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Abstract Atherosclerosis is a complex chronic inflammatory
andmetabolic disease that involves the collaboration of several
cellular components of the immune system and results in
thickening of the arterial wall. Atherosclerosis is also the
primary cause of coronary artery and cerebrovascular diseases.
A multitude of immune cell subsets, soluble molecules such
as chemokines and cytokines, and circulating lipids play
pivotal roles in atherosclerosis development. In this review,
we highlight the role of the immune system in the course
of atherosclerotic disease development and discuss the
mechanisms involved.
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Abbreviations
ApoE Apolipoprotein E
DC Dendritic cell
FGF Fibroblast growth factor
GM-CSF Granulocyte macrophage colony-stimulating

factor
HDL High density lipoprotein
ICAM-1 Intercellular Adhesion molecule

IFN-γ Interferon γ
IL Interleukin
JAM Junctional Adhesion Molecule
LDL Low density lipoprotein
LFA-1 Leukocyte function-associated antigen 1
MCP-1 Monocyte chemoattractant protein-1
M-CSF Macrophage colony-stimulating factor
MMP Matrix metalloproteinase
NF-κB Nuclear Factor kappa-B
PDGF Platelet-derived growth factor
PPAR Peroxisome proliferator-activated receptor
ROS Reactive oxygen species
SMC Smooth muscle cells
TGF-β Transforming growth factor-β
TNF-α Tumor necrosis factor-α
VCAM-1 Vascular-cell adhesion molecule 1
VLA-4 Very late antigen 4
VLDL Very low density lipoprotein

Introduction

According to the World Health Organization, approximately
30 % of global worldwide mortality can be attributed to
cardiovascular diseases (CVDs), and their incidence is
expected to increase mostly in low- and middle-income
countries [70, 195]. It is also expected that CVD alone will
cause more deaths than infectious and perinatal diseases and
nutritional disorders combined. The main cause of CVD is
atherosclerosis, which is characterized by local asymmetric
thickening of the vessel intima [77]. Atherosclerosis is a
multifactor chronic inflammatory disease of the arterial wall
that leads to symptomatic pathologies such as acute coronary
syndromes, stroke, and peripheral artery occlusions [77]. In
addition, physiological factors such as lipid metabolism and
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hypertension and behaviors such as alcohol consumption and
smoking promote the development of atherosclerosis [70,
171].

Metabolic syndromes exacerbate the atherogenic
phenotype by inducing dyslipoproteinemia, which results
from high serum levels of low-density lipoprotein (LDL), a
weak cholesterol transporter, and low levels of high-density
lipoprotein (HDL), a strong cholesterol transporter [128]. The
risk for atherogenicity is expressed as an LDL/HDL ratio
greater than 3, and hypertension further increases the
atherosclerosis risk by 60 % [109]. The effect of these
physiological factors can also be highly exacerbated by
behavioral factors such as lack of exercise, excessive
alcohol consumption, and smoking, which increase the risk
for CVDs by 200 % [5]. Based on these findings, it is
important to understand the physiological processes
underlying the formation of atherosclerotic plaques to better
treat CVD patients.

Animal models have been useful to understand the
molecular and cellular mechanisms implicated in the
development of atherosclerotic lesions. Because wild-type
mice are resistant to lesion development, genetic deletion
models have been developed. The two most currently used
models consist of mice with a deficiency in the apolipoprotein
(ApoE) or low-density lipoprotein receptor (LDLR) genes
[91, 145, 216]. Because LDLR-deficient mice do not properly
clear very low density lipoprotein (VLDL) and LDL from the
plasma, the blood slowly accumulates cholesterol and animals
develop atherosclerotic lesions under a normal diet [91],
although a high-fat diet exacerbates this phenotype [101].
ApoE deficiency also leads to defective cholesterol transport
and sub-endothelial accumulation of cholesterol under a
normal diet. This model best recapitulates the chronology of
lesion development in humans and is therefore useful for
identifying candidate genes implicated in the formation of
lesions as well as testing novel therapies to block lesion
progression [207, 216]. Although these mouse models present
similarities to human atherosclerosis, their usefulness is
limited due to the absence of coronary plaques and the
development of stable plaques instead of unstable ones,
such as those observed in humans [64]. Interestingly,
however, ApoE−/− mice crossed to scavenger receptor class
B type I adaptor-deficient animals develop similar cardiac
complications as humans [211].

High circulating levels of cholesterol represent a key
molecular correlate of atherosclerosis development [183].
Hypercholesterolemia leads to LDL cholesterol retention in
the sub-endothelial extracellular matrix and promotes the
passive infiltration and deposition of other macromolecules,
such as apolipoprotein B lipoproteins (ApoB-LPs), the latter
of which can interact with proteoglycans and chondroitin
sulfate in the sub-endothelial matrix [18, 19, 96, 188].
Deposits of ApoB-LPs are then modified by lipolysis,

proteolysis, and oxidation [82, 187, 201, 202]. The 12/15-
lipoxygenase, which is expressed by endothelial cells, smooth
muscle cells (SMCs), and monocytes, mediates minimal
oxidative modification of ApoB-LPs. Once oxidized, ApoB-
LPs in turn activate endothelial cells and induce inflammation,
promoting the formation of atherogenic plaques [16, 17, 62,
155] (Fig. 1a, b).

Several types of cells collaborate to carry out the
atherosclerotic process. For example, endothelial cells,
monocytes, monocyte-derived macrophages, foam cells, T
cells and SMCs participate in establishing an inflammatory
environment by secreting cytokines. Then, chronic
inflammation eventually gives rise to acute cardiac disease
symptoms. In the next section, we will discuss the role of
immune cells and their prevalence in the evolution of
atherosclerotic disease (Fig. 1c).

Pro-atherogenic role of leukocytes

Recruitment of monocytes/macrophages

Oxidized ApoB-LPs (oxysterols) are at the origin of leukocyte
recruitment, as these molecules interact with the endothelial
oxidized LDL (ox-LDL) receptor-1 [34, 140, 201] and lead to
cyclic AMP and reactive oxygen species (ROS) production.
This activates the NF-κB transcription factor and induces the
expression of various pro-inflammatory molecules by
endothelial cells, including adhesion molecules for circulating
monocytes (vascular-cell adhesion molecule 1 (VCAM-1),
intercellular adhesion molecule-1 (ICAM-1)), chemotactic
molecules (monocyte chemoattractant protein-1 (MCP-1)/
CCL2, macrophage colony-stimulating factor (M-CSF),
GM-CSF), pro-coagulant tissue factors (thrombotic factors
VII/VIIa), and SMC mitogenic factors (platelet-derived
growth factor (PDGF) and FGF) [33, 46, 51, 55, 166, 179].

Monocytes are the first immune cells to infiltrate the intima
and therefore stimulate the inflammatory process. Monocyte
chemotactic protein 1 (MCP-1/CCL2) [71] and M-CSF [167]
enhance the recruitment of monocytes and Tcells to the vessel
intima [117, 171], a process that begins with the binding of
MCP-1 to proteoglycans on the endothelial plasma membrane
[37, 63]. Rolling monocytes along the P- and E-selectin-
expressing luminal side of the endothelial layer then bind to
MCP-1 via CCR2 and, as a consequence, firmly adhere to the
endothelium [153]. Furthermore, the binding of MCP-1 to
CCR2 activates the integrins LFA-1 and MAC-1 (αMβ2)
expressed by the monocyte, which results in sustained avidity
of the monocyte to endothelial ICAM-1 [203]. In addition to
the chemokine signal, rolling monocytes also detect integrin-
activating signals via the selectin ligand P-selectin
glycoprotein ligand-1 (PSGL-1). Finally, integrin α4β1
(VLA-4) binds to the endothelial receptor VCAM-1 in a
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low-affinity conformation [60, 89], and the resulting strength
of monocyte adhesion to the endothelium promotes their
patrolling along endothelial cells and leads to their trans-
endothelial migration towards the intima [44]. Studies by
Charo and Peters have demonstrated that Ccr2−/− mice on
an ApoE-deficient genetic background demonstrate decreased
monocyte/macrophage recruitment and develop smaller
atherosclerotic lesions [160]. Furthermore, blocking
antibodies against P- and E-selectin, both in vitro and
in vivo, has been shown to reduce monocyte rolling on the
aortic endothelium of ApoE-deficient atherosclerotic mice,
increase the leukocyte migration velocity, and decrease the
duration of the leukocyte–endothelial interaction [49].
Moreover, LDR−/− and P-/E-selectin−/− double-deficient
mice, after 8 weeks on a high-fat diet, develop atherosclerotic
lesions that are five times smaller than those observed in
LDR−/− mice, and this difference remains as high as 40 %
after 37 weeks of feeding with an atherogenic diet [46]. In

addition, inhibiting the glycosylation of PSGL-1 by deleting
α-(1,3)-fucosyltransferase (FucT) also decreases the
interaction between monocytes and selectin-coated surfaces
under flow conditions, as well as the size of atherosclerotic
lesions in ApoE−/− mice [84, 86]. These experiments
demonstrate the involvement of chemokines and selectins in
the atherogenic monocyte homing process. Furthermore, a
recent study revealed the role and therapeutic potential of a
human anti-VCAM-1 antibody in ApoE deficiency; this
antibody cross-reacts with murine VCAM-1 and was able to
improve atherosclerotic lesions in terms of the size of the
plaque and the immune cell infiltration [154].

Other proteins may also play roles in the recruitment of
monocytes to the early lesion, notably junctional adhesion
molecules (JAMs). JAMs are adhesion molecules belonging
to the immunoglobulin superfamily and are expressed at the
cell–cell junctions between endothelial and epithelial cells.
JAM-A and JAM-C are involved in leukocyte recruitment to

Fig. 1 Evolution of atherosclerosis lesion over time. a Normal vessel
composed of an endothelial cell layer (EC), an intima layer (Intima),
which contains the elastic lamina and extracellular matrix proteins such as
collagen and proteoglycans, a tunica media (Media) composed of smooth
muscle cells, and an the tunica adventitia (Ad). Under normal conditions,
immune cells are mainly found in the blood compartment (Blood). b
Initiation of the lesion by deposition of LDL-apolipoprotein B complexes
on the endothelial cell layer and infiltration into the intima through
rendering the endothelial layer permeable. The LDL–apolipoprotein B
complexes are retained in the intima through their interaction with
extracellular matrix components. In the intima, LDL will be oxidized
through the action of ROS produced by endothelial cells. c Inflammatory
stage of the lesion. Immune cells (monocytes, neutrophils, and T cells)
infiltrate the intima by transendothelial migration using adhesion

molecules (selectins, ICAM-1, VCAM-1, JAMs). Activated endothelial
cells secrete M-CSF, which induces the differentiation of monocytes into
macrophages that express scavenger receptors for oxidized LDL (CD68,
CD36, SRA). These oxidized LDLs will accumulate in macrophages and
transform them into foam cells. Foam cells will then die by necrosis or
apoptosis. The accumulation of dying foam cells forms a necrotic core in
the intima. d The advanced lesion or atheroma may degenerate and lead
to rupture of the plaque depending on the thickness of the fibrous cap and
the degree of inflammation. T cells stimulate the secretion by
macrophages of proteases, which degrade the fibrous cap and or they
inhibit SMC secretion of matrix proteins by secretion IFNγ. Degradation
of the fibrous cap leads to rupture of the plaque and to the release of tissue
factor into the blood, which leads to thrombus formation
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atherosclerotic plaques, and JAM-A deficiency in ApoE−/−

mice reduces the extent of plaques and monocyte infiltration
without altering the SMC content [217]. Moreover, a
circulating plasmatic form of JAM-A is detected in human
atherosclerosis and has been associated with more advanced
disease [27]. Two studies have also shown a role for JAM-C in
atherosclerosis. The first study showed in vitro that the
expression and localization of JAM-C on endothelial cells
and vascular smoothmuscle cells (VSMCs) could bemodified
by oxLDL and that leukocyte adhesion to oxLDL-activated
endothelium depended on JAM-C [95]. The second study
used the ApoE−/− mouse model and found that treating these
atherosclerosis-prone mice with a specific anti-JAM-C
antibody reduced the hyperplasia of the neointima and
diminished the number of infiltrated macrophages without
altering the VSMC content [176].

Formation of foam cells

Under stimulation by M-CSF, which is produced by activated
endothelial cells, monocytes differentiate into macrophages,
which phagocytize oxidized LDL via scavenger receptors
[164]. Through the secretion of chemokines, activated
macrophages then induce the recruitment of Tcells, mast cells,
and SMCs into atheroma plaques [77, 78]. This inflammatory
state can be maintained for several years, thereby potentiating
atherogenicity and increasing the size of plaques.

Lack of M-CSF prevents the differentiation of monocytes
into macrophages, which impacts the pathophysiology of
several diseases. Macrophages are major players in the
atherosclerotic inflammatory process [52]. These cells act as
part of the innate immune response and demonstrate the
capacity to phagocytize pathogens and produce ROS,
extracellular proteases, complement factors, and cytokines.
Macrophages also activate the adaptive immune response by
presenting pathogen-associated antigens to Tcells to stimulate
T cell activation. Evidence for the crucial role of macrophages
in atherosclerosis has been provided by studies in which mice
lacking M-CSF were crossed to ApoE-deficient mice (op/op
mice), and these animals were protected from atherosclerosis
despite high cholesterol levels in the blood [115].

Following deposition within atherosclerotic plaques, LDL
undergoes numerous oxidative modifications, which are
mainly mediated by ROS and give rise to highly oxidized
metabolites such as oxysterols. Following passive LDL
infiltration and minimal oxidation by 12/15-lipoxygenase
and ROS, enzymes in the sub-endothelium, such as LPL,
contribute to the retention of ApoB-LPs by bridging them to
proteoglycans in the intima [96, 187, 188, 205]. The
retention process of LDL is enhanced by the secretory
sphingomyelinase, which is mainly secreted by macrophages
and endothelial cells in atherosclerotic plaques [188].
Oxidized lipoproteins are bound and endocytosed by

scavenger receptors expressed by macrophages that then
become foam cells [53, 164, 209, 213]. Accordingly, mice
deficient in scavenger receptors show a slight decrease in
atherosclerotic lesions due to reduced numbers of foam cells
within plaques [139]. Macrophages/foam cells express two
types of scavenger receptors: class A and B. Class A
receptors are trimeric proteins with a collagenous domain
that is essential for ligand binding, whereas class B receptors
(CD36 and SR-B1) are highly N-glycosylated and fatty-
acylated protein, containing two transmembrane domains
and a C-terminal cytoplasmic tail. These structures recognize
a wide range of negatively charged macromolecules, such as
ox-LDL, dead cell debris, and pathogenic microorganisms
[209]. Furthermore, the absence of CD36 protects against the
development of atherosclerosis, and Cd36−/− /ApoE−/−

double-knockout mice have a 74 % decreased aortic lesion
area and a less pro-inflammatory phenotype compared to
single ApoE−/− knockout mice. However, the combined
deficiency of scavenger receptor A (SRA) I/II and CD36
provides no additional protection [103].

The uptake of ox-LDL by macrophages through scavenger
receptors is tightly regulated by cytokines. The T helper (Th)
2-associated cytokine interleukin (IL)-4 induces the expression
of CD36 and enhances ox-LDL uptake, while the Th1-
associated cytokines interferon γ (IFN-γ), tumor necrosis
factor-α (TNF-α), and IL-6 induce SR-A downregulation,
resulting in the impairment of cholesterol metabolism [76].

Scavenger receptors may also form a link between the
innate and adaptive immune responses. When ox-LDL
particles bind to scavenger receptors on macrophages, they
stimulate phagocytosis and antigen processing for the
presentation of MHC class II-restricted peptides to T cells.
In addition, ox-LDL particles can stimulate macrophages by
other means; for example, ox-LDL contains platelet-activating
factor-like lipids, which are strongly inflammatory and can
activate macrophages as well as endothelial cells [202].
Furthermore, ox-LDL can bind to cell surface signaling
receptors such as Toll-like receptors, which can also activate
macrophages [76].

Internalized ox-LDL is processed by enzymes such as
cholesterol 27-hydroxylase, which converts ox-LDL into its
soluble form, 27-OH-cholesterol [13]. The massive
cytoplasmic accumulation of cholesterol in macrophages then
leads to the formation of typical atherogenic foam cells.
However, efflux of cholesterol via membrane transporters is
possible and is considered anti-atherogenic.

Avoiding a surplus of intracellular cholesterol is important
for the survival of macrophages/foam cells. Within
atherosclerotic lesions, macrophages are exposed to an excess
of cholesterol stemming from cell debris, lipoproteins, and ox-
LDL particles. The rapid internalization of these particles
leads to the aberrant accumulation of cholesterol in
macrophages, and this toxicity affects their function and
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survival. One strategy macrophages use to manage excess
cholesterol uptake is the efflux of cholesterol by cholesterol
efflux transporters, including a family of ATP-binding cassette
(ABC) proteins and ApoE [177]. The expression of these
cholesterol efflux receptors is regulated by the peroxisome
proliferator-activated receptor (PPAR) family of nuclear
transcription factors, which is also known for its involvement
in the regulation of lipid metabolism and inflammation.

The three PPAR subtypes (α, γ, δ) are often co-expressed
by cells [73]. PPARα and PPARγ promote the expression of
cholesterol transporters for lipid uptake and efflux in
macrophages residing in atherosclerotic lesions, and PPARα
activation leads to expression of the scavenger receptor CD36
and the cholesterol efflux transporter ABCA1. The role of
PPARα activators is to induce the uptake of highly
atherogenic ox-LDL by CD36, followed by efflux and
extracellular transport of cholesterol through HDL particles.
The net effect of PPARα is pro-atherogenic because
PPARα deficiency reduces atherosclerosis in ApoE−/−

mice [194]. Loss of PPARγ disables cholesterol export
and thereby accelerates the progression of atherosclerosis.
PPARδ, on the other hand, regulates the inflammatory
status of macrophages/foam cells, and PPARδ deficiency
decreases atherosclerosis in LDR−/− mice mainly due to
increased expression of inflammatory suppressor genes
such as BCL-6 in macrophages [106].

Ox-LDLs (oxysterols) ingested bymacrophages bind to the
liver X receptor (LXR) nuclear hormone receptor and induce
its activation and heterodimerization with the retinoid X
receptor (RXR). The LXR/RXR heterodimer then forms a
transcription factor that binds to specific promoters by
recognizing the LXR response element sequence (LXRE),
which activates the expression of target genes involved in
cholesterol metabolism, including ABCA1, ApoE, and LXR
itself. Treatment of ApoE−/− or LDR−/− mice with LXR or
RXR activators was shown to reduce the size of
atherosclerotic lesions, mainly by promoting the expression
of the cholesterol efflux transporters ABCA1 and ABCG1
[94, 191].

As mentioned above, ABCA1 is a transmembrane
cholesterol transporter that contributes to the export of
cholesterol and fatty acids from the cytoplasm to the
extracellular space. The binding of cholesterol by circulating
apolipoproteins (ApoA through ApoI) then generates nascent
HDL particles and directs cholesterol to the liver, where it can
be secreted into the bile [28]. The role and the involvement of
ABCA1 in cholesterol efflux and atherosclerosis have been
described in vivo by performing bone marrow transfers from
ABCA1-deficient mice to ApoE-deficient mice fed a high-fat
diet. This specific ABCA1 inactivation inmacrophages resulted
in markedly increased atherosclerotic lesions and foam cell
accumulation. However, double knockout of ABCA1−/− and
either ApoE−/− or LDLR−/− did not affect the development,

progression, or composition of atherosclerotic lesions, likely
due to the observed reduction in plasma cholesterol [1, 2].

The accumulation of excess free cholesterol particles in the
internal compartments of macrophages will lead to apoptosis,
which contributes to the formation of the necrotic core in later
plaques. Several studies have described a link between
impairment of macrophage cholesterol metabolism and
endoplasmic reticulum (ER) stress, both of which lead to foam
cell death and consequently necrotic core formation [141, 150,
192]. The initiating event in this process is the accumulation
of free cholesterol within the plasma membrane of the ER,
where normally the cholesterol/phospholipid ratio should be
low. Increased cholesterol induces stiffness of the ER
membrane, which consequently leads to dysfunction of
integral ER proteins, such as the sarco-/endoplasmic reticulum
ATPase, a calcium pump involved in calcium recapture from
the cytoplasm to the ER reservoir.

Although the majority of foam cells in atherosclerotic
lesions derive from macrophages, SMCs can also give rise
to foam cells. This finding comes from histological
observations of simultaneous staining for both smooth muscle
markers and lipid droplets within intimal SMCs. Moreover,
the ability of SMCs to generate foam cells was demonstrated
by the fact that they express a wide variety of lipid and
cholesterol uptake receptors, including scavenger receptors
and cholesterol efflux transporters [50, 100, 113, 129, 172,
189, 206]. In vitro, exposure of rat and rabbit SMCs to
inflammatory cytokines increases their expression of LDL
and VLDL receptors as well as the binding of LDL [171,
172, 189, 199].

Dendritic cells

The precise role and location of antigen-presenting dendritic
cells (DCs) in atherosclerotic lesions is not well understood,
although several hypotheses have been proposed. Under
hypercholesterolemia, DCs encounter and scavenge
atherosclerotic-related antigens in peripheral organs such as
the skin or spleen or directly within the initial lesion site itself.
These antigen-loaded DCs mature and emigrate to lymphoid
organs, where they present antigen epitopes to naïve T cells to
activate these cells and generate atherogenic T cells. These
antigen-specific T cells then migrate to the lesions, where they
can be reactivated and drive the atherogenic inflammatory
process. In addition, DCs may also activate T cells within
the lesion site itself, although this mechanism of activation is
less efficient and will instead function by limiting the
formation of T regulatory cells (Tregs) due to the
inflammatory environment [127]. Both plasmacytoid DCs
(pDCs) and conventional DCs (cDCs) are found within
atherosclerotic lesions [147]. pDCs promote the development
of atherosclerotic lesions, as depletion of pDCs in ApoE−/−

mice using an anti-mPDCA-1 antibody was shown to be anti-

Semin Immunopathol (2014) 36:73–91 77



atherogenic; this treatment reduced the size of the plaques
and the number of macrophages but increased the collagen
content. Moreover, IFN-γ-producing pDCs, when activated
by antimicrobial peptide complexes, promote the
development of atherosclerotic lesions in ApoE−/− mice
[47], and oxLDL has been shown to transform pDCs into
IL-12-producing inflammatory cells [158] and induce the
upregulation of scavenger receptors. Therefore, the uptake
of oxLDL by DCs and the secretion of IL-12 initiate the
formation of lesions [146, 157]. cDCs also contribute to the
progression of lesions, as shown by the expression of CCL17
in a subset of cDCs in the aortae of ApoE−/− mice during
disease formation. These DCs also recruit T cells to the
lesions, which drives lesion progression [204]. In conclusion,
DCs can induce atherosclerotic plaque formation directly or
indirectly by inducing T cell activation.

T helper cells and their secretion products

Although Tcells are present in atherosclerotic lesions in lower
numbers than monocytes and macrophages, they play an
important role in triggering and controlling inflammation via
adaptive immune responses to modified self-antigens such as
ox-LDL particles, heat shock proteins, β2 glycoprotein I, and
likely apoptotic/necrotic debris [61, 97, 184]. Initial studies
showed that plaque formation under a Western diet was not
different in immunodeficient ApoE−/− mice compared to
immunocompetent ApoE−/− animals [38]. However, under
moderate hypercholesterolemia, plaque formation is
decreased in immunodeficient ApoE−/− mice. The relevance
of antigen presentation to atherosclerosis progression comes
from adoptive transfer experiments, in which the injection of
ox-LDL-reactive T cells into ApoE−/−/scid/scid mice fed a
high-fat diet accelerated lesion formation compared to the
transfer of Tcells with no reactivity to plaque-derived antigens
[219]. The presence of T cells and the expression of MHC
class II by phagocytes within lesions sustain the pro-
atherogenic role of antigen presentation. Furthermore,
multiple studies in atherosclerotic mice have shown that
various Th cell subsets have specialized roles in
atherosclerosis. For example, Th1 cells exert a pro-
inflammatory and pro-atherogenic effect by secreting the
cytokines IFN-γ, IL-2, TNF-α, and TNF-β, which activate
endothelial cells, inhibit the synthesis of extracellular matrix
by SMCs, and promote Th1 immune responses. In contrast,
Th2 cells are anti-inflammatory and anti-atherogenic. These
cells secrete IL-4, IL-5, and IL-10, which inhibit the
expression of inflammatory genes but stimulate the growth
and proliferation of B cells, as well as inhibit Th1 immune
responses but promote the proliferation and activation of
Tregs [58]. Furthermore, Th1 cells are more abundant in
atherosclerotic lesions than Th2 cells.

IFN-γ is one of the most important cytokines for the
development of atherosclerotic lesions. This cytokine acts on
multiple cell types and induces proliferative as well as
secretory functions; furthermore, IFN-γ signaling affects
approximately 25 % of the transcriptome of macrophages
[48]. IFN-γ is mainly secreted by natural killer cells and
activated Th1 cells, but recent evidence indicates that IFN-γ
may also be produced by monocytes/macrophages, DCs, and
B cells. IFN-γ induces its pro-atherogenic effects through
multiple mechanisms and cell targets; for example, it enhances
leukocyte recruitment to the lesion site through the activation
of endothelial cells and SMCs and the expression of adhesion
molecules such as P- and E-selectin, ICAM-1, and VCAM-1
[31]. ApoE−/− or LDR−/− mice deficient in IFN-γ or its
receptor present reduced inflammatory cell content in
atherosclerotic lesions [24]. In addition, IFN-γ induces the
expression of several other genes, including the MHC class II
complex in macrophages, thereby activating the antigen
presentation process. IFN-γ also induces the expression of
α5β1 integrin by vascular SMCs, which enables these cells to
bind to the extracellular matrix molecule fibronectin.
Furthermore, this interaction enhances the proliferation and
migration of SMCs and blocks collagen secretion. IFN-γ is
also responsible for stimulating the secretion of chemokines
involved in the recruitment of immune cells; for example, the
chemokine MCP-1/CCL2 can polarize the immune response
towards a Th1 (pro-inflammatory) response [79].

Another cytokine involved in the development of
atherosclerosis is IL-12, which is produced by DCs and
monocytes/macrophages and plays an essential role in Th1
cell polarization. IL-12 induces activation of the STAT4
transcription factor and the T-box transcription factor T-bet,
resulting in upregulation of IFN-γ expression in Th1 cells. IL-
12 deficiency inApoE−/− mice fed a high-fat diet significantly
reduces plaque development [41], and IL-12 administration
enhances IFN-γ production as well as atherosclerosis
development [107].

Th2 cells secrete IL-4, IL-5, and IL-10, which promote
athero-protective effects by stimulating the production of
antibodies against specific atherosclerotic-associated antigens
by B cells. During the development of atherosclerosis, Th2
immune responses also antagonize Th1 responses [85]. IL-4
drives Th2 cell differentiation by inducing the phosphorylation
(and activation) of STAT6, a transcription factor that drives the
expression of GATA3 and promotes the upregulation of IL-4
and IL-5 and the down-regulation of IFN-γ gene expression.
IL-4 is typically considered an anti-inflammatory cytokine that
promotes B cell proliferation and antibody production [85].
However, there is some evidence that IL-4 may also play a pro-
atherogenic role through induction of VCAM-1 and MCP-1/
CCL2 expression by endothelial cells [88]. Thus, the effects of
IL-4 on atherosclerosis remain controversial and may differ
depending on the stage and/or site of the lesion as well as the

78 Semin Immunopathol (2014) 36:73–91



experimental model. The relative resistance to atherosclerosis
of BALB/c mice fed with high-fat diet has also been attributed
to Th2 responses, although BALB/c mice deficient in STAT6
lack Th2 responses and are prone to atherosclerosis, likely due
to a prominent Th1 response [85]. However, in more
permissive models using LDR−/− mice transplanted with bone
marrow cells from mice deficient in IL-4, atherosclerotic
lesions were unexpectedly reduced [98]. This anti-
atherosclerotic effect may have been due to the lack of the
pro-atherogenic effect of IL-4 on endothelial cells. Similarly,
IL-4−/−/ApoE−/− mice have been shown to develop reduced
numbers of lesions compared toApoE−/− single KOmice [41].

Another product of T helper cells is IL-17A, a chronic,
inflammatory cytokine produced by Th17 cells as well as
several other subclasses of leukocytes. Although previous
work demonstrated a pro-atherogenic effect of IL-17A, a
recent genetic study found that IL-17A deficiency in all
cell types in ApoE−/− mice accelerated atherosclerosis
during an initial phase of high-fat feeding [39], which was
likely due to increased IFNγ production. Furthermore,
treatment of ApoE−/− animals with IL-17A was shown to
reduce atherosclerosis progression. However, additional
work is needed to definitively determine whether IL-17A
could be a promising target for treating atherosclerosis.

Mechanisms leading to advanced lesions

Lesion progression is associated with a high inflammatory
state. Although advanced atherosclerotic lesions (atheroma)
that can lead to ischemia via arterial obstruction, myocardial
infarction, and stroke are more strongly associated with
plaque rupture and consequent thrombosis. The majority of
myocardial infarctions result from atheroma with less than
50 % stenosis of the artery [110]. Thrombosis occurs after
the rupture of plaques often found at lesion edges, where
foam cells are abundant. The cellular composition of
atherosclerotic plaques directly affects the stability of
plaques, and determining their cellular composition is
necessary for an accurate prognosis of a patient’s risk to
develop atherosclerosis. Macrophages play a key role in the
thrombotic process by secreting extracellular proteinases,
which degrade the extracellular matrix components of the
fibrous cap. Under the shear stress associated with blood
flow, the fibrous cap detaches, which exposes intimal tissue
components to the blood, activates platelets, and initiates
thrombosis (Fig. 1d).

Stable plaques show reduced numbers of inflammatory
cells but increased numbers of proliferating and ECM-
producing SMCs. On the other hand, unstable or vulnerable
plaques generally show a thin fibrous cap and a massive
accumulation of inflammatory and foam cells. Unstable
plaques present a massive inflammatory necrotic core and
accumulate non-proliferative and non-secreting SMCs [66,

186]. As a result, lesion stability and vulnerability are highly
dependent on SMC survival and the content of their secretions
within the plaque [32].

High levels of inflammation within plaques are the result of
collaboration between the innate and the adaptive immune
systems, which is mediated by the interactions between
macrophages, macrophage-derived foam cells, and T cells. T
cell–macrophage interactions and consequent cytokine
secretion play an important role in the evolution of plaques
from the stable to the unstable state. IFN-γ also plays a
pivotal role in stabilizing plaques by inhibiting the
expression of matrix metalloproteinase (MMP)-9, a
protease that degrades extracellular matrix, and by
upregulating superoxide dismutase, a protein involved in
reducing ROS. However, as mentioned previously, IFN-γ
also destabilizes plaques by increasing the production and
secretion of chemokines and downregulating ApoE
expression. Altogether, the prevailing effect of IFN-γ is
increased size and vulnerability of the lesion [108]. Indeed,
IFN-γ receptor deficiency in ApoE-deficient mice reduces
the size of the atherosclerotic lesions, the lipid content, and
the cellularity but increases the collagen content [72].

Other elements of the immune system that have been
studied in plaques include the co-stimulatory molecule
CD40, which is expressed by antigen-presenting cells, and
its ligand CD40L, which is expressed on T cells. Both
CD40 and CD40L are expressed within atheroma plaques,
and they co-localize on atheroma-associated endothelial
cells, SMCs, and macrophages. Moreover, chronically
activated CD4+ T cells express CD40L within human
atherosclerotic lesions as well as the atheromatous tissues
of hypercholesterolemic mice [120]. Accordingly,
interruption of CD40 signaling, either by injecting anti-
CD40L antibodies into LDR-deficient mice or using
CD40/LDR double-deficient mouse strains, has been
shown to alter the composition of the atheroma by reducing
the content of pro-atherogenic molecules and increasing the
content of SMCs and fibrillar collagen [118, 119, 175], and
these effects were recently confirmed using CD40 RNAi
lentiviral constructs in mice. Furthermore, CD40 knockdown
not only reduced MMP-9 expression, chemokine production,
and the lipid content of existing plaques but also increased the
collagen content, which led to plaque stabilization [200].

Anti-atherogenic role of leukocytes

Although the immune system predominantly promotes the
development of atherosclerosis, the immune system consists
of a balance of pro- and anti-inflammatory signals, and some
actors therefore counterbalance the pro-atherosclerotic effects
of macrophages and T cells.
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Anti-inflammatory cytokines and their atheroprotective
mechanisms

Several studies have shown a protective role for IL-10 in the
development of atherosclerotic lesions. In particular, this IL-
10 anti-atherogenic effect has been demonstrated in vivo using
atherosclerotic animal models. Mice deficient in IL-10 and fed
an atherogenic cholate-containing diet showed formation of
early atherosclerotic lesions that were characterized by an
accumulation of immune cells, T cell activation, and increased
production of pro-inflammatory cytokines [162]. However,
this effect was reversed by the local or systemic
overexpression of adenoviral IL-10 gene constructs. In
addition, ApoE−/− mice crossed to IL10-deficient mice
presented greater numbers of less stable lesions, which again
suggested a role for IL-10 in atheroprotection [26]. It is
interesting to note that in a model of atherosclerotic plaque
regression induced by administration of conjugated linoleic
acid, IL-10 expression was highly upregulated, and this may
be the mechanism by which linoleic acids mediate plaque
regression [130]. Several subsequent studies have tried to
dissect the anti-atherosclerotic effect of IL-10; one of them
found that IL-10 prevented the formation of oxLDL
aggregates in macrophages and thereby reduced foam cell
formation, and another study showed that IL-10 regulates
oxLDL-induced apoptosis in macrophages and endothelial
cells [210, 212].

The Th2 cytokine IL-10 is produced by Th2 cells, B cells,
monocytes, and macrophages. In addition to the mechanisms
described above, the atheroprotective effect of IL-10 is also
mediated by its ability to inhibit the expression and secretion
of pro-inflammatory cytokines, including IL-1β, TNFα, and
IL-8. IL-10 also inhibits the production of the chemokine
MCP-1, resulting in reduced immune cell recruitment to
atherosclerotic lesions. Furthermore, IL-10 can block MMP
production by macrophages and SMCs; MMP acts to degrade
extracellular matrix, which leads to unstable plaques with a
thin fibrous cap and increases the risk of plaque rupture and
thrombosis. Thus, IL-10 may also have a protective effect
against plaque rupture and thrombus formation [74], as well
as an effect on the secretion of tissue factors and the
production of thrombin by peripheral bloodmononuclear cells
and macrophages. Another atheroprotective effect of IL-10 is
apoptosis limitation within atherosclerotic lesions by limiting
ROS production. ROS are responsible for several cellular
modifications, including endothelial damage, oxidation of
lipids, and recruitment of inflammatory cells to the lesion site.
The preventative effect of IL-10 against ROS production is
mediated by its inhibition of the iNOS enzyme, which is the
most important ROS producer within atherosclerotic lesions.
This results in the reduction of LDL oxidation and
atherosclerotic-related antigens [124], and IL-10 also reduces
ER stress-induced apoptosis in macrophages by stimulating

the production of survival molecules and the production of
cholesterol efflux molecules such as the ABCA1/ABCG1
transporters [173]. In conclusion, IL-10 is an extremely
versatile molecule, and future investigations will be necessary
to establish its potential use as a target for atheroprotective
strategies.

Similar to IL-10 and because of its multiple targets,
transforming growth factor-β (TGF-β) also inhibits
atherosclerosis development in multiple ways. First, it
stimulates the secretion of collagen, which stabilizes plaques
against rupture. In vivo, anti-TGF-β antibodies exacerbate the
development of atherosclerotic lesions by decreasing the
collagen content and increasing the number of inflammatory
cells [126]. Moreover, the level of TGF-β in the sera of
patients has been shown to inversely correlate with the
advancement of atherogenic lesions [69]. Furthermore,
TGF-β can regulate T cell activity [68, 170], and larger, more
inflamed atherosclerotic plaques were observed inApoE−/− or
LDR−/−- animals expressing a dominant-negative TGF-β
receptor under control of a T cell-specific promoter. Thus,
we conclude that TGF-β serves as another potential target
for treatments against atherosclerosis.

Regulatory T cells

Although several cell types can produce IL-10 and TGF-β,
these cytokines are mainly produced by Tregs. In recent years,
several studies have reported a major role for Tregs in the anti-
atherogenic process [4, 125]. Early evidence suggesting that
Tregs have a protective role in atherosclerosis came from a
study published in 2006; in this study, the transplantation of
natural Tregs from healthymice to Treg-deficient mice led to a
reduction in atherosclerotic lesions, whereas depletion of
Tregs increased these lesions [3]. Other studies have
confirmed the protective effect of Tregs in atherosclerosis,
showing, for example, that a low number of Tregs in patients
is associated with severe outcomes, such as acute coronary
syndrome. Downregulation of the number of Tregs seems to
be associated with epigenetic modulations, and a high level of
methylation of the FOXP3 gene in response to oxLDL was
shown to be responsible for this downregulation [92]. As
Tregs have a protective role, they have been proposed as a
therapeutic tool for atheroma prevention. Along this line, a
recent study used immunization with apolipoprotein B100-
derived peptides and found that this treatment induced
increased numbers of Tregs, reduced lesion development in
young ApoE−/− mice and even allowed for regression of
previously established lesions in older ApoE−/− mice [81].

Additional roles for dendritic cells

The DC population is heterogeneous in terms of cell
phenotype and function. As previously described, most DCs
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are pro-atherogenic, although one subset of DCs has
been identified as anti-atherogenic, and these monocyte-
derived DCs (CD11chighMHCIIhighCD11b-CD103+) are
able to induce Tregs [30]. In addition, immature DCs
(CD86−CD80−CD40−MHCII−) are tolerogenic because
they produce TGF-β and IL-10, which enables them to
mediate anti-atherosclerotic responses. In the ApoE−/−

transgenic model in which TGF-βR signaling in CD11c+

DCs is disrupted, the DCs present a more inflammatory
phenotype, which leads to more advanced lesions [112].

Antibodies

As mentioned previously, humoral immunity has been
implicated in atherosclerosis, and splenectomy increases
atherosclerosis both in ApoE−/− mice and humans [25].
Moreover, the transfer of splenocytes from atherosclerotic
mice to ApoE−/− animals protects against the development
of disease. Clearly, modified LDLs are immunogenic, and
antibodies against ox-LDL are found in human atherosclerosis
patients and animal models [152]. Antibodies against the heat
shock protein HSP60 are also found in experimental models
of atherosclerosis [208]. Most of the antibodies specific for
ox-LDL or HSP60 also react withmicrobial components, such
as Streptococcus pneumoniae , and this cross-reactivity may
be explained by the molecular mimicry theory. Furthermore,
the presence of these antibodies is protective against the
development of atherosclerotic plaques, and immunization
of LDR−/− mice with the pneumococcal vaccine prevents
the development of atherosclerotic plaques [12].

As the immune system is one of the major factors in
atherosclerosis disease development and progression, several
components of the immune system may be targeted in
therapeutic approaches. Thus, immune targeting will be
discussed in the last section of this review.

Therapeutic immune targeting in atherosclerosis

Theoretically, the prevention of atherogenesis would require
life-long preventive therapies. Thus, new anti-atherogenic
drugs should meet the criteria of being safe and inexpensive
and should have significant benefits beyond those of currently
available therapies. The improvement of the circulating lipid
profile (mainly lowering LDL cholesterol and increasing HDL
cholesterol) using statins or other drugs is the recommended
pharmacologic approach to stabilize atherosclerotic plaques
[168]. In fact, not only statins but also antiplatelet and
antihypertensive medications play protective roles in both
primary and secondary prevention of acute cardiovascular
events in high-risk patients [9, 57, 80, 144, 193]. A recent
systematic review and meta-analysis of clinical trials
concluded that different antiplatelet agents might be useful

for preventing acute cardiovascular disorders. In particular,
acetyl salicylic acid (at the dose of 150 mg/day) was strongly
recommended for both primary and secondary prevention of
acute major events; however, because this study was mainly
based on cost-effectiveness estimations, this approach should
be validated in subsequent studies [80].

In comparison, randomized clinical trials have shown
angiotensin-converting enzyme inhibitors and angiotensin II
type I receptor blockers to reduce acute cardiovascular events
and associated atherosclerotic inflammation [215]. The
beneficial effects of these medications (all commercial drugs
approved by regulatory authorities) were proposed to be
improved by combined therapies [214]; however, complete
abrogation or regression of atherogenesis has not been observed.
Interestingly, during the last decade, novel therapies selectively
targeting immune and vascular mediators (such as cytokines and
chemokines) have been developed and tested in animal models
of CVD for their ability to further reduce atherosclerosis and its
acute ischemic complications. In the following subsections, we
will present the evidence from both basic research and clinical
studies on the most promising treatments that selectively target
atherosclerotic inflammation and plaque destabilization.

“Pleiotropic” immunomodulatory activities of statins

Statins (inhibitors of 3-hydroxyl-3-methylglutaryl coenzyme
A reductase) are the most commonly used lipid-lowering
drugs worldwide [133]. Despite some safety issues (mainly
myopathy and hepatotoxicity), the majority of these drugs
(e.g., rosuvastatin, atorvastatin, simvastatin, and pitavastatin)
are well tolerated and effective at improving cardiovascular
outcomes in clinical trials [10]. The pharmacologic
improvement in lipid profile has been indicated as the main
mechanism underlying statin-mediated anti-atherosclerotic
effects [133]. This approach is particularly relevant in the
clinical management of high-risk patients, as it allows for
the development of novel treatment strategies to inhibit lipids
in patients intolerant to statins [65, 185]. In this regard,
promising antibody-mediated approaches capable of reducing
LDL cholesterol (in combination with statins or alone) were
recently investigated in large clinical trials [65, 185].
Furthermore, during the last decade, additional roles for statins
in atherosclerosis treatment were identified. For example,
statins were extensively investigated as immunomodulatory
drugs, and this additional anti-atherosclerotic potential was
defined as a “pleiotropic” activity independent of their ability
to ameliorate the lipid profile [104, 105] (Fig. 2). In particular,
statins were found to directly reduce the production of
inflammatory molecules (such as C-reactive protein) by
human hepatocytes in vitro [8]. In addition, statin use is
associated with beneficial coronary angiogenesis and a
reduction in blood pressure in humans [20, 131, 148]. Finally,
statins were shown to improve the serum levels of pro-
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atherosclerotic molecules in clinical studies [14, 15, 67, 75,
90, 99, 121, 142, 156, 161, 180, 198]. The most famous study
targeting statin use and inflammation was the JUPITER
trial [169], in which Ridker and coworkers performed a
randomized, double-blind, placebo-controlled, multicenter,
prospective trial investigating the potential benefits of
rosuvastatin for the primary prevention of major
cardiovascular events in 17,802 apparently healthy persons
without hyperlipidemia but with elevated high-sensitivity
C-reactive protein serum levels [169]. After a median follow-
up of 1.9 years, this trial was stopped for an excess of benefit,
as 10 mg/day rosuvastatin significantly reduced the incidence
of major cardiovascular events as well as serum CRP
compared to placebo [169]. Similarly, other statins (such as
pravastatin and atorvastatin) were shown to reduce
macrophage accumulation within carotid plaques in humans
[36, 165]. These promising results on atherogenesis and
plaque vulnerability were confirmed by a meta-analysis
indicating that 1-month treatment with a statin may be
sufficient to reduce atherogenesis and improve intraplaque
features of vulnerability [123].

Additional statin-mediated pleiotropic activities were
recently discovered, including their reduction of endothelial cell
dysfunction [54, 149] and activation [190] independent of their
cholesterol-lowering properties. Moreover, statins were shown
to potently reduce leukocyte intraplaque recruitment in vitro
and in vivo in atherosclerotic mice [135, 181, 196]. Both basic
and clinical research on the pleiotropic activities of statins have
contributed to improvements in the clinical management and
risk assessment of patients with atherosclerosis, even when

considering potential discrepancies between estimated and real
cardiovascular risk reduction [168]. Thus, there is no doubt that
statin treatment delivers significant effects for both the
secondary and primary prevention of major coronary events
[144], although potential differences in the safety and efficacy
of statins remain to be elucidated in future prospective studies.

Selective treatments targeting chemokines

Small proteins that attract leukocytes from the circulation to
inflammatory sites in different diseases are referred to as
chemokines [102]. In addition, these molecules are classified
into four main subgroups, including CC, CXC, XC, and
CX3C chemokines [102]. These redundant mediators (most
are able to bind to several different transmembrane receptors
on the leukocyte surface) are upregulated both within plaques
and in the circulation of humans with advanced
atherosclerosis and animal models of CVD [42, 218].
Therefore, the selective inhibition of their expression and
bioactivity has been intensively investigated to reduce
atherosclerotic inflammation and post-ischemic tissue injury.
In 2004, the research group of F. Mach in Switzerland focused
on the selective inhibition of RANTES/CCL5-driven
leukocyte recruitment within atherosclerotic plaques in vivo
(Fig. 2). These authors showed that chronic treatment with the
CC chemokine antagonist Met-RANTES markedly abrogated
atherogenesis in comparison to the vehicle control in
hypercholesterolemic mice. This improvement was
accompanied by a decrease in leukocyte infiltration and a
concomitant increase in intraplaque collagen, a molecule that

Fig. 2 Immune targeting of atherosclerosis lesion. Several actors of the
immune system can be targeted to reduce atherosclerotic lesions. Statins,
lipid-lowering drugs, also have anti-inflammatory properties by
preventing EC activation, blocking recruitment of monocytes, and
reducing the level of C reactive protein. Recruitment of immune cells to

lesions may be blocked by MCP-1 or RANTES analogs. Moreover, anti-
CD3 antibodies have been shown to inhibit the activity of Th cells and to
increase the proportion of Treg cells in the lesion. Anti-TNFα antibodies,
which were promising, have not yet shown clear benefit
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stabilizes atherosclerotic plaques. Importantly, these
beneficial effects were independent of the serum
concentrations of lipids [197]. Similar results were obtained
in LDLR−/− mice using another RANTES/CCL5 analog,
[44AANA47]-RANTES, which interferes with the heparin
binding and oligomerization of this chemokine [23]. The
selective inhibition/antagonism of CCL5 was also recently
reported as a promising therapeutic strategy to reduce post-
infarction cardiac inflammation in mice; Braunersreuther and
collaborators showed that a single intraperitoneal injection of
[44AANA47]-RANTES during myocardial ischemia prior to
reperfusion was associated with improvements in cardiac
infarct size, leukocyte infiltration, oxidative stress, and
apoptosis in comparison to PBS-treated animals [22].
Accordingly, Montecucco et al. confirmed the effect of
CCL5 inhibition in preventing post-ischemic cardiac
remodeling and improving survival in C57BL/6 mice. Using
a mouse model of permanent left coronary ligature, these
authors showed that the intravenous administration of a rat
anti-mouse CCL5 monoclonal antibody improved cardiac
function at 21 days after cardiac ischemia onset as compared
to isotype IgG control [134]. Furthermore, evidence from the
research group of C. Weber in Germany recently confirmed
the potential for selective inhibition of CC chemokines in
mouse myocardial infarction injury and neointima formation.
These authors targeted MCP-1/CCL2 with the non-agonist
mutant PA508, which does not activate CCR2 (the cognate
CCL2 receptor) and therefore represents a very selective and
potent inhibitor of CCL2-triggered pathways. The
intraperitoneal injection of PA508 significantly reduced
mouse neointimal plaque area, myocardial infarction size,
and monocyte tissue infiltration compared to vehicle,
confirming that anti-CC chemokine treatments are a
promising strategy against mouse atherosclerosis and acute
ischemic events [111]. In the last decade, the research group of
A. Proudfoot in Switzerland developed several small
molecules capable of binding CC and CXC chemokines and
inhibiting their bioactivities at nanomolar concentrations.
These proteins (called Evasins) were isolated from the tick
salivary gland and produced as recombinant proteins to be
tested in mouse inflammatory disorders, including rheumatoid
arthritis and atherosclerosis [43, 56]. Evidence from our
research group showed a relevant anti-atherosclerotic effect
for Evasin-3 (inhibiting CXCL1 and CXCL2) in mouse
models of shear stress-induced carotid atherosclerosis and
acute myocardial ischemia and reperfusion injury [35, 136].
Conversely, no effect was observed in models of mouse stroke
[35]. The molecular mechanisms identified were related to the
abrogation of neutrophil inflammation, which has recently
been implicated as a key pathophysiological process
modulating atherosclerotic inflammation. More recently, the
therapeutic potential of inhibiting CXCL1 with neutralizing
antibodies was not confirmed in a mouse model of post-

ischemic heart failure and remodeling [151], as these authors
failed to observe any benefit different treatment schedules.
This study therefore highlighted important limitations in the
use of anti-chemokine drugs in atherosclerosis and their
potential translation to human medicine. Concomitant adverse
events have also been identified, including allergic reactions,
low bioavailability, immunosuppression, and risk with
subsequent immunization. Thus, these side effects preclude
the use of these drugs in chronic treatments; moreover, few
selective anti-chemokine medications have been investigated
in humans (phase I), and their development may require
considerable time.

TNF-α inhibition

TNF-α is a pro-inflammatory molecule expressed by cellular
components of early fatty streaks and late atherosclerotic
lesions of humans [137]. Furthermore, TNF-α may be
secreted by several cell types within atherosclerotic plaques,
including endothelial cells, SMCs, and macrophages [29, 116,
159], and circulating levels of TNF-α are increased in
advanced atherosclerosis and in patients symptomatic for
acute stroke [137]. In mice, TNF-α gene knockout on the
ApoE −/− background results in significantly smaller
atherosclerotic plaque areas [21]. Together, these data suggest
that TNF-α may represent a promising target to reduce
atherosclerosis. In particular, patients suffering from chronic
inflammatory disorders (such as rheumatoid arthritis) may be
particularly sensitive to anti-TNF-α therapy, as this therapy
could potentially reduce both the severity of arthritis and the
concomitant acceleration of atherosclerosis. Considering the
increased cardiovascular mortality affecting rheumatoid
arthritis patients, possibly due to common pathophysiological
mediators [138], Hürlimann and coworkers performed a pilot
study investigating the potential effects of treatment with the
anti-TNF-α antibody infliximab on rheumatoid arthritis
activity and endothelial function in 11 subjects with active
disease who were taking a stable dose of methotrexate and
prednisone. After 12 weeks, treatment with anti-TNF-α was
associated with improvements in the rheumatoid arthritis
activity score, systemic inflammatory parameters, and
endothelium-dependent vasodilation (a surrogate parameter
of atherosclerotic endothelial dysfunction, assessed by high-
resolution ultrasound of the brachial artery) [87].

After this initial study was published in 2002, aortic
stiffness was evaluated as a potential indicator of
atherosclerosis in rheumatoid arthritis patients in comparison
to healthy controls. Among 77 enrolled patients with
rheumatoid arthritis, the effects of concomitant anti-TNF-α
therapy were prospectively investigated in a subgroup of nine
subjects. Despite this low number of patients, the authors
showed that aortic stiffness and endothelial function were
significantly improved in patients given anti-TNF-α therapy.
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The authors concluded that selective anti-TNF-α treatment
might represent a promising strategy against atherogenesis
[122]. Di Micco and coworkers recently addressed this point
in another pilot study investigating TNF-α inhibition with
infliximab in patients with rheumatoid arthritis compared to
patients on recommended therapy without infliximab. This
study enrolled only seven patients per group, but it
prospectively evaluated the carotid intima–media thickness
(another surrogate parameter of atherosclerosis) before and
after 12 months of treatment. Unexpectedly, the results
showed that treatment with infliximab was associated with a
significant worsening of atheroprogression that was not
observed in controls [45]. However, these data were not
confirmed at the 3-month (n =60) or 1-year follow-up
examinations (n =54) in patients with inflammatory
arthropathies in the study published by Angel and coworkers
[6, 7]. In conclusion, each of these studies enrolled a very
small number of patients and was not focused on clinical
cardiovascular outcomes; as a result, we are unable to
conclude whether anti-TNF-α inhibition represents a potential
therapeutic strategy against atherosclerosis, and larger clinical
trials are warranted.

The CD3 blocking strategy

In 2003, Chatenoud’s group showed that anti-CD3 blocking
antibodies were able to reconstitute self-tolerance in
established autoimmune type 1 diabetes in nonobese diabetic
mice [11]. In 2009, Hirata et al. tested whether anti-CD3
blocking would also demonstrate tolerogenic functions in
atherosclerosis, and these authors found that oral
administration of anti-CD3 antibody significantly reduced
atherosclerotic lesion formation and the accumulation of
macrophages and CD4+ Tcells in plaques compared to control
treatment (Fig. 2). These authors also observed a significant
increase in latency-associated peptide-positive cells and
CD25+Foxp3+ cells among the CD4+ T cell population in
anti-CD3-treated mice, in association with increased
production of anti-inflammatory TGF-β and suppressed Th1/
2 immune responses [174]. Steffens and coworkers
investigated the potential effects of chronic treatment with an
anti-CD3 antibody in dyslipidemic mouse atheroprogression,
and as expected, these authors reported that anti-CD3 antibody
treatment reduced plaque development by modulating T cell
subset polarization and promoting the Treg phenotype [182].
These promising results from animal models highlight T cells
as a potential anti-atherosclerotic target, based on the
tolerogenic effects of anti-CD3 antibodies.

T cell inhibition for the treatment of atherosclerosis and
acute myocardial infarction was recently investigated using
the older and less selective immunosuppressive drug
cyclosporine, as this medication abrogates T helper and
cytotoxic lymphocyte activation and proliferation [178]. In

humans, two pilot studies showed that acute administration
of a single intravenous bolus of cyclosporine at the time of
reperfusion was associated with a significant reduction in
myocardial infarct size during the first days after the event
[163], lasting until 6 months after treatment [132], as compared
to placebo. However, these important results in humans were
not confirmed in several animal models of acute myocardial
infarction [114], nor in vitro in atherosclerotic cells [93, 143].
Thus, the heterogeneity between animal models and the limited
number of patients investigated does not permit additional
speculation, and further studies are needed to clarify the anti-
atherosclerotic potential of cyclosporine.

Conclusions

Atherosclerosis is a chronic inflammatory disease that
involves a multitude of complex events and risk factors. Some
physiological factors, such as dyslipidemia and metabolic
syndrome, in addition to behavioral factors, including
smoking and lack of exercise, gradually lead to the
establishment of an inflammatory immune process within
vulnerable areas of arteries [70].

The early key step in atherosclerosis is the deposition of
ApoB-LP particles within the intima layer of arteries and their
subsequent oxidation [59, 201]. Furthermore, the effect of
oxidized ApoB-LPs on disease progression is highly
exacerbated by sub-endothelial enzymes. Indeed, lipoprotein
lipase, sphingomyelinase and phospholipase A2 are secreted
by endothelial cells, monocytes, and SMCs and mediate the
active retention of oxidized ApoB-LPs by extracellular matrix
components [96, 188].

Retained oxidized ApoB-LPs stimulate endothelial cell
activation and the expression of pro-inflammatory markers
such as P-selectin, E-selectin, ICAM-1, and VCAM-1 and
chemotactic factors such as MCP-1 and M-CSF. Activated
endothelial cells then recruit monocytes from the vessel lumen
to the intima through the production of chemokines [33, 179].
Once inside the intima, monocytes are activated by M-CSF
and differentiate into macrophages that phagocytize retained
ApoB-LP particles and transform into lipid-filled cells called
foam cells.

Following the recruitment of monocytes and their
differentiation into macrophages, T cells are recruited into
lesions and contribute to the establishment of an adaptive
immune response. The adaptive immune response is based
on the co-stimulatory interaction between CD40 and CD40L,
which activates T cells following antigen presentation by
antigen-presenting cells [120].

Foam cells and infiltrated immune cells secrete several
cytokines and chemokines [83] as well as PDGF-B, which
contribute to the activation and recruitment of medial SMCs
[40] that invade the intima layer. The evolution of atherosclerotic
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plaques into fibroproliferative or thrombotic lesions is
determined according to their cellular components, whereby
the balance between pro- and anti-inflammatory cytokines as
well as pro- and anti-apoptotic factors tightly regulates the
cellularity of atherosclerotic lesions.

To treat atherosclerosis, several strategies have been used
in recent decades. Given that the main cause of atherosclerosis
is an excess of lipids in the serum, one major therapeutic
approach has been to diminish this excess of lipids. For this
reason, the cholesterol-lowering drugs statins were developed,
and these act by blocking the main cholesterol metabolic
enzyme HMG-CoA reductase. Despite the beneficial effect
of statins in the treatment of atherosclerosis, the need for new
therapies has arisen, and preliminary encouraging results have
been obtained for the treatment of atherosclerosis by targeting
immune actors such as TNF-α or CD3.
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