under P
� considering only maturities in D-. We

construct a semi-parametric model based on ideas presented in Teichmann and

Wüthrich [20]. Choose t 2 J0: For given yield curve Yt�d we make the following

model assumption for j 2 D�

jdYt;j ¼ ðjþ 1ÞdYt�d;jþ1 � dYt�d;1 þ ajðYt�d;jþ1Þ þ
ffiffiffi
d
p Xd�1

i¼1

hðYt�d;jþ1Þkije
�
t;i; ð3Þ

where h : R! R is a real function which describes how yield volatilities scale with

respect to yield levels. Set

K� ¼ ðK�ji Þi;j2D� ¼ ðkijÞi;j2D� 2 R
ðd�1Þ�ðd�1Þ:

Our explicit choice of h is discussed later on. The function h is called volatility

scaling factor and K� is called matrix of return directions. If we drop the last two

terms on the right-hand side of (3), we obtain the no-arbitrage condition in case of a

deterministic yield curve. The last term specifies uncertainty in the future yield

curve. The drift term aj is determined by the no-arbitrage condition (2). From [20],

Lemma 3.1, we have for all t 2 J0 and j 2 D�

ajðYt�d;jþ1Þ ¼
d
2

Xd�1

i¼1

hðYt�d;jþ1Þ2k2
ij: ð4Þ
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We introduce some notation to simplify (3) and (4). Let e�t ¼ ðet;1; . . .; et;d�1Þ0 and

l�t ¼ ðlt;1; . . .; lt;d�1Þ0: Define the functions f� : Rd ! R
ðd�1Þ�ðd�1Þ and

R� : Rd ! R
ðd�1Þ�ðd�1Þ by

y 7! f�ðyÞ ¼ diag
�
hðy2Þ; . . .; hðydÞ

�
; and y 7!R�ðyÞ ¼ f�ðyÞK�

�
K�
�0

f�ðyÞ:

We consider the process ð ~Y�t Þt2J0 ¼ ðð ~Y�t;1; . . .; ~Y�t;d�1Þ
0Þt2J0 given by

~Y�t;j ¼ jdYt;j � ðjþ 1ÞdYt�d;jþ1 ¼ � log
Pt;j

Pt�d;jþ1

:

These describe the one period log-returns on the bonds. Under the real-world

measure P we obtain the following representation (see Sect. Proof of Lemma 2.1 in

‘‘Appendix’’).

Lemma 2.1 Let t 2 J0: Under (1), model equation (3) and condition (4) can be

formulated as

~Y�t ¼ d �Yt�d;11� þ 1

2
spðR�ðYt�dÞÞ

� �
þ

ffiffiffi
d
p

f�ðYt�dÞK�ðe�t � l�t Þ; ð5Þ

where 1� ¼ ð1; . . .; 1Þ0 2 R
d�1 and spðR�ð�ÞÞ ¼ ðR�ð�Þ11; . . .;R�ð�Þd�1;d�1Þ

0: Thus,

~Y�t is multivariate Gaussian distributed under P; given F t�d; with conditional mean

E½ ~Y�t jF t�d� ¼ d �Yt�d;11� þ 1

2
spðR�ðYt�dÞÞ

� �
�

ffiffiffi
d
p

f�ðYt�dÞK�l�t ;

and conditional covariance matrix

Cov½ ~Y�t jF t�d� ¼ dR�ðYt�dÞ:

The lemma provides a vectorial representation of (3) and (4), and characterizes

the multivariate distribution of the one period log-returns on the bonds.

For t 2 J0 the bond which matures at time t ? dd is not traded at time t - d and

therefore the choice of the model for this security is not restricted by the no-

arbitrage condition (2) under P�: For this reason we formulate a stochastic model for

the process ðYt;dÞt2J directly under P: We propose to couple equation (3) with the

following stochastic representation for t 2 J0 and a given yield curve Yt�d

ddYt;d ¼ ðd � 1ÞdYt;d�1 þ dbðYt�dÞ þ
ffiffiffi
d
p

hðYt�d;dÞjet;d; ð6Þ

where j 2 R is a constant and b : Rd ! R is a real function which describes the

slope at the long end of the yield curve. We call this function long end slope factor

and choose it explicitly later on. The first two terms in (6) describe a linear con-

tinuation of the yield curve at the long end. The last term adds a stochastic part. This

completes the formulation of our model assumptions.

To condense the model assumptions in one equation we introduce additional

notation. Define the functions f : Rd ! R
d�d and R : Rd ! R

d�d by
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y 7! fðyÞ ¼ diagðhðy2Þ; . . .; hðydÞ; hðydÞÞ; and y 7!RðyÞ ¼ fðyÞKK0fðyÞ; ð7Þ

where

We also define the transformed yield curve process ~Yt ¼ ð ~Y�t ; ddYt;d � ddYt�d;dÞ0

and ~lt ¼ ðl�t ; 0Þ
0: We formulate our bond market model under the real-world

measure P as follows (see Sect. Proof of Lemma 2.2 in ‘‘Appendix’’).

Lemma 2.2 Let t 2 J0: Under (1), model Eqs. (3), (6) and condition (4) can be

formulated as

~Yt ¼ d �Yt�d;11þ 1

2
spðRðYt�dÞÞ þ bðYt�dÞ �

1

2
ðfðYt�dÞKÞ2dd

� �
ed

� �

þ
ffiffiffi
d
p

fðYt�dÞKðet � ~ltÞ;
ð8Þ

where 1 ¼ ð1; . . .; 1Þ0 2 R
d and ed ¼ ð0; . . .; 0; 1Þ0 2 R

d: Thus, ~Yt is multivariate

Gaussian distributed under P; given F t�d; with conditional mean

E½ ~YtjF t�d� ¼ d �Yt�d;11þ 1

2
spðRðYt�dÞÞ þ bðYt�dÞ �

1

2
ðfðYt�dÞKÞ2dd

� �
ed

� �

�
ffiffiffi
d
p

fðYt�dÞK~lt;

and conditional covariance matrix

Cov½ ~Yt

		F t�d� ¼ dRðYt�dÞ:

Equation (8) shows that the market model is fully specified by h; b; K and ðl�t Þt2J0 :

The process ðlt;dÞt2J0 is not determined by the market model. Therefore, there are

infinitely many equivalent measures which satisfy (2) in this model, i.e. we have

incompleteness. Note that only the conditional distribution given the information in

the previous period is Gaussian. For general h, conditioning over multiple periods

leads to more complicated distributions and there are no closed form expressions for

the moments available.

3 Trading strategies and hedging

A trading strategy is a d-dimensional previsible stochastic process

X ¼ ðXtÞt2J0 ¼ ððXt;1; . . .;Xt;dÞ0Þt2J0 ;
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where Xt,j denotes the amount of money invested from time t - d to t in the zero-

coupon bond with time to maturity jd. We define the F-adapted return process

ðRtÞt2J0 ¼ ððRt;1; . . .;Rt;dÞ0Þt2J0 by

Rt;j ¼
Pt;j�1P�1

t�d;j ¼ expfjdYt�d;j�ðj� 1ÞdYt;j�1g ¼ expf�~Yt;j�1g; for j 2D n f1g;
P�1

t�d;j ¼ expfdYt�d;1g; for j¼ 1:

(

This return denotes the value at time t 2 J0 of one unit of cash invested at time t - d
in the security with time to maturity jd. We also introduce the F-adapted process

ðV�t ðXÞÞt2J0 defined by the value of X at time t 2 J0 before rebalancing, i.e. V�t ðXÞ ¼
X0tRt: The F-adapted value process ðVtðXÞÞt2J for a trading strategy X is defined by

VtðXÞ ¼
X0tþd1 for t\T ;
V�T ðXÞ for t ¼ T :




Trading strategies with no outflows or inflows of cash over time are called self-

financing. Formally, X is self-financing if for all t 2 J0

VtðXÞ ¼ V�t ðXÞ: ð9Þ

For X self-financing we identify V�t ðXÞ with VtðXÞ and we only use the latter

notation. Note that linear combinations of self-financing trading strategies are self-

financing.

An arbitrage opportunity is a self-financing trading strategy X having initial value

V0ðXÞ ¼ 0; terminal value VTðXÞ� 0; P-a.s., and P½VTðXÞ[ 0�[ 0: Such trading

strategies are ruled out in our market model by the existence of an equivalent

probability measure satisfying (2). A claim with maturity T is an F T -measurable

random variable cT. We think of cT as a future liability which has to be covered at

time T. A claim cT is called attainable if there exists a self-financing trading strategy

XcT
such that VT

�
XcT

�
¼ cT ; P-a.s. An attainable claim can perfectly be replicated

by investing V0

�
XcT

�
at time 0 and adjusting the portfolio holdings at times t 2 J0

according to the trading strategy XcT
: In our market model we have the following.

Theorem 3.1 The market model (8) is incomplete, i.e. there are claims with

maturity T which are not attainable. In particular, the claim cT = 1, which

corresponds to a zero-coupon bond with time to maturity T [ dd, is not attainable.

The first statement follows from Föllmer and Schied [7], Theorem 5.38. The

second statement is intuitively clear given our model assumptions. A formal proof is

given in Proof of Theorem 3.1 in ‘‘Appendix’’. The unattainability of cT = 1 for

T [ dd is a desired property of our model. For instance, a life-time annuity with

expected payments having more than 30 years to maturity cannot be hedged

because there are no bonds available at the financial market with such long times to

maturity. Bonds of shorter maturities need to be rolled over. This involves

reinvestment risk because of the uncertainty in future yields.

In the literature there are several approaches to tackle the problem of hedging

claims in incomplete financial markets. Super-replication is one example. A super-
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replicating strategy X is a self-financing trading strategy such that VTðXÞ� cT ; P-

a.s. Such X is often very expensive (see Example 3.4 below) and in some cases it

does not even exist. For more details see Föllmer and Schied ([7], Sects. 7 and 8).

In this paper we follow a more practical approach based on Artzner et al. [1], and

Hilli et al. [9]. We define acceptable hedging strategies as those which cover the claim

at maturity at an acceptable level of risk. LetA denote a set of F T -measurable random

variables. This set is called acceptance set and is interpreted as the set of all payoffs at

maturity which are within our risk tolerance in hedging the claim cT. For example, in

Hilli et al. [9] acceptance sets of the form A ¼
�

V is F T -measurable j qðV �
cTÞ	 0

�
for given risk measures q are considered. A self-financing trading strategy

X is said to hedge cT at acceptance level A if VTðXÞ 2 A; P-a.s. The initial value of

cT at acceptance level A is defined by

V0ðAÞ ¼ inf
X self�financing

VT ðXÞ2A;Pa:s:

V0ðXÞ: ð10Þ

Remark 3.2 In [1] and [9] A is defined with respect to the net terminal payoff after

the claim has been paid, i.e. VTðXÞ � cT : We define A with respect to the terminal

payoff VTðXÞ: Note that A depends on the claim cT because it should be chosen

reasonably relative to cT. In this way we obtain a more concise representation since

the dependence from cT is implicit in A: For clarity we should write A ¼ AðcTÞ:
We drop this explicit dependence in the notation, since later on we fix cT = 1.

Remark 3.3 We only consider constraints for the value at the final time horizon

T. In practice, we might be interested in additional value constraints at previous time

points (e.g. at the end of each calendar year). Our methodology can also be applied

for these constraints. For computational simplicity we do not consider them in this

paper.

The rest of the paper exposes a method to solve (10) numerically for the claim

cT = 1 in the market model of Sect. 2. We define the set of feasible trading

strategies by1

D ¼ fX is a self-financing trading strategy jXt � 0;P-a.s.; for all t 2 J0g;

i.e. we restrict ourselves to long-only trading strategies. Note that D is a convex

cone. In this work we consider acceptance sets of the following form

A ¼
�

V isF T -measurable
		E½f ðVÞ� 	 0

�
; ð11Þ

where f : R! R
m is a continuous function with convex components. We consider

such functions only on R� 0 because VTðXÞ� 0; P-a.s., for all X 2 D:

Example 3.4 Let m = 1, f0 [ 0 and define f ðvÞ ¼ maxff0 � v; 0g: This corre-

sponds to the acceptance set A ¼ fV jV � f0;P-a.s.g: In particular, for f0 = 1, this

corresponds to super-replication of cT = 1. Note that for all t 2 J0 we have

1 Throughout this paper for a vector v we write v	 0 meaning that all components of v are lower or equal

to zero. In the same sense we also write v� 0:
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Rt,1 C 1, P-a.s. Then, the risk-free roll over with sufficiently large initial capital

provides a super-replicating strategy. Typically, such a super-replication is rather

capital inefficient.

Example 3.5 Let m ¼ 1; f0 [ 0; u [ 0; k 2 N and define f ðvÞ ¼ maxff0 �
v; 0gk � uk: In this way we require the upper bound uk to the lower k-th partial

moment with target level f0. We interpret u [ 0 as a risk tolerance parameter.

Higher lower partial moments indicate higher shortfall risk. We use these

acceptance sets in the numerical example of Sect. 6.

Summarizing we study the following optimization problem

minimize V0ðXÞ over X 2 D
subject to E



f ðVTðXÞÞ

�
	 0:

ð12Þ

This corresponds to (10) for the acceptance set (11). Solving (12) we achieve the

following: a methodology to price and hedge non-tradable long term zero-coupon

bonds with tradable ones under a certain risk tolerance and no short positions, where

risk is caused by uncertainty in the interest rates on the unavoidable reinvestments.

4 Acceptable hedging and stochastic optimization

4.1 Galerkin approximation

Since the distribution of ðYtÞt2J is continuous, D is typically infinite dimensional

and (12) cannot be solved analytically or using standard algorithms for convex

optimization. For this reason we consider finite dimensional approximations.

Instead of (12) it is more convenient for the application of certain numerical

methods to consider the problem

minimize V0ðXÞ þ h
�
E½fðVTðXÞÞ�

�
over X 2 D; ð13Þ

where h : Rm ! R� 0 denotes the convex and increasing penalty function

v 7! hðvÞ ¼
Xm

i¼1

h0i maxfvi; 0g2;

for h01; . . .; h0m [ 0: This is because defining parametric classes of trading strategies

in D is easier compared to D \ fXjVTðXÞ 2 A;P-a.s.g: The second term in (13) is

positive whenever the inequality constraints in (12) are violated and zero otherwise.

The solution of (13) approximates the one of (12) for large h01; . . .; h0m: The choice

of smooth h is convenient for the application of numerical optimization algorithms.

The problem (13) is convex (see Convexity of (13) in ‘‘Appendix’’).

Remark 4.1 An alternative approach to obtain numerical solutions for (12) is to

follow Hilli et al. [9] and minimize E½f ðVTðXÞÞ� for fixed values of the initial cost

V0ðXÞ: Then, the optimal initial wealth is the value for which the minimum is zero.
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Numerical methods to approximate infinite dimensional optimization prob-

lems such as (13) to finite dimensional ones have been discussed in the

literature. A possible approach is the discretization of ðYtÞt2J ; see e.g. Hilli and

Pennanen [11] or Pflug [17]. This technique is referred to as scenario

discretization. The main idea is to construct a finite set of scenarios for the

yield curve. Such a discretization leads to a finite dimensional D and a standard

convex optimization problem that can be solved with conventional algorithms. A

well known method to construct such scenarios is conditional sampling, where

these are obtained by recursively sampling from the conditional distribution

YtjF t�d; see Shapiro [18]. However, scenario discretization presents some serious

computational drawbacks. The dimensionality of the resulting approximation

typically increases exponentially as the number of trading periods n rises. We do

not want to be constrained in the number of trading periods and therefore we do

not consider scenario discretization.

Instead, we turn our attention to the Galerkin method, see Koivu and Pennanen

[13], and Hilli et al. [10]. This is computationally more attractive and easier to

implement. The idea is to look for optimal solutions not over the entire set D; but

over a subset of D consisting of finite linear combinations of feasible trading

strategies, called basis strategies. Let v ¼ ðXð1Þ; . . .;XðNÞÞ0 2 DN be N such basis

strategies. The set of conical combinations fw0vjw 2 R
N
� 0g is a finite dimensional

subset of D: Let VtðvÞ ¼ ðVtðXð1ÞÞ; . . .;VtðXðNÞÞÞ0 for t 2 J: The Galerkin approx-

imation of (13) is given by

minimize w0V0ðvÞ þ h
�
E½fðw0VTðvÞÞ�

�
over w 2 R

N
� 0: ð14Þ

The convexity is preserved in (14), because it is simply the convex optimization

problem (13) restricted to a finite dimensional convex subset of D: This approxi-

mation leads to a standard finite dimensional convex minimization problem for

which standard numerical algorithms can be used.

Observe that (14) is in some sense a one-period optimization problem. It

depends directly only on V0ðvÞ and VTðvÞ: In contrast to scenario discretization,

increasing n does not increase the complexity of the optimization directly. The

dimension of (14) depends solely on N. The complexity of evaluating the term

E½f ðw0VTðvÞÞ� typically depends on the number of trading periods n. This is

because n influences the valuation of VTðvÞ: Since in our market model we are

not able to find closed form solutions for such expectations (except for very

simple special cases) we need to evaluate them through Monte Carlo simulations,

which are computationally more expensive if n is large. This is nevertheless easier

and typically less time consuming compared to the evaluation in tree-based

discretization. In particular, for the model of Sect. 2, we do not have to work with

nested simulations. We only need to generate nd standard Gaussian random

numbers in order to obtain one observation of VTðvÞ: Because of the

computational advantages, we take (14) together with (8) as our basic model to

partially hedge and price long term zero-coupon bonds.
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4.2 Parametric basis strategies

In this section we consider four parametric families of basis strategies which are in

D for every possible parameter choice. These are buy & hold (BH), fixed times to

maturity (FTM), fixed proportions (FP) and target date fund (TDF) trading

strategies. Let V0 [ 0 and p ¼ ðp1; . . .; pdÞ0 2 R
d
� 0 so that p01 ¼ 1: The BH, FTM

and FP families are defined by XBH
d ¼ XFTM

d ¼ XFP
d ¼ V0p and for t [ d

XBH
t ¼ XBH

t�d;2Rt�d;2; . . .;XBH
t�d;dRt�d;d;X

BH
t�d;1Rt�d;1

� �0
;

XFTM
t ¼ XFTM

t�d;1Rt�d;1; . . .;XFTM
t�d;dRt�d;d

� �0
;

XFP
t ¼ R0t�dXFP

t�d

� �
p:

At time 0 we invest V0 in the d zero-coupon bonds according to the proportions p:
For BH trading strategies we do not rebalance at future time points. At each point in

time we invest the cash obtained from the security that expires in the newly

available zero-coupon bond with time to maturity dd. For FTM trading strategies we

rebalance the portfolio at each point in time so that the value of the investment in

each of the bonds is invested again in the security with the same time to maturity.

For FP trading strategies we rebalance the portfolio at each point in time so that the

total portfolio value is invested in each bond according to the proportions p:
We define TDF trading strategies similarly to Bodie and Treussard [2]. Fix

d0 2 D� and divide the set of times to maturity into two disjoint subsets f1; . . .; d0g
and fd0 þ 1; . . .; dg: The bonds with shorter maturities 1. . .; d0 are referred to as

lower duration and those with longer maturities as higher duration. Let

g ¼ ðg1; . . .; gdÞ 2 R
d
� 0 so that

Xd0

j¼1

gj ¼
Xd

j¼d0þ1

gj ¼ 1:

Let 0 B pd \ pT B 1 be the initial and terminal proportions invested in the lower

duration bonds. We increase this proportion linearly from pd to pT to reflect the fact

that the duration of the claim decreases as its expire date approaches. That is,

pt ¼ pd þ
pT � pd

T � d
ðt � dÞ:

The trading strategy is then defined by XTDF
d;j ¼

�
pdgj11	 j	 d0 þ ð1� pdÞ

gj1d0\j	 d

�
V0 and for t [ d

XTDF
t;j ¼

�
ptgj11	 j	 d0 þ ð1� ptÞgj1d0\j	 d

�
R0t�dXTDF

t�d ; j 2 D:

This means that at each point in time the portfolio is rebalanced so that the pro-

portion invested in low duration bonds is pt, the one invested in high duration bonds

is 1 - pt and those invested within the low and high duration ones are given by g:
Note that these four families are, in general, not conical. Therefore, using trading
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strategies in one of these as basis for (14), we optimize over strategies that do not

belong to the family.

Remark 4.2 Let X be a BH, FTM, FP or TDF trading strategy, Xnorm have V0 = 1

and otherwise be identical to X: Then, Xt ¼ V0Xnorm
t for t 2 J0:

For j1; . . .; jn 2 D we define the F-adapted stochastic process ðBtðj1; . . .; jnÞÞt2J by

B0ðj1; . . .; jnÞ ¼ 1 and for t 2 J0

Btðj1; . . .; jnÞ ¼
Yt=d

s¼1

Rsd;js : ð15Þ

This process corresponds to the value at time t of investing one unit of cash in the

zero-coupon bond with time to maturity j1 at time 0, rolling over at time d in the one

with time to maturity j2, and so on for j3; . . .; jn: In particular we have that

Btð1; . . .; 1Þ ¼ Bt is the classical bank account process. Note that we have

Btðj1; . . .; jnÞ ¼ Btðj1; . . .; jt
d
; 1; . . .; 1Þ for all j1; . . .; jn 2 D and t 2 J0: Applying the

definitions above recursively we have the following result (see Proof of Lemma 4.3

in ‘‘Appendix’’):

Lemma 4.3 Let X be a FTM, FP or TDF strategy. Then, we have for t 2 J0

VtðXÞ ¼
Xd

j1;...;j t
d
¼1

atðj1; . . .; jt
d
; 1; . . .; 1ÞBtðj1; . . .; jt

d
; 1; . . .; 1Þ;

where

atðj1; . . .; jnÞ ¼
V0pj1 1j1¼...¼jt

d
if X is FTM;

V0

Qt=d
s¼1 pjs if X is FP;

V0

Qt=d
s¼1

�
psdgjs

11	 js 	 d0 þ ð1� psdÞgjs
1d0\js 	 d

�
if X is TDF:

8
><

>:

The above lemma states that the value processes for FTM, FP and TDF trading

strategies are linear combinations of the random variables Btð�; . . .; �Þ with deter-

ministic coefficients. These random variables depend only on the market model

whereas the coefficients atð�; . . .; �Þ depend only on the strategy parameters. Thus,

we obtain a split in two terms, the market model (random) and the deterministic

coefficients from the strategy which allows to evaluate the objective function in (14)

more efficiently. A closed form expression in terms of Btð�; . . .; �Þ can also be

worked out for the value process of BH trading strategies, but it does not have a

simple form as for the other three families. On the distribution of Btð�; . . .; �Þ in our

model we know the following (see Proof of Lemma 4.4 in ‘‘Appendix’’).

Lemma 4.4 Let t 2 J0; s ¼ t
d 2 f1; . . .; ng and j1; . . .; jn 2 D: For js [ 1, the

random variable log Btðj1; . . .; jnÞ is normally distributed under P; given F t�d; with

conditional mean

log Pt�d;1 þ log Bt�dðj1; . . .; jnÞ þ
ffiffiffi
d
p
ðfðYt�dÞK~ltÞjs�1 �

d
2

spðRðYt�dÞÞjs�1;
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and variance dspðRðYt�dÞÞjs�1: For js ¼ 1; Btðj1; . . .; jnÞ is previsible and given by

Btðj1; . . .; jnÞ ¼ Bt�dðj1; . . .; jnÞPt�d;1:

The conditional expectation and variance of Btð�; . . .; �Þ; assuming js [ 1, are

given by

E½Btðj1; . . .; jnÞjF t�d� ¼ Bt�dðj1; . . .; jnÞPt�d;1 exp
� ffiffiffi

d
p
ðfðYt�dÞK~ltÞjs�1

�
;

Var½Btðj1; . . .; jnÞjF t�d� ¼ E½Btðj1; . . .; jnÞjF t�d�2
�

exp
�
dspðRðYt�dÞÞjs�1

�
� 1
�
:

Observe that the conditional distribution of Btð�; . . .; �Þ; given F t�d; does not depend

on b. If we condition over multiple periods we obtain distributions which are not

log-normal and depend on b.

5 Calibration procedure

Our aim is to solve (14) numerically under the model of Sect. 2. This requires the

calibration to market data. Once h and b have been chosen, it remains to calibrate

K to real market data. Our explicit choice of h and b is discussed in Sect. 6.

Assume that l 
 0; i.e. lt ¼ 0; P-a.s., for all t 2 J0: This implies that the real

world measure P satisfies condition (2). This assumption is discussed in more

details in Sect. 6. Under this assumption, using Lemma 2.2 and Eq. (26) in

‘‘Appendix’’, we have that ~Yt is multivariate Gaussian distributed, given F t�d; with

conditional mean

d
h
�Yt�d;11þ1

2
spðRðYt�dÞÞþ

�
bðYt�dÞþ

1

2

�
spðRðYt�dÞÞd� spðRðYt�dÞÞd�1

��
ed

i
;

and conditional covariance matrix dRðYt�dÞ for t2 J0: Therefore, we do not need to

directly calibrate K to market data but only Rð�Þ as defined in (7). In particular, we

need to construct estimators for the elements of KK0: In this section we show that

the calibration procedure presented in Teichmann and Wüthrich [20] can also be

applied with slight modifications to our market model specified by the above

conditional distribution. Let ðYkdÞk¼0;...;K be observations of the yield curve and

ð ~YkdÞk¼1;...;K be the corresponding transformed observations. We introduce some

additional notation to simplify the expressions below. For k¼ 0; . . .;K let bk¼
Ykd;d; bk ¼ bðYkdÞ; ck ¼ bk�bk; fk ¼ fðYkdÞ; fk;j¼ spðfkÞj for j2D and Rk ¼RðYkdÞ:
Define the following matrix based on the observations,

CðKÞ ¼
1ffiffiffiffi
K
p

��
f�1

k�1
~Ykd

�
j

�

j¼1;...;d
k¼1;...;K

2 R
d�K ;

and the function SðKÞ : Rd ! R
d�d by y 7!fðyÞCðKÞC0ðKÞfðyÞ: From the the proof of

Theorem 3.4 in [20] we have for y 2 R
d
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E


SðKÞðyÞ

�
¼ dRðyÞ þ d2

K

XK�1

k¼0

fðyÞE½Gh;b;Rðbk1;YkdÞ�fðyÞ; ð16Þ

where Gh;b;R : Rd � R
d ! R

d�d has the form

ðz; yÞ 7! fðyÞ�1gb;Rðz; yÞgb;Rðz; yÞ0fðyÞ�1;

with gb;R : Rd � R
d ! R

d given by

ðz; yÞ7!�zþ 1

2
spðRðyÞÞ þ

�
bðyÞ � 1

2

�
spðRðyÞÞd � spðRðyÞÞd�1

��
ed:

Similar to (3.6) in [20] we get the crucial observation in (16) that SðKÞðyÞ may serve

as an estimator for dRðyÞ with a bias going to zero as d ? 0.

We use (16) to derive estimators for KK0 ¼ ðsijÞi;j2D: We set y ¼ 1: For i; j 2 D�

we obtain the same estimators for sij as in [20] formulas (3.12)–(3.13). For the last

diagonal element sdd we have

E½SðKÞð1Þ�dd

dfð1Þ2dd

¼ sdd þ
d
K

XK�1

k¼0

E ck þ
1

2
f2

k;d�1sd�1;d�1

� �2

f�2
k;d

" #

¼ sdd þ
d
K

XK�1

k¼0

A
ð1Þ
k þ sd�1;d�1A

ð2Þ
k þ

1

4
s2

d�1;d�1A
ð3Þ
k

� �
;

ð17Þ

where we have used that fk;d�1 ¼ fk;d for all k ¼ 0; . . .;K and set

A
ð1Þ
k ¼ E



c2

kf
�2
k;d

�
; A

ð2Þ
k ¼ E



ck

�
and A

ð3Þ
k ¼ E



f2

k;d

�
: ð18Þ

For the elements ðsidÞi¼1;...;d�1 we have

E½SðKÞð1Þ�id
dfð1Þiifð1Þdd

¼ sid �
d
K

XK�1

k¼0

E bk ck þ
1

2
f2

k;d�1sd�1;d�1

� �
f�1

k;i f
�1
k;d

� �

þ d
K

XK�1

k¼0

E
1

2
f2

k;isii ck þ
1

2
f2

k;d�1sd�1;d�1

� �
f�1

k;i f
�1
k;d

� �

¼ sid þ
d
K

XK�1

k¼0

B
ð1Þ
k;i þ

1

2
sd�1;d�1 B

ð2Þ
k;i þ

1

2
siiB

ð4Þ
k;i

� �
þ 1

2
siiB

ð3Þ
k;i

� �
;

ð19Þ

where we have used again that fk;d�1 ¼ fk;d for all k ¼ 0; . . .;K and set

B
ð1Þ
k;i ¼ �E½bkckf

�1
k;i f
�1
k;d�; B

ð2Þ
k;i ¼ �E½bkf

�1
k;i fk;d�;

B
ð3Þ
k;i ¼ E½ckfk;if

�1
k;d� and B

ð4Þ
k;i ¼ E½fk;ifk;d�:

ð20Þ

Note that sdi = sid for all i 2 D: We can derive estimates for sid in the following

way. We replace the expectations (18) and (20) by the observations. For the diag-

onal elements ðsiiÞi2D� we can use the estimates derived in [20] formula (3.12). By
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solving the linear Eqs. (17) and (19) for sid we obtain the estimates. This is the

approach presented in [20] and completes our estimation procedure.

6 Numerical example: Swiss government bonds

6.1 Choice of data, hð�Þ and bð�Þ

In this section we consider CHF zero-coupon bond yields derived from Swiss

government bonds. We work on a monthly grid, i.e. d = 1/12. The Swiss

government issues bonds with times to maturity in

f1=12; 1=6; 1=4; 1=2; 1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 15; 20; 30g:

However, securities with times to maturity of 15 years or more are not liquid. For

this reason we consider only bonds with times to maturity up to 10 years and set

d = 120. Note that medium and long term Swiss government bonds (i.e. those

issued with times to maturity larger than one year) are coupon bearing securities.

Therefore, the yield curve needs to be extrapolated from their market prices. For this

purpose the Swiss National Bank uses the Svensson method, see Müller [14].

Bloomberg L.P. uses a similar procedure and provides these extrapolated rates for a

history of more than 18 years and times to maturity in fjdjj 2 Dobsg; where

Dobs ¼ f3; 6; 12; 24; 36; 48; 60; 72; 84; 96; 108; 120g;

see Bloomberg tickers: F25603M Index, F25606M Index, F25601Y Index and so

on. We choose these time series from 31.01.1995 to 31.12.2012 (i.e. K = 215) as

our monthly yield curve observations. Therefore, we have observations

ðYkd;jÞk¼0;...;K;j2Dobs
:

To obtain the yield curve for all times to maturity in D we set for k 2
f0; . . .;Kg; j 2 D n Dobs and j [ 3

Ykd;j ¼
j� dlðjÞ

duðjÞ � dlðjÞ
Ykd;dlðjÞ þ

duðjÞ � j

duðjÞ � dlðjÞ
Ykd;duðjÞ;

where dlðjÞ ¼ maxfk 2 Dobsjk	 jg and duðjÞ ¼ minfk 2 Dobsjk� jg: This means

we interpolate linearly between the two nearest known values. We continue the

curve linearly at the short end to extrapolate data for dj = 1/12 and 1/6. In this way

we obtain observations ðYkdÞk¼0;...;K for the full yield curve. Some of these are

shown in Fig. 1 below.

For the volatility scaling factor we choose the square root scaling hðyÞ ¼ ffiffiffi
y
p
;

which has been proved reasonable for yield curve modeling, see Guillaume et al.

[8]. For the long end slope factor, which describes the steepness of the yield curve at

the long end, we make the following intuitive choice

bðyÞ ¼ 1

d
ðddyd � ðd � 1Þdyd�1Þ ¼ dyd � ðd � 1Þyd�1:
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6.2 Calibration results

In order to test if our model is reasonable and consistent, we split the sample of

Sect. 6.1 in the middle and calibrate KK0 to the first half. We use the procedure

described in Sect. 5 under the assumption l 
 0: This assumption is discussed

below. For the calibration we use Teichmann and Wüthrich [20] formulas (3.12)–

(3.13), and Eqs. (17) and (19). For these estimators we consider first and second

order terms in d. We only use the first half of the data for the calibration since KK0 is
constant by model assumption, and we want to test if the model provides reasonable

and consistent out-of-sample results. For this purpose we define the following

process for # 2 R
d

ð/tð#ÞÞt2J0 ¼
1ffiffiffi
d
p #0fðYt�dÞ�1ð ~Yt � wtÞ
� �

t2J0
; ð21Þ

where

wt ¼ d �Yt�d;11þ 1

2
spðfðYt�dÞKK0fðYt�dÞÞ þ bðYt�dÞed

�

þ 1

2
spðfðYt�dÞKK0fðYt�dÞÞded �

1

2
spðfðYt�dÞKK0fðYt�dÞÞd�1ed

�
;

which depends on KK0: A direct consequence of Lemma 2.2 under the assumption

l� 
 0 is that wt ¼ E½ ~YtjF t�d� for all t 2 J0 and for any # 2 R
d

ð/tð#ÞÞt2J0 �
iid Nð0;#0KK0#Þ: ð22Þ

We compute (21) for different values of # using the observations ðYkdÞk¼0;...;K and

the matrix KK0 calibrated to the first half of the sample. We do this for

time to maturity (years)

yi
el

d 
(%

)

.5 1 2 3 4 5 6 7 8 9 10

1
2

3
4

5
6

1996 1998 2000 2002 2004 2006 2008 2010 2012

Fig. 1 CHF yield curve (values in percent) at the end of December for some of the years in the sample.
We can observe that the yields at the end of 2012 are at historical lows with short term rates being near
zero
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#1 ¼
1

bd
3
c
Xbd3c

j¼1

ej; #2 ¼
1

bd
3
c
Xd�bd3c

j¼bd
3
cþ1

ej; and #3 ¼
1

bd
3
c

Xd

j¼d�bd3cþ1

ej; ð23Þ

which correspond to short, medium and long term parts of the yield curve. We

obtain observations

ð/kdð#iÞÞk¼0;...;K;i¼1;2;3:

If the model is reasonable then these sequences should look like i.i.d. normal

random variables including the out-of-sample part, see (22). Figure 2 shows that the

serial correlation is low also for small lags in all three cases as expected from the

model. From Fig. 3 we can see that the observations of the sequences appear to be

reasonable given the model over the full period. There are no particular changes

visible in the second half of the sample which has not been used to calibrate the

model. Table 1 provides some statistics. The observed standard deviations are close

to the ones given by the model. Application of the Jarque–Bera test (see [12]) shows

that for the medium and long term parts the normality of the series cannot be

rejected at 5 % significance level, whereas for the short end normality is rejected at

1% level. The series also appear to be slightly negatively drifted. Given these

results, we conclude that our model does a good job in explaining the yield curve

development in the medium and long term parts, whereas for the short term part the

model does not appear to work optimally. The assumption l� 
 0 does not seem

optimal either.

There is no clear procedure to estimate the market price of risk process l: A

heuristic approach is to extrapolate it from the sample applying linear filtering

techniques. Lemma 2.2 implies for any # 2 R
d and t 2 J0 that #0Klt ¼

E½/tð#ÞjF t�d�: As discussed above the series ð/kdð#iÞÞk¼0;...;K for i = 1, 2, 3 show

very low serial correlation and we can see from Fig. 4 that a constant drift

assumption is reasonable for these series. Hence, we make the following

approximation for t 2 J0 and i = 1, 2, 3

lag

au
to

co
rr

el
at

io
n

short medium long

0 1 2 3 4 5 6 7 8 9 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Fig. 2 Autocorrelation of the observed series ð/kdð�ÞÞk¼0;...;K for different lags. The three lines

correspond to #1 (short), #2 (medium) and #3 (long). See also (21), (22) and (23)
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#0iKlt �
1

K þ 1

XK

k¼0

/kdð#iÞ:

We can use these approximations of the projections on the short, medium and long

term parts to obtain an approximation for Kl; i.e. we set for t 2 J0

Klt �
bd

3
c

K þ 1

XK

k¼0

�
/kdð#1Þ#1 þ /kdð#2Þ#2 þ /kdð#3Þ#3

�
; ð24Þ

In this way we approximate l by a time-independent deterministic vector.

6.3 Pricing and replication for T = 20

Our aim is to solve (14) numerically for T = 20 (i.e. n = 240) and the stochastic

model of Sect. 2 calibrated on the sample of Sect. 6.1. The first step is to simulate

yield curve developments. We set l 
 0: Alternatively the heuristic approach (24)

might be used. The complexity of the pricing algorithm is not affected by the

presence of l: We calibrate the model on the full sample using the procedure of

Sect. 6.2. Our market model provides two essential features for this application.

First, as we verified in the previous section, the calibrated parameters are

1995 1997 1999 2001 2003 2005 2007 2009 2011 2013

−
0.

8
−

0.
4

0.
0

0.
2

0.
4

0.
6

short medium long

Fig. 3 Values of the observed series ð/kdð�ÞÞk¼0;...;K for #1 (short), #2 (medium) and #3 (long). See also

(21), (22) and (23)

Table 1 This table presents the sample mean and standard deviation of the observed series

ð/ð�ÞkdÞk¼0;...;K in the three cases

Sample mean Sample std Model std Jarque–Bera test statistics

Short -0.02 0.09 0.10 14.40

Medium -0.06 0.22 0.22 0.18

Long -0.09 0.31 0.30 1.10

It also presents the standard deviation implied by the model, i.e.
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
#0KK0#
p

; and the Jarque–Bera test

statistic for normality. The 5 and 1 % critical values of the test are 5.99 and 9.21, respectively
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appropriate over a long period of time. This is important since the calibrated model

is being used to simulate yield paths for several years ahead. Secondly, generating

yield curves in our model does not require nested simulations. This is crucial since

we need to simulate with reasonable computational time monthly yield curve

observations for a 20 years period several thousand times.

We choose the yield curve at 31.12.2012 as the starting point for our simulation.

Observe that financial market conditions in 2012 resulted in extraordinary low

yields for Swiss government bonds with flat and near zero short term rates. For the

number of simulated developments (each one having 20 years of monthly yield

curves simulations) we consider M = 125, 250, 500, 1,000, 2,000 and 4,000.

We consider the acceptance set given in Example 3.5. We set m = 1, f0 = 1 and

k = 2. This means f ðvÞ ¼ maxf1� v; 0g2 � u2; where we consider the values

u = 0.2, 0.15, 0.1, 0.05 and 0.025 for the risk tolerance parameter. This corre-

sponds to the acceptance set

A ¼ fV isFT�measurable jE½maxf1� V; 0g2� 	 u2g;

i.e. terminal values are acceptable if the shortfall risk is not greater than u2, where

this is measured by the lower partial second moment of the loss. Hence, a lower

value of u corresponds to a lower risk tolerance.

We define 10 basis strategies, i.e. N = 10. We set V0 = 1 and pi ¼ #i for

i = 1, 2, 3, where #i denote the weight vector defined in Sect. 6.2. Using these

parameters we define 3 BH, FTM and FP strategies. Let p0 ¼ 0; pT ¼ 1; d0 ¼
d � bd

3
c and g ¼ 1

2
p1 þ 1

2
p2 þ p3: From this we define one TDF strategy. We

introduce the abbreviations BH1, BH2, BH3, FTM1, FTM2, FTM3, FP1, FP2, FP3

and TDF to reference these 10 basis strategies, where the numbers correspond to

p1;2;3 respectively. We evaluate the terminal values of these strategies for each

simulated yield curve development. This can be done very efficiently for FTM, FP

and TDF strategies using Lemma 4.3.

1995 1997 1999 2001 2003 2005 2007 2009 2011 2013

−
20

−
15

−
10

−
5

0 short medium long 24 ma 48 ma

Fig. 4 Cumulated values over time of the observed series ð/kdð�ÞÞk¼0;...;K for #1 (short), #2 (medium)

and #3 (long). See also (21), (22) and (23). We also plot the 24 and 48 months symmetric moving
averages to smooth the series out. We can see that the drift is quite stable over time
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Remark 6.1 The choice V0 = 1 is irrelevant to (14). To see this, let v ¼
ðXð1Þ; . . .;XðNÞÞ0 be a N-dimensional vector of BH, FTM, FP or TDF trading

strategies, vnorm have V0ðvnormÞ ¼ 1 and otherwise be identical to v: Then, Remark

4.2 implies

�
w0v
		w 2 R

N
� 0

�
¼
(
XN

i¼1

wiV0

�
XðiÞ
��1

XðiÞ

					w 2 R
N
� 0

)
¼
�

w0vnorm
		w 2 R

N
� 0

�
:

This implies that the solution of (14) for BH, FTM, FP or TDF basis strategies does

not depend on V0ðvÞ:

Finally, we solve (14) using a quasi-Newton method, see Nocedal and Wright

([15], Sect. 8). The expectations in (14) are evaluated using the terminal values

obtained from the simulations. In this example we consider only ten basis strategies

and so the time needed to solve the optimization accounts only for a minimal part of

the total computational time, which is almost entirely determined by the simulations.

If we consider hundreds of basis strategies then the situation might be different.

Our numerical results for T = 20 are presented in Tables 2, 3 and Fig. 5. We

have solved (14) for different values of M and u. First, we see that the resulting

prices in Table 2 are stable as M increases for fixed values of u. This indicates

convergence. Secondly, we observe that prices increase considerably with

decreasing u. This makes sense since we require lower shortfall risk for the

optimal replicating strategy. Reasonably the risk tolerance parameter plays a crucial

role in determining the value of the long term zero-coupon bond. In Table 3 we

report for fixed M some risk measures related to the probability distribution of the

loss. We observe that all the risk measures considered decrease as u decreases. This

is sound and allows shortfall risk to be managed with respect to several risk

measures at the same time by selecting u. We also observe that the lower partial

second moments are nearly equal to the values of u. Of course, this must be the case

since we are using this measure for the optimization. From Fig. 5 we observe that

the solution tend to be concentrated in 3–4 basis strategies and the concentration

increases as u decreases. These are BH1, FTM1, FP1, which invest in short term

securities, and TDF, which invests across all maturities and increases the proportion

invested in short term securities as time passes. This concentration makes intuitively

sense. In our example BH1, FTM1 and FP1 have low terminal value volatility which

appears to be an attractive property for the optimization algorithm. The attractive-

ness of TDF might be explained as follows. Among our basis strategies, TDF most

closely matches the duration over time of the long term zero-coupon bond.

Next we apply our pricing algorithm for T ¼ 11; 12; . . .; 20 and derive an

extension of the CHF yield curve for these times to maturity. For this purpose we

cannot set one single value for u across all times to maturity since we are

considering losses over different periods and this would reflect different risk

tolerances across maturities. Therefore we set u11 [ 0 and consider the square root

of time scaling

uT ¼ u11

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T � 10
p

;
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for T ¼ 11; 12; . . .; 20: This rule is well known in the literature to scale volatility

estimates and relies on the rationale of one-period returns being i.i.d. over time. In

non-i.i.d. environments, such as in our model, this rule produces estimates which are

reasonable on average but show too large volatility fluctuations, see Christoffersen

et al. [3] for more details. In Fig. 6 we show the extension. This extension has a

Table 2 Prices of a 20 years to maturity zero-coupon bond given by the approximation algorithm for

different values of M, u

u = 20 % u = 15 % u = 10 % u = 5 % u = 2.5 %

M = 125 0.6490 0.7070 0.7703 0.8471 0.8940

M = 250 0.6572 0.7155 0.7788 0.8508 0.8920

M = 500 0.6575 0.7134 0.7811 0.8523 0.8975

M = 1,000 0.6564 0.7156 0.7796 0.8533 0.8990

M = 2,000 0.6554 0.7143 0.7789 0.8535 0.8992

M = 4,000 0.6558 0.7121 0.7773 0.8521 0.8964

Table 3 T = 20 and M = 4,000. Shortfall risk measures of the optimal portfolio for different values of u

LSM1 LSM2 VaR95 VaR99 ES95 ES99

u = 20 % 0.1541 0.2004 0.3254 0.3338 0.3314 0.3393

u = 15 % 0.1087 0.1508 0.2605 0.2678 0.2656 0.2738

u = 10 % 0.0675 0.1015 0.1913 0.2011 0.1978 0.2066

u = 5 % 0.0295 0.0514 0.1123 0.1241 0.1201 0.1304

u = 2.5 % 0.0127 0.0262 0.0653 0.0778 0.0739 0.0853

LSM1 and LSM2 are the lower standardized moments given by E½maxf1� V; 0gk�
1
k for k = 1, 2

respectively. VaR and ES are the Value-At-Risk and Expected Shortfall measures for 95 and 99 %

confidence levels. All four measures are computed applying sample estimators on the simulated terminal

values of the optimal portfolio

basis strategy

w
ei

gh
t

u = 20% u = 15% u = 10% u = 5% u = 2.5%

BH1 BH2 BH3 FTM1 FTM2 FTM3 FP1 FP2 FP3 TDF

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Fig. 5 Optimal portfolio weights assigned to the 10 basis strategies for M = 4,000 and different values
of u
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positive spread compared to the market yield curve which becomes smaller as u11

decreases. This makes intuitively sense since the derived yields are not risk-free.

Because of reinvestment risk we can only replicate those securities up to a certain

risk tolerance specified by u11 [ 0. We also observe that the steepness and con-

cavity of the extension matches the market yield curve better as u11 decreases. Thus,

we obtain a natural extension of the yield curve beyond the last liquidly traded time

to maturity. This extrapolation is obtained by searching explicitly for replicating

strategies up to the risk tolerance.

7 Conclusions

In this paper we have developed a computationally efficient algorithm to extrapolate

the yield curve at the long end by explicitly considering replication strategies. Our

procedure is based on a stochastic yield curve model with reinvestment risk which

can be effectively calibrated to market data. The hedging strategy is constructed by

taking an optimal linear combination of trading rules specified in advance according

to a certain risk tolerance. This involves reinvestment risk, which cannot be

completely eliminated, and the lower this risk the smaller the spread between the

extrapolated yields and the market yields. Thus, we obtain a natural extension of the

yield curve beyond the last liquid time to maturity and moreover, we also obtain

the hedging strategy which replicates this value.

Appendix: Proofs

Proof of Lemma 2.1

Let t 2 J0 and j 2 D�: We set y ¼ Yt�d 2 R
d for this proof. For the drift term (4) we

have

time to maturity (years)

yi
el

d 
(%

)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

31.12.2012 u_11 = 10% u_11 = 5% u_11 = 2.5%

Fig. 6 M = 4,000. Extension of the CHF yield curve at 31.12.2012 for different values of u11. Note that
the market yields are at historical lows
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ajðyjþ1Þ ¼
d
2

hðyjþ1Þ2
Xd�1

i¼1

k2
ij ¼

d
2

f�ðyÞ2jjspðK�ðK�Þ0Þj ¼
d
2

sp
�
R�ðyÞ

�
j
:

Using (1) we rewrite the model assumption (3) under the real world measure P and

obtain

~Y�t;j ¼ �dYt�d;1 þ ajðYt�d;jþ1Þ þ
ffiffiffi
d
p Xd�1

i¼1

hðYt�d;jþ1Þkijðet;i � lt;iÞ

¼ �dYt�d;1 þ
d
2

spðR�ðyÞÞj þ
ffiffiffi
d
p
ðf�ðyÞK�ðe�t � l�t ÞÞj:

The statement on the conditional normality of ~Yt follows directly from (5). h

Proof of Lemma 2.2

Let t 2 J0 and set y ¼ Yt�d for this proof. For the components ð~Yt;jÞj2D� Eq. (8) is

equivalent to (5). Therefore, we only need to consider the random variable ~Yt;d:
From the definitions of fð�Þ and K observe that fð�Þdd ¼ fð�Þd�1;d�1; Kdd ¼ j and

Kd;j ¼ Kd�1;j ¼ kj;d�1 for j 2 D�: Hence, for ~l� ¼ ðl�; 0Þ we have

ðfðyÞKðet � ~ltÞÞd ¼ f�ðyÞK�ðe�t � l�t Þd�1 þ hðydÞjet;d; ð25Þ

and

spðRðyÞÞd ¼ fðyÞ2dd

Xd�1

i¼1

k2
i;d�1 þ fðyÞ2ddj

2 ¼ spðR�ðyÞÞd�1 þ ðfðyÞKÞ
2
dd: ð26Þ

Using model assumptions (3) and (6) we obtain

~Yt;d ¼ ddYt;d � ddyd

¼ d �y1 þ
1

2
spðR�ðyÞÞd�1 þ bðyÞ

� �
þ

ffiffiffi
d
p
ððf�ðyÞK�ðe�t � l�t ÞÞd�1 þ hðydÞjet;dÞ

¼ d �y1 þ
1

2
spðRðyÞÞd þ bðyÞ � 1

2
ðfðyÞKÞ2dd

� �
þ

ffiffiffi
d
p
ðfðyÞKðet � ~ltÞÞd:

This proves the stochastic representation (8) for the last component under the real-

world measure P: The statements on the conditional distribution follow directly

from (8). h

Proof of Theorem 3.1

We only have to prove the second part. The statement is intuitively clear because et;d

and et;j are independent, given F t�d; for all t 2 J0 and j 2 D�: We prove the

statement indirectly. Assume that the claim cT = 1 is attainable. Let X be a

replicating strategy for cT. This means that X is self-financing and VTðXÞ ¼ 1; P-a.s.

The no-arbitrage condition (2) and the self-financing condition (9) imply for all t 2 J0
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E
�½B�1

t VtðXÞjF t�d� ¼ B�1
t E

�½V�t ðXÞjF t�d� ¼ B�1
t E

�½X0tRtjF t�d�

¼ B�1
t Xt;1P�1

t�d;1 þ B�1
t

Xd

j¼2

Xt;jP
�1
t�d;jE

�½Pt;j�1jF t�d�

¼ B�1
t�dPt�d;1Xt;1P�1

t�d;1 þ B�1
t

Xd

j¼2

Xt;jP
�1
t�d;j

B�1
t�d

B�1
t

Pt�d;j

¼ B�1
t�d

Xd

j¼1

Xt;j ¼ B�1
t�dVt�dðXÞ;

i.e. the discounted value process ðB�1
t VtðXÞÞt2J is a ðP�;FÞ-martingale. The value of

the replicating strategy at time T - dd is then given by (see explanation below)

B�1
T�ddVT�ddðXÞ ¼ E

�½B�1
T VTðXÞjF T�dd� ¼ E

�½B�1
T jF T�dd� ¼ E

�½B�1
T�dPT�d;1

		F T�dd�
¼ E

�

E
�½B�1

T�dPT�d;1jF T�2d�
		F T�dd

�
¼ E

�½B�1
T�2dPT�2d;2jF T�dd�

¼ . . . ¼ B�1
T�ddPT�dd;d:

In the first step we use the martingale property. The second step follows from

P
� �P and VTðXÞ ¼ 1; P-a.s. We then use the tower property of conditional

expectations and the no-arbitrage condition (2) iteratively. This result is intuitively

clear: at time T - dd holding the portfolio X or investing P(T - dd, T) in the zero-

coupon bond with time to maturity dd are both going to generate the same payoff of

one unit of cash at maturity. Because of no-arbitrage the value of both strategies at

time T - dd must be the same. In this proof we set y ¼ YT�ðdþ1Þd; ~l ¼
�
l�; 0

�
¼�

l�T�dd; 0
�

and x ¼ XT�dd: Note that these random variables are F T�ðdþ1Þd-mea-

surable. Using (8), (25) and (26) we have

VT�ddðXÞ ¼ PT�dd;d ¼ exp
�
�ddYT�dd;T

�
¼ exp

�
dðdyd � bðyÞÞ

�
k�d�1E�d�1Ed;

where for j 2 D� we set

k�j ¼ exp
n
d
�

y1 �
1

2
spðR�ðyÞÞj

�
þ

ffiffiffi
d
p
ðf�ðyÞK�l�Þj

o
;

E�j ¼ exp
�
�

ffiffiffi
d
p
ðf�ðyÞK�e�t Þj

�
;Ed ¼ expf�

ffiffiffi
d
p

hðydÞjet;dg:

Define k� ¼ ðk�1 ; . . .; k�d�1Þ
0

and E� ¼ ðE�1 ; . . .;E�d�1Þ
0: Note that k� is F T�ðdþ1Þd-

measurable, and E� and Ed are F T�dd-measurable. Note that k�;E�;Ed have

strictly positive components, P-a.s. For all j 2 D� the conditional distribution of

log Ej
- is normal with zero mean and variance dspðR�ðyÞÞj: The conditional

distribution of log Ed is also normal with zero mean and variance dh(yd)2j2. On

the other hand, using the self-financing condition (9) and the model Eq. (5) we

obtain
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VT�ddðXÞ ¼ x0RT�dd ¼ x1 expfdy1g þ
Xd�1

j¼1

xjþ1 expfðjþ 1Þdyjþ1g expf�jdYT�dd;jg

¼ x1 expfdy1g þ
Xd�1

j¼1

xjþ1k�j E�j :

From the model assumption we know that the components of et are independent and

therefore Ed is independent of E�: This independence and the two expressions

derived above for VT�ddðXÞ imply

0 ¼ expf�dðdyd � bðyÞÞg
Xd�1

j¼1

xjþ1k�j Cov½E�j ;EdjFT�ðdþ1Þd�

¼ expf�dðdyd � bðyÞÞgCov½VT�ddðXÞ � x1 expfdy1g;EdjFT�ðdþ1Þd�
¼ expf�dðdyd � bðyÞÞgCov½VT�ddðXÞ;EdjFT�ðdþ1Þd�
¼ k�d�1Cov½E�d�1Ed;EdjFT�ðdþ1Þd�
¼ k�d�1

�
E½E�d�1E2

djF T�ðdþ1Þd� � E½E�d�1EdjF T�ðdþ1Þd�E½EdjF T�ðdþ1Þd�
�

¼ k�d�1E½E�d�1jF T�ðdþ1Þd�
�
E½E2

djF T�ðdþ1Þd� � E½EdjF T�ðdþ1Þd�2
�

¼ k�d�1E½E�d�1jF T�ðdþ1Þd�Var½EdjFT�ðdþ1Þd�

¼ k�d�1 exp
n 1

2
dspðR�ðyÞÞd�1

o�
expfdhðydÞ2j2g � 1

�
expfdhðydÞ2j2g[ 0;

where the right-hand side of the above equation is strictly larger than zero, given

F T�ðdþ1Þd (assuming j = 0 and h(yd) = 0). This is a contradiction and proves the

claim. h

Convexity of (13)

The convexity of D is clear. We consider the objective function in (13). Let X;Y 2
D and s 2 ½0; 1�: We estimate (see explanation below)

V0ðsX þ ð1� sÞYÞ þ h
�
E½f ðVTðsX þ ð1� sÞYÞÞ�

�

¼ sV0ðXÞ þ ð1� sÞV0ðYÞ þ h
�
E½f ðsVTðXÞ þ ð1� sÞVTðYÞÞ�

�

	 sV0ðXÞ þ ð1� sÞV0ðYÞ þ h
�
E½sfðVTðXÞÞ þ ð1� sÞf ðVTðXÞÞ�

�

¼ sV0ðXÞ þ ð1� sÞV0ðYÞ þ h
�
sE½f ðVTðXÞÞ� þ ð1� sÞE½fðVTðYÞÞ�

�

	 s
�
V0ðXÞ þ h

�
E½f ðVTðXÞÞ�

��
þ ð1� sÞ

�
V0ðYÞ þ h

�
E½fðVTðYÞÞ�

��
;

where in the first equality we use the linearity of V0ð�Þ and VTð�Þ: In the second step

we use the convexity of f ; the monotonicity of the expected value and the fact that h
is increasing. Finally in the fourth step the convexity of h is used. This proves the

convexity of the objective function. h
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Proof of Lemma 4.3

The given identity follows by straightforward application of the definitions. We

show it only for TDF strategies and for the other strategies proceed similarly. Let

t 2 J0 and set X ¼ XTDF: Since the strategies considered are all self-financing we

have VtðXÞ ¼ V�t ðXÞ ¼ X0tRt for all t 2 J0: Iterating the definition of TDF strategies

we obtain

VtðXÞ ¼ X0tRt ¼
Xd

j;k¼1

�
ptpk11	 k	 d0 þ ð1� ptÞpk1d0\k	 d

�
Xt�d;kRt�d;kRt;j ¼ . . .

¼ V0

Xd

j1;...;jt
d
¼1

Btðj1; . . .; jt
d
; 1. . .; 1Þ

Yt
d

s¼1

�
ptgjs

11	 js 	 d0 þ ð1� ptÞgjs
1d0\js 	 d

�
:

Proof of Lemma 4.4

Let t 2 J0; s ¼ t
d and j1; . . .; jn 2 D: For this proof we set y ¼ Yðs�1Þd ¼ Yt�d: The

statement for js = 1 follows directly from (15). Assuming js [ 1 and using (15) we

have

Btðj1; . . .; jnÞ ¼ Bt�dðj1; . . .; jnÞRt;js ¼ Bt�dðj1; . . .; jnÞ expf� ~Ysd;js�1g:

Then, using Lemma 2.2, we have

Btðj1; . . .; jnÞ
Bt�dðj1; . . .; jnÞ

¼ Pt�d;1 exp
n
� d

2
spðRðyÞÞjs�1 þ

ffiffiffi
d
p �

fðyÞKð~lt � etÞ
�

js�1

o
:

Taking the logarithm of the right-hand side proves the statement. h
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20. Teichmann J, Wüthrich MV (2013) Consistent yield curve prediction. ETH Zurich (Preprint)
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