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Abstract We propose a new algorithm for solving the semiclassical time-dependent
Schrödinger equation. The algorithm is based on semiclassical wavepackets. The focus
of the analysis is only on the time discretization: convergence is proved to be quadratic
in the time step and linear in the semiclassical parameter ε.
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1 Introduction

We consider the semiclassical time-dependent Schrödinger equation

iε2∂tψ = H(ε)ψ, (1)

where ψ = ψ(x, t) is the wave function that depends on the spatial variables x =
(x1, . . . , xd) ∈ R

d and the time variable t ∈ R. The Hamiltonian
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54 V. Gradinaru, G. A. Hagedorn

H(ε) = −ε
4

2
�x + V (x)

involves the Laplace operator �x and a smooth real potential V .
The main challenges in the numerical solution of (1) result from the dimension d

often being large and the existence of several time- and spatial-scales governed by the
small parameter ε. In chemical applications, the dimension d is 3N , where N is the
number of nuclei in the molecule being considered. (It is 3N − 3 if the center of mass
motion is removed.) One typically takes the mass of an electron to be 1 and the masses
of the nuclei to be proportional to ε−4. If a molecule has various different nuclei,
one has some freedom concerning the precise value, but that value lies in an interval
determined by the heaviest and lightest nuclei in the molecule. For instance, the H + H2
reaction has ε ≈ 0.1528. CO2 has ε between 0.0764 and 0.0821. The standard model
for IBr is one dimensional because both the center of mass and rotational motions
have been separated. The relevant mass is then mImBr

mI+mBr
, which yields ε ≈ 0.0577.

In these physical problems, ε has a clear meaning as the fourth root of a mass ratio,
but mathematically we can regard Eq. (1) as a whole range of models indexed by the
parameter ε. We recover full quantum dynamics when ε = 1 and classical mechanics
in the limit ε → 0.

Here, we ignore the difficulties that arise from the possibly large dimension d and
focus on the challenges caused by a small ε in the time-integration schemes. The
preferred numerical integration scheme in quantum dynamics is the split operator
technique [6] which, unlike Chebyshev or Lanczos schemes, does not suffer from a
time step restriction, such as �t = O(�x2) (see [12]). However, in the case of a
semiclassical model (1), it is proved in [3] that the Lie–Trotter splitting requires a
time-step of the order of ε2, and the error is of order �t/ε2. For the Strang-splitting,
convergence of order (�t)2/ε2 was observed in [2,3] and proved in [4]. Our own
numerical experiments with a fourth-order splitting in time, together with spectral
discretizations in space show the same factor of 1/ε2.

The small parameter ε forces the choice of a small time-step (and for a Fourier based
space discretization, a huge number of grid points) in order to have reliable results,
even for a fourth-order scheme. Recent research has been done to control the error in
such time-splitting spectral approximations [10]. We propose below a new splitting
that is more appropriate for the semiclassical situation. We prove it has convergence
of order ε(�t)2, which improves instead of deteriorating when ε is reduced. While
the submitted paper was in revision, the authors realized that new algorithms with this
property are in development [1].

The new integration scheme is based on a spatial discretization via semiclassical
wavepackets [7]. The wavepackets have already been useful in the time integration
of the semiclassical time-dependent Schrödinger equation in many dimensions via a
special Strang-splitting [5]. They are related to higher-order Gaussian beams which
are known to allow computational meshes of size O(ε), and have several appealing
properties, see e.g., [8,9,14]. A family of wavepackets forms an orthonormal basis
of L2, which gives them several advantages. However, to the best knowledge of the
authors, the previous known algorithms for the propagation in time wavepackets as
for Gaussian beams feature also the 1/ε2-dependence.
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Convergence of a semiclassical splitting for the Schrödinger equation 55

The main idea of the time-integration scheme in [5] was Strang-splitting between
the kinetic and potential energy, together with the observation that the kinetic part and
a quadratic part of the potential could be integrated exactly. This yielded a second
splitting of the potential into a quadratic part and a remainder. The line of attack in
[7] was slightly different: an approximate solution was built upon the integration of
a system of ordinary differential equations for the parameters of the wavepackets.
Then a second system of ordinary differential equations was used for determining
the coefficients of the wavepackets. Our Algorithm 3 (called below semiclassical
splitting) combines both of these two important ideas. The main achievement is to
have the factor ε instead of 1/ε2 in the error estimate. The order of convergence in
time could be further improved via a higher-order splitting together with a Magnus
integrator, but that is not the subject of this paper.

Let us start with a short introduction to semiclassical wavepackets. They are an
example of a spectral basis consisting of functions that are defined on unbounded
domains. For simplicity, we describe only the case of dimension d = 1, while the
whole analysis can be carried out in general dimensions.

Given a set of parameters q, p, Q, P , a family of semiclassical wavepackets
{ϕεk [q, p, Q, P], k = 0, 1, . . .} is an orthonormal basis of L2(R) that is constructed
in [7] from the Gaussian

ϕε0[q, p, Q, P](x) = (π)−
1
4 (εQ)−

1
2 exp

(
i

2ε2 P Q−1(x − q)2 + i

ε2 p(x − q)

)
,

via a raising operator. In the notation used here, Q and P correspond to A and i B of [7],
respectively. Note that Q and P must obey the compatibility condition Q P−P Q = 2i
(see [7]). Each state ϕk(x) = ϕεk [q, p, Q, P](x) is concentrated in position near q and

in momentum near p with uncertainties ε|Q|
√

k + 1
2 and ε|P|

√
k + 1

2 , respectively.
The recurrence relation

Q
√

k + 1ϕεk+1(x) =
√

2

ε
(x − q)ϕεk (x)− Q

√
kϕεk−1(x)

holds for all values of x . We gather together the parameters of the semiclassi-
cal wavepackets and write �(t) = (q(t), p(t), Q(t), P(t)), so that ϕk[�](x) =
ϕεk [q, p, Q, P](x).

We assume we have an initial condition ψ(0) that is given as a linear combination
of semiclassical wavepackets

ψ(0) = ei S(0)/ε2
K−1∑
k=0

ck(0, ε)ϕk[�(0)].

If the initial condition is not given in terms of such wavepackets, but it is still well
localized, then it can be approximated by such a finite sum. A discretization error arises
then; the involved projection is costly, as long as no fast Hermite transform is known.
However, typical initial values in chemical applications are in terms of eigenfunctions
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56 V. Gradinaru, G. A. Hagedorn

of harmonic oscillators (see [11,13] for two examples among many). Hence, they are
exactly such wavepackets or can be easily rewritten this way.

Note that we have an overall phase parameter S(t) that will enlarge the parameter
set. Hence, we shall also write ϕk[�, S] = ei S/ε2

ϕk[�]. Note that K can be taken as
large as we wish, just by inserting more trivial coefficients ck(0, ε) = 0. Theorem 2.10
in [7] establishes an upper bound for the semiclassical approximation: if the potential
V ∈ C M+2(R) satisfies −C1 < V (x) < C2eC3x2

, there is an approximate solution
v(t) of the semiclassical time-dependent Schrödinger equation (1) such that for any
T > 0 we have:

‖ψ(t)− v(t)‖ ≤ C(T )εM , for all t ∈ [0, T ].

From now on, C will denote a generic constant, not depending on ε or any involved
time-step. We also only consider potentials V that satisfy the above conditions. The
approximate solution in Theorem 2.10 in [7] is defined as

v(t) = ei S(t)/ε2
K−1∑
k=0

ck(t, ε)ϕk[�(t)], (2)

with the parameters �(t) and S(t) given by the solution to the following system of
ordinary differential equations

q̇(t) = p(t)

ṗ(t) = −V ′(q(t))

Ṡ(t) = 1

2
p(t)2 − V (q(t))

Q̇(t) = P(t)

Ṗ(t) = −V ′′(q(t))Q(t).

(3)

The coefficients ck(t, ε) obey a linear system of ordinary differential equations.
A similar result is valid in higher dimensions (see Theorem 3.6 of [7]). The depen-

dence of C on the end-time T is difficult to assess, and the system for the coefficients
ck(t, ε) is difficult to solve, so an alternative numerical scheme is necessary.

This approximation result motivates us to look for an algorithm that does not dete-
riorate as ε → 0. We note that our algorithm will separately handle the approximation
for the parameters�(t) and S(t) and the wave packet coefficients ck(t, ε). This obser-
vation is essential for the construction of the algorithm.

In the next section we present several splittings, ending with our proposed Algo-
rithm 3 (called below semiclassical splitting). Numerical simulations show the desired
behavior in ε and time and emphasize the importance of the factor ε instead of 1/ε2.
With the motivation of these numerical results we focus in the last section only on the
analysis of the time-convergence.
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Convergence of a semiclassical splitting for the Schrödinger equation 57

2 Time-splittings

A starting point for an efficient time-integration is the scheme proposed in [5]: As in
Strang-splitting, we decompose the Hamiltonian

H = T + U + W

into its kinetic part T = − ε4

2 �x and its potential part V (x) = U (q(t), x)+W (q(t), x),
where U (q(t), x) is the quadratic Taylor expansion of V (x) around q(t) and
W (q(t), x) is the corresponding remainder:

V (x)=U (q, x)+W (q, x)=V (q)+V ′(q)(x − q)+ 1

2
V ′′(q)(x−q)2+W (q, x).

In the context of the wavepackets, the propagation with U + W can be broken into
two parts [5]. We call this algorithm the L-splitting for a time-step of length �t :

Algorithm 1 (L-splitting) H = 1
2 T + (U + W )+ 1

2 T

1. Propagate the solution for time 1
2�t , using only T .

2. Propagate the solution for time �t , using only U .
3. Propagate the solution for time �t , using only W .
4. Propagate the solution for time 1

2�t , using only T .

As shown in [5], the steps 1, 2, and 4 reduce to simple updates of the numerically
propagated parameters �̃ and S̃ (starting, of course from the given �(0) and S(0)).
Step 3 keeps the parameters �̃ and S̃ fixed and evolves the set of coefficients via the
system of ordinary differential equations

iε2 ˙̃c = F

[
�̃

(
�t

2

)]
c̃, for t ∈ [0,�t], (4)

with a K × K matrix F[�̃(�t
2 )] whose entries are

Fj,k

[
�̃

(
�t

2

)]
=

∫
ϕ j

[
�̃

(
�t

2

)]
(x)W

(
q̃

(
�t

2

)
, x

)
ϕk

[
�̃

(
�t

2

)]
(x) dx .

As mentioned in the Introduction, the global convergence of this algorithm (mea-
sured by the L2-error) is observed to be (�t)2/ε2, which can also be proved as in [4].

A splitting of H = T + V that is of order 4 is the Y-splitting (see [15]). Denoting
θ = 1/(2 − 21/3), we have:

Algorithm 2 (Y-splitting H = T + V )

1. Propagate the solution for time θ 1
2�t , using only T .

2. Propagate the solution for time θ�t , using only V .
3. Propagate the solution for time (1 − θ) 1

2�t , using only T .
4. Propagate the solution for time (1 − 2θ)�t , using only V .
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58 V. Gradinaru, G. A. Hagedorn

5. Propagate the solution for time (1 − θ) 1
2�t , using only T .

6. Propagate the solution for time θ�t , using only V .
7. Propagate the solution for time θ 1

2�t , using only T .

If we use this also for our decomposition H = T + U + W we get what we call
YL-splitting: each of the steps 2, 4, and 6 above are decomposed in a step for U and
one for W .

We observed convergence of order (�t)4/ε2 in all tests based on this YL-splitting.
Since the expensive propagation of the coefficients must be done three times (in the
steps 3, 6, and 9) during each time step, the computational time is much greater than
that for the L-splitting. We measure the error in the experiments via a numerical
approximation of the L2-norm based on 216 equispaced points in the space domain; in
order to emphasize that this is not the exact L2-norm of the error, we denoted it by ‖·‖w f

(see Fig. 1). The benchmark problem used in all numerical results presented here is
based on the torsional potential V (x) = 1 − cos(x) with the initial value ϕ0[1, 0, 1, i]
which is propagated from the initial time t = 0 to the end time T = 2 using K =
8 wavepackets. Tests with different potentials (including V (x) = x4) and various

Fig. 1 The error dependence on ε in the propagation with YL-splitting and wavepackets. Although the
method is of order 4 in time, the error scales as 1/ε2 requiring small time-steps
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Convergence of a semiclassical splitting for the Schrödinger equation 59

other initial values produced similar results. Equation (4) was solved via standard
Padé approximation of the exponential matrix. We also used the Arnoldi method
when computing with much larger K without observing any significant difference
concerning the results in this paper. The components of F̃[(�t

2 )] in (4) were computed
via a very precise Gauss–Hermite quadrature which was adapted to the shape of
the wavepackets. The computational setting is made such that the error due to the
discretization in space has no significant effect. A larger number of basis functions
does not make any difference until the end time T = 2, which is already a long
integration time, due to the ε-time scale. Other end times T = 4, 6, 8, 10 are possible1

but require the use of more basis functions. Doing this may be questionable for the
semiclassical approach, since the Ehrenfest-time is proportional to log(1/ε2).

In each case, the reference solution used to estimate the error was the numerical
solution computed with the time step �t0 = 2−13.

Remark 1 Since the errors grow like 1/ε2 as ε → 0, the solution based on traditional
second or fourth order splittings (Fourier or wavepacket based) should not be used as a
reference solution for the semiclassical splitting, unless one can afford the sufficiently
small time-steps and the large number of Fourier points. E.g., in the case of the har-
monic oscillator, the exact solution is represented by a few wavepackets independently
on the value of ε, while the sampling rate for the Fourier approximation has to be at
least 2/ε2 per dimension. This means for the space domain [−π, π ] about 2 × 105

points when ε = 10−2 and 2×106 points when ε = 10−3. Larger space domains could
be necessary in order to avoid artificial boundary conditions, and hence they would
require the use of even more computational points. The large number of space points
makes one time-step of the traditional Fourier based split operator method computa-
tionally intensive. Furthermore the inherent time-step restriction�t 	 ε forces one to
use many time-steps, yielding a long computational time even for efficient algorithms.
In the case of other potentials, the solution based on wavepackets is no longer exact.
However, if the solution remains localized in space (and this can be proved in the semi-
classical situation), then a few wavepackets are sufficient for a good approximation,
making the new numerical method competitive, even though we do not have such a
marvelous tool as the FFT. This observation is even more important if we envisage
higher dimensional applications.

The critical idea for our new algorithm comes from the observation that for small
ε, the largest errors arise from the use of numerically computed parameters � and
S, while the expensive part of the computation is finding the coefficients c. On the
other hand, ε is not present in the classical equations (3) for the parameters, but it
appears only in the equation for the coefficients (4). Our algorithm combines the
Strang-splitting for H = (T + U ) + W and the Y-splitting for T + U , i.e., it is a
fourth order scheme for the approximation of the parameters � and S. We keep the
expensive part of the computation (involving the remainder W ) in the inner part of
the Strang-splitting H = 1

2 (T + U ) + W + 1
2 (T + U ) with a large time step �t .

1 The reader is welcome to make experiments with the open-source library based on the wavepackets: https://
github.com/raoulbq/WaveBlocksND. All the integrators mentioned in this paper are already implemented
there.
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60 V. Gradinaru, G. A. Hagedorn

We use a small time step δt for the cheap propagation of the parameters. This small
time step is chosen so that the desired overall convergence rate ε(�t)2 is achieved
with a minimum value of �t/δt = N = N (ε,�t) small time steps per large time
step. We call the resulting propagation algorithm semiclassical-splitting.

Algorithm 3 (Semiclassical-splitting) Define N := ceil
(
1+

√
�t
ε3/4

)
and δt := �t

N ,

which hence satisfies δt ≤ min{ε3/4
√
�t,�t}.

1. Propagate the solution for time 1
2�t via N steps of length δt using the Y-splitting

for T + U (Algorithm 2).
2. Propagate the solution for time �t , using only W , i.e., solve Eq. (4).
3. Propagate the solution for time 1

2�t via N steps of length δt using the Y-splitting
for T + U (Algorithm 2).

Figures 2, 3, and 4 display the results of numerical experiments based on this
semiclassical splitting. They confirm our theoretical considerations from Sect. 3, as
long as the strong round off in e−iα/ε2 − e−i(α+eps)/ε2

(with α 
= 0 and eps = machine
precision) in the measurement of the error can be avoided. The effect of this round
off in the measurement of the error for �t and ε simultaneously small is evident
in Fig. 2; this effect is missing when measuring the error in the coefficients (see
Fig. 3).

The left part of Fig. 4 shows the L2-norm of the difference between the solution
via the Fourier method with 216 grid points and the semiclassical-splitting with eight
wavepackets. The semiclassical-splitting gives such a good approximation of the exact
solution for small ε that we see the ε−2-deterioration until the Fourier-based solution
produces nonsense. In an intermediate range we see the ε-dependence of the error in
the semiclassical splitting. We also see that for ε > 1

4 , the solution based on eight
wavepackets is also poor. The right part of Fig. 4 shows the physical end time in
femtoseconds for different values of the simulation parameter ε. Smaller ε means a
later physical time at the same computational end time T .

Fig. 2 The error dependence on ε and on �t (semiclassical-splitting)
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Convergence of a semiclassical splitting for the Schrödinger equation 61

Fig. 3 The error dependence on ε and on �t of the coefficients (semiclassical-splitting)

Fig. 4 Left difference between the solution via Fourier method on 216 grid points and the semiclassical-
splitting with eight wavepackets: the 1/ε2 factor in the error of the Fourier solution dominates. Right
physical time in femtoseconds corresponding to the simulation parameter ε

Finally, let us note that the convergence order can be improved to ε(�t)4 by replac-
ing the Y-splitting with a higher order one and using a Magnus integrator for the step
2 in Algorithm 3. In Fig. 5 we plotted the error at different end times (T = 2 and
T = 5) in the semiclassical-splitting with 8 (left) and 16 (right) wavepackets when
the reference solution is computed via the Magnus method with 96 wavepackets: note
that the ε-dependence of the approximation error dominates the second order error in
time for large ε and that a longer end time needs more basis functions in order to reach
the same accuracy.

All time-steps in the steps 1 and 3 of the semiclassical-splitting, as well as in the steps
1, 2 and 4 of the L-splitting, are very cheap, since they consist of simple updates of the
parameters � and S. A higher order splitting for those is indeed more expensive, but
is negligible compared to the amount of work required for solving Eq. (4) via Pade-
approximation or even a Krylov-method with a few steps. The internal parameter
δt depends (mildly) on ε, yielding more time-steps N in the steps 1 and 3 of the
semiclassical-splitting, but this increase is still insignificant (for the same reason): the
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62 V. Gradinaru, G. A. Hagedorn

Fig. 5 The error dependence of the coefficients on ε and�t in the semiclassical-splitting at end time T = 2
(above) and T = 5 (below); left with K = 8, and right with K = 16 basis functions; the reference solution
is computed via 96 wavepackets and a Magnus time-integrator of fourth order

improvement in computing-time when using large time-steps�t is so important, that
the extra work in the approximation of the parameters � and S is not perceptible. A
comparative look at Figs. 1 and 2 reveals that one may use a larger time step�t in the
semiclassical algorithm than in the YL-splitting, while achieving the same error. The
influences of the number of basis functions used and the detailed study of the method
in many dimensions are the subjects of on-going and future investigations.

We now turn to the main topic of this paper, the analysis of the time-convergence
of the semiclassical splitting.

3 Convergence results for the semiclassical-splitting algorithm

We first note that one cannot address the convergence of the proposed algorithms via
the local error representation of exponential operator splitting methods as in Section
5 of [4]. This is because the parameters ε2 and�t enter the splitting in fundamentally
different ways.

The overall error when using the semiclassical-splitting algorithm consists of an
approximation error caused by using the representation with a finite number of moving
wavepackets and a time-discretization error. Our main result is the following:
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Convergence of a semiclassical splitting for the Schrödinger equation 63

Theorem 1 Suppose the initial value is

ψ(0) = ei S(0)/ε2
K1−1∑
k=0

ck(0, ε)ϕk[�(0)],

and that K ≥ K1 + 3(N − 1), where N = 1, 2, or 3. If the potential V ∈ C5(R) and
its derivatives satisfy −C1 < V (s)(x) < C2eC3x2

, for s = 0, 1, . . . , 5, then there are
constants C1 and C2, such that

‖ψ(t)− ũ(t)‖ ≤ C1ε
N + C2ε(�t)2, (5)

where ũ is constructed via the semiclassical splitting Algorithm 3. The constants C1
and C2 do not depend on�t, δt , or ε, but depend on the potential V and its derivatives
up to fifth order, on the sup’s of |Q|, |Q̇|, |Q̈|, |q|, |q̇|, |q̈| from (3) on [0, T ], on the
number K of wavepackets used in the approximation, and on the final integration
time T .

Remark If V ∈ Cl(R) with l > 5, then the theorem is true with a larger N . More
precisely, if K ≥ K1 + 3(N − 1), the first term on the right hand side of (5) still has
the form C1ε

N , but the restriction on N becomes N = 1, 2, . . . , l − 2, and C1 depends
also on V (s) for s ≤ l.

Let us briefly outline the several steps that make up the proof of this theorem.
We introduce an approximation u to the solution of the time-dependent Schrödinger
equation that is similar to (2). The parameters� and S satisfy the system (3), and the
coefficients ck are given by the solution to the linear system of ordinary differential
equations

iε2ċ = F[�(t)]c, (6)

where the K × K matrix F[�] has entries

Fj,k[�(t)] =
∫
ϕ j [�(t)](x)W (q(t), x)ϕk[�(t)](x) dx .

Then, we prove that the approximation error‖ψ(T )−u(T )‖ is bounded by the Galerkin
error, so that we can concentrate in the rest of the section only on ‖u(T ) − ũ(T )‖,
or rather on showing that the error in one time-step ‖u(�t) − ũ(�t)‖ is of order
ε(�t)3. We introduce an intermediate function u1 constructed via the parameters
�(t) from the exact solution of (3) and coefficients c1 from the linear system with
constant matrix F1 = F[�1], where �1 = �(�t

2 ). We then carefully investigate
the quantities ‖u(�t) − u1(�t)‖ and ‖u1(�t) − ũ(�t)‖. A crucial observation is
that the ε-dependence of the matrix entries Fj,k can be written explicitly in several
different ways that involve terms which contain ε-independent wavepackets. The fast
decay at infinity of these wavepackets and the particular ε-dependence let us establish
appropriate bounds on the matrix entries Fj,k , as well as on their time-derivatives.
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64 V. Gradinaru, G. A. Hagedorn

Also important is a bound on the error when using approximate wavepackets ϕ̃k instead
of ϕk . The details of the proof follow; let us now start with the first step.

Our proof relies on the following elementary lemma that is Lemma 2.8 of [7].
We restate it here for completeness and to make the notation consistent with this
paper.

Lemma 1 Suppose H(ε) is a family of self-adjoint operators for ε > 0. Suppose
ψ(t, ε) belongs to the domain of H(ε), is continuously differentiable in t , and approx-
imately solves the Schrödinger equation in the sense that

iε2 ∂ψ

∂t
= H(ε)ψ(t, ε)+ ζ(t, ε),

where ζ(t, ε) satisfies

‖ζ(t, ε)‖ ≤ μ(t, ε).

Then

‖e−i t H(ε)/ε2
ψ(0, ε)− ψ(t, ε)‖ ≤ ε−2

t∫
0

μ(s, ε) ds. (7)

Proof By the unitarity of the propagator e−i t H(ε)/ε2
and the fundamental theorem of

calculus, the quantity on the left hand side of (7) can be estimated as

‖e−i t H(ε)/ε2
ψ(0, ε)− ψ(t, ε)‖

= ‖ψ(0, ε)− eit H(ε)/ε2
ψ(t, ε)‖

=
∥∥∥∥∥∥

t∫
0

∂

∂s

(
ψ(0, ε)− eis H(ε)/ε2

ψ(s, ε)
)

ds

∥∥∥∥∥∥

=
∥∥∥∥∥∥

t∫
0

(
−iε−2eis H(ε)/ε2

H(ε)ψ(s, ε)− eis H(ε)/ε2 ∂ψ

∂s
(s, ε)

)
ds

∥∥∥∥∥∥

=
∥∥∥∥∥∥

t∫
0

iε−2eis H(ε)/ε2
ζ(s, ε)ds

∥∥∥∥∥∥

≤ ε−2

t∫
0

μ(s, ε) ds.

This proves the lemma. �
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Convergence of a semiclassical splitting for the Schrödinger equation 65

Theorem 2 The approximation error is bounded by the Galerkin error:

‖ψ(T )− u(T )‖ ≤ 1

ε2

T∫
0

‖PK W u − W u‖ dt.

Under the hypotheses of Theorem 1 (or the remark after it), the integrand here is
bounded by

CK ,Q,W ε
N+2.

Proof Corollary 2.6 of [7] ensures that each ϕk[�, S] satisfies the time dependent
Schrödinger equation with the Hamiltonian T + U . Using (6), we see that

iε2∂t u = H(ε)u + PK W u − W u,

where Pk denotes the L2-orthogonal projection into the space spanned by the basis
functions ϕ0[�], . . . , ϕK−1[�].

We shall apply Lemma 1, so we only have to find an upper bound for the Galerkin
error

‖PK W u − W u‖.

We note that ‖PK W u − W u‖ is decreasing in K , so when N = 1, it suffices to
prove ‖PK1 W u − W u‖ = O(ε3). However, ‖PK W u − W u‖ ≤ ‖W u‖, and since W
is locally cubic near x = q, estimate (2.68) of [7] immediately proves the result.

When N = 2, it suffices to prove ‖PK1+3W u − W u‖ = O(ε4). To show this, we
first note that ‖(1 − PK1)u‖ = O(ε) as in the proof of Theorem 2.10 of [7]. Next,

W (x, t) = V ′′′(q(t))(x − q(t))3/6 + V ′′′′(ξ(x, t))(x − q(t))4/24.

So, we have

‖(PK1+3 − 1)W u‖ ≤ ‖(PK1+3 − 1)W PK1 u‖
+‖(PK1+3 − 1)W (1 − PK1)u‖

≤ ‖(PK1+3 − 1)V ′′′(q)(x − a)3 PK1 u‖
+‖(PK1+3 − 1)V ′′′′(ξ(x, t))(x − q)4 PK1 u‖
+‖(PK1+3 − 1)W (1 − PK1)u‖.

The first term on the right hand side is zero since (PK1+3 − 1)(x − q)3 PK1 = 0. The
second term is O(ε4) as in the proof of Theorem 2.10 of [7]. The third term is bounded
by ‖W (1− PK1)u‖. This quantity is O(ε4) because W is locally cubic as in the N = 1
case and ‖(1 − PK1)u‖ = O(ε).
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The N = 3 case is similar, but with the next order Taylor series estimates. The
N ≤ l − 2 case is similar under the hypotheses of the remark, but with higher order
Taylor series estimates. �


The first term on the right hand side of estimate (5) in Theorem 1 arises from the
estimate in Theorem 2. The rest of this paper concerns the second term on the right
hand side of (5).

We concentrate on the local time-error when approximating u(�t); if we show
that it can be bounded by ε(�t)3, then standard arguments and Theorem 2 prove
Theorem 1.

The first step in Algorithm 3 produces approximations �̃(�t
2 ) of�(�t

2 ) and S̃(�t
2 )

of S(�t
2 ), both with errors C(δt)4�t

2 . Given these approximate parameters, the coeffi-
cients c̃k solve the system (6) with the constant matrix F̃ = F[�̃(�t

2 )] on right hand
side, as in (4). They enter in the expression of the numerical solution at the end of the
Strang-splitting

ũ(�t) = ei S̃(�t)/ε2
K−1∑
k=0

c̃k(�t, ε)ϕk[�̃(�t)].

In practice, they are computed via expensive (Padé or Arnoldi) iterations, but here we
assume they are computed exactly.

In order to shorten the formulas, we denote ϕk = ϕk[�] and ϕ̃k = ϕk[�̃].
To facilitate the proof, we introduce u1(t), constructed via the parameters �(t)

from the exact solution of (3) and coefficients c1 from the linear system with constant
matrix F1 = F[�1], where �1 = �(�t

2 ):

iε2ċ1 = F1c1, for t ∈ [0,�t].

With this we construct

u1(t) = ei S(t)/ε2
K−1∑
k=0

c1
k (t, ε)ϕk[�(t)],

which has the parameters of u, but the coefficients c1. The local error then decom-
poses as

‖u(�t)− ũ(�t)‖ ≤ ‖u(�t)− u1(�t)‖ + ‖u1(�t)− ũ(�t)‖.

The next two theorems give upper bounds for these two last terms, ensuring the desired
bound on the local error.

We now take a more careful look at the Galerkin matrix F . A crucial observation is
that as in section 4.1 of [5], the change of variables x = q + εy allows us to represent

Fj,k =
∫
φ j (y)W (q + εy)φk(y) dy (8)
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in terms of ε-independent, but orthogonal functionsφk , given by the recurrence relation

φ0(y) = π−1/4|Q|−1/2e−|Q|−2|y|2/2,
Q

√
k j + 1φk+1(y) = √

2yφk(y)− Q
√

k jφk−1(y).

By this change of variables, all of the dependence on ε has been moved out of the
wavepackets and put into the operator W (q + εy), which is

W (q + εy)

= V (q(t)+ εy)− V (q(t))− V ′(q(t))εy − 1

2
V ′′(q(t))ε2 y2 (9)

= 1

6
V

′′′
(ζ(y))ε3 y3

=
q(t)+εy∫
q(t)

(q(t)+ εy − z)2

2
V ′′′(z) dz. (10)

Note that Q is not present in the expression for W , while the functionsφk are wavepack-
ets that depend on Q only: φk = ϕε=1

k [0, 0, Q, i(Q)−1]. We use this observation in
the proofs of the following lemmas.

Lemma 2 Suppose g and Z are functions on R that satisfy g ∈ L2(R, dy) and
|Z(y)| ≤ P(y)eCε2 y2/2, where P is a non-negative polynomial. Then there exists a
constant C depending only on j and Q, such that

| 〈φ j , Zg
〉 | =

∣∣∣∣
∫
φ j (y)Z(y)g(y) dy

∣∣∣∣ ≤ C‖g‖, (11)

for all ε < |Q|−1√
2C

if C > 0. If C = 0, then the estimate is valid for ε ∈ (0, D] for any

fixed positive D.

Proof Let us assume the more difficult situation C > 0. By the Schwarz inequality,
|〈φ j , Zg〉| ≤ ‖Zφ j‖‖g‖, so it suffices to prove that ‖Zφ j‖ is finite. However,

‖Zφ j‖2 = π−1/2|Q|−1
∫
R

|Z(y)|2|p(y)|2 e−y2/|Q|2 dy,

where p is a polynomial. Under our assumptions, elementary estimates show that this

integral is bounded by a constant, uniformly for ε2 <
|Q|−2

2C . �

Lemma 3 The entries of the matrix F[�] and their first two time-derivatives are
bounded by constants times ε3:

|Fj,k(t)| ≤ C0ε
3, |Ḟj,k(t)| ≤ C1ε

3, and |F̈j,k(t)| ≤ C2ε
3,
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where the constants Cl depend only on j, k, Q, Q̇, Q̈, q̇, q̈ , and bounds on the third,
fourth, and fifth derivatives of V .

Proof We use expression (10) to write

Fj,k(t) =
∫
R

φ j (y)

q(t)+εy∫
q(t)

(q(t)+ εy − z)2

2
V ′′′(z) dzφk(y) dy.

We then let z = q(t)+ σεy and rewrite the inner integral as

1∫
0

(εy(1 − σ))2

2
V ′′′(q(t)+ σεy)εy dσ.

Next, we interchange the order of integration to obtain

Fj,k(t) = ε3

1∫
0

(1 − σ)2

2

∫
R

φ j (y) y3V ′′′(q(t)+ σεy)φk(y) dy dσ. (12)

Lemma 2 with Z(y) = y3V ′′′(q(t)+ σεy) gives the result for Fj,k .
To study Ḟj,k , we take the time derivative of expression (12). The only time depen-

dent quantities here are φ j , φk , and V ′′′(q(t)+ σεy). The time dependence in the φ’s
comes only from Q(t) and its conjugate, while the time dependence in V ′′′(q(t)+σεy)
comes only from q(t). The result for Ḟj,k then follows by several applications of
Lemma 2.

The result for F̈j,k follows from the same arguments applied to the second time
derivative of (12). �


Corollary 1

‖F(t)‖ ≤ Cε3, ‖Ḟ(t)‖ ≤ Cε3, and ‖F̈(t)‖ ≤ Cε3,

where C has the same dependence as in Lemma 3 and depends additionally on K , but
is independent of ε.

Lemma 4 The error caused by using the approximate parameters �̃ in the wavepacket
ϕk satisfies

‖ϕk(�t)− ϕ̃k(�t)‖ ≤ C (δt)
4

ε2 �t.
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Proof Using a homotopy between � and �̃, one can prove2 via careful calculations
that

‖ϕk − ϕ̃k‖ ≤ C 1

ε2 (|q − q̃| + |p − p̃| + |Q − Q̃| + |P − P̃|).

The fact that the Y-splitting with time step δt for � on an interval of length �t is of
fourth order then concludes this proof.

Let us briefly sketch the proof of the above inequality, which is the key to this
lemma. We can construct a homotopy�[θ ] = (q[θ ], p[θ ], Q[θ ], P[θ ]) for θ ∈ [0, 1]
with the properties

p[θ ] = p̃ + θ(p − p̃), q[θ ] = q̃ + θ(q − q̃),

P[0] = P̃, P[1] = P, P ′[θ ] = O(P − P̃),

Q[0] = Q̃, Q[1] = Q, Q′[θ ] = O(Q − Q̃),

such that the compatibility conditions for P[θ ] and Q[θ ] are satisfied. These para-
meters then give a corresponding homotopy ϕε0[θ ] = ϕε0(�[θ ]), for the raising and
lowering operators and ϕεk [θ ] for every k. Using this homotopy, we have

‖ϕk − ϕ̃k‖ ≤
1∫

0

‖ϕ′
k[θ ]‖dθ ≤ sup

θ∈[0,1]
‖ϕ′

k[θ ]‖.

An induction argument together with lengthy careful calculations gives an expres-
sion for ϕ′

k[θ ] as a linear combination of slightly more basis functions. In the one-
dimensional case this reads simply

ϕ′
k[θ ] = 1

ε2

∑
m≤K+1

αk
m[θ ]ϕk[θ ], for k ≤ K ,

with the complex coefficients satisfying

sup
θ∈[0,1]

|αk
m[θ ]| ≤ C 1

ε2 (|q − q̃| + |p − p̃| + |Q − Q̃| + |P − P̃|),

which completes the proof. In higher dimensions, the above sum extends over basis
functions having m j < K j + 1 for the j th coordinate. �

Lemma 5 The error caused by using the approximate parameters �̃ in the matrix F
satisfies

‖F1 − F̃‖ ≤ C(δt)4�t,

with the constant C depending on Q1, Q̃, and V and its derivatives up to third order.

2 Private communication from G. Kallert (now Gauckler) in 2010.
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Proof The representation (8) of the entries of the matrix F that depends only on Q is
again the key idea: it allows us to write F1

j,k − F̃j,k as the sum of the following three
terms

〈
φ1

j , W 1(φ1
k − φ̃k)

〉
+

〈
φ1

j , (W
1 − W̃ )φ̃k)

〉
+

〈
φ1

j − φ̃ j , W̃ φ̃k

〉
,

where

W 1(y) = W (q1 + εy) = 1

6
V

′′′
(q1 + εζ 1(y))ε3 y3

and

W̃ (y) = W (q̃ + εy) = 1

6
V

′′′
(q̃ + εζ̃ (y))ε3 y3.

Note that φ1
j = φ j [Q] and φ̃ j = φ j [Q̃] do not depend on q, p, or ε. Lemma 2 now

applies with Z = W 1/ε3 and g = φ1
k − φ̃k or Z = W̃/ε3 and g = φ1

j − φ̃ j to estimate

the first and the last term, respectively, by Cε3‖φ1
k − φ̃k‖ or Cε3‖φ1

j − φ̃ j‖. As in the

previous lemma, the last terms are both bounded by Cε(δt)4�t which is one order
(in ε) smaller that the stated result. The largest error arises from the middle term. We
bound it using (9) with the corresponding q1 and q̃ and Lemma 2 again. This yields
a bound of C(2 + ε + 1

2ε
2)|q1 − q̃|. Combining all these estimates, we get the upper

bound for the quantity in the lemma:

‖F1 − F̃‖ ≤ C
((

2 + ε + 1

2
ε2

)
|q − q̃| + ε|Q − Q̃|

)
,

which is bounded by C(δt)4�t as in the previous lemma. �

Theorem 3 The difference between the approximate solution and the intermediate
solution is

‖u(�t)− u1(�t)‖ ≤ Cε(�t)3,

where C depends on K and V and its derivatives up to 5th order, on Q for t between
0 and T , but is independent of ε and �t .

Proof Denoting the (unitary) propagator for (6) by U(t, s), we can express the differ-
ence between the approximate solution and the intermediate solution as

‖U(�t, 0)c(0)− e
−i �t

ε2
F1

c(0)‖ = ‖c(0)− U(0,�t)e
−i �t

ε2
F1

c(0)‖.

We abbreviate F(s) := F[�(s)], and observe that since F1 = F[�(�t
2 )], the expres-

sion in the second norm above is the integral from 0 to �t of

U(0, s)
1

ε2 (F(s)− F1)e−is F1/ε2
c(0).
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Thus, we have

‖u(�t)− u1(�t)‖ = 1

ε2

∥∥∥∥∥∥
�t∫

0

U(0, s)(F(s)− F1)e−is F1/ε2
c(0) ds

∥∥∥∥∥∥ .

Standard arguments from the proof of the convergence order of the midpoint quadrature
rule then shows that

‖u(�t)− u1(�t)‖ ≤ (�t)3

ε2 ‖R‖

with the remainder R involving the Peano kernel and a factor containing the second
derivative with respect to s of the integrand in the above formula. The first derivative
of the integrand is

U(0, s)
i

ε2 F(s)(F(s)− F1) e−is F1/ε2
c(0)

+U(0, s)Ḟ(s)e−is F1/ε2
c(0)

+U(0, s)(F(s)− F1)
−i

ε2 F1e−is F1/ε2
c(0)

The second derivative has an even longer expression, but has the same character as the
first one: every term containing the factor 1/ε2 contains also a factor of F1 or F(s) or
Ḟ(s), which are of order ε3, according to Corollary 1. Hence, the leading order terms
are those involving only Ḟ(s) and F̈(s), i.e., similar to the middle term in the first
derivative. Those terms are themselves of order ε3, which shows that the remainder R
is bounded by Cε3. �

Theorem 4 The difference between the intermediate solution and the numerical solu-
tion is

‖u1(�t)− ũ(�t)‖ ≤ C (δt)
4

ε2 �t.

Proof By the triangle inequality,

‖u1(t)− ũ(t)‖

≤ |e−i S(t)/ε2 − e−i S̃(t)/ε2 | +
∥∥∥∥∥

K−1∑
k=0

c1
k (t)ϕk(t)− c̃k(t)ϕ̃k(t)

∥∥∥∥∥
≤ C |S(t)− S̃(t)|

ε2 +
∥∥∥∥∥

K−1∑
k=0

c1
k (t) (ϕk(t)− ϕ̃k(t))

∥∥∥∥∥ + ‖c1(t)− c̃(t)‖

≤ C |S(t)− S̃(t)|
ε2 +

√√√√K−1∑
k=0

‖ϕk − ϕ̃k‖2 + ‖c1(t)− c̃(t)‖.
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We rewrite Eq. (4) as

iε2 ˙̃c = F1c̃ + (F̃ − F1)c̃, for t ∈ [0,�t].

Lemma 1 and 5 give ‖c(t) − c̃(t)‖ ≤ C (δt)4
ε2 (�t)2. Lemma 4 and the error in the

splitting of (3) then yield the result. �

Finally, Theorems 3, 4, and the triangle inequality give us an estimate of the local

error:

‖u(�t)− ũ(�t)‖ ≤ C (δt)
4

ε2 (�t)+ Cε(�t)3 ≤ Cε(�t)3

if we choose

δt ≤ ε3/4
√
�t .

This shows that the number N of time-steps for solving (3) via a splitting is at least
N ≥ √

�tε−3/4 for the semiclassical splitting Algorithm 3. With such a choice of N ,
standard arguments and Theorem 2 imply the result on the global error in our main
Theorem 1.
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