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Abstract: This paper investigates syntactic productivity in diachrony with a data-
driven approach. Previous research indicates that syntactic productivity (the
property of grammatical constructions to attract new lexical fillers) is largely
driven by semantics, which calls for an operationalization of lexical meaning in
the context of empirical studies. It is suggested that distributional semantics can
fulfill this role by providing a measure of semantic similarity between words that
is derived from lexical co-occurrences in large text corpora. On the basis of a
case study of the construction “V the hell out of NP”, e.g., You scared the hell out
of me, it is shown that distributional semantics not only appropriately captures
how the verbs in the distribution of the construction are related, but also enables
the use of visualization techniques and statistical modeling to analyze the
semantic development of a construction over time and identify the determinants
of syntactic productivity in naturally occurring data.
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1 Introduction

Grammars are in constant change. Over time, different ways are created in which
words can be combined into phrases and sentences, while others fall into
disuse. For example, in English, the basic word order used to be SOV at the
onset of the Old English period, during which the language went through a
gradual shift in word order (Hock and Joseph 1996: 203–208). The SVO order
found nowadays initially emerged from an innovation involving the displace-
ment of auxiliaries to second position for prosodic reasons (cf. Dewey 2006),
which was later re-analyzed as concerning all finite verbs. The older SOV order
persisted for some time, notably in dependent clauses, but had almost comple-
tely disappeared by the end of the Middle English period.
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Beside such drastic and long-lasting shifts in ‘core’ aspects of grammar,
language change may also consist of more subtle variation in usage. As reported
by many studies, in the course of no more than a few decades, speakers of the
same language might show slightly different preferences for the grammatical
means they use to convey the same message (cf. Aarts et al. 2013; Krug 2000;
Leech et al. 2009; Mair 2006). For example, Mair (2002) finds that the bare
infinitive complementation of help (e.g., Sarah helped us edit the script) has
increased in frequency between the 1960s and the 1990s in both British and
American English, compared to the equivalent to-infinitive variant (e.g., Sarah
helped us to edit the script). Observations of this kind are often regarded as
grammatical change in the making.

Among the facts about usage that are subject to diachronic change, this
paper is concerned in particular with the productivity of syntactic constructions,
i.e., the range of lexical items with which a construction can be used. A given
construction might occur with very different distributions at different points in
time, even when the function it conveys remains the same. This is what Israel
(1996) finds for the pattern “Verb one’s way Path”, commonly called the way-
construction (cf. Goldberg 1995), exemplified by (1) and (2) below (see also
Traugott and Trousdale 2013: 86–91).

(1) They hacked their way through the jungle.

(2) She typed her way to a promotion.

In both examples, the construction conveys the motion of the agent, which is
metaphorical in (2), along the path described by the prepositional phrase, and
the main verb conveys the means whereby motion is enabled. As Israel points
out, this use of the construction is attested as early as the sixteenth century, but
it was initially limited to verbs describing physical actions (e.g., cut and pave),
with which the construction conveys the actual creation of a path enabling
motion, like in (1). It was not until the nineteenth century that examples like
(2) started to appear, in which the action depicted by the verb provides a
markedly more indirect way of attaining the agent’s goal. Similar cases cited
by Israel (1996: 224) involve the verbs write, spell, and smirk.

This paper presents an attempt to study syntactic productivity in diachrony
in a fully data-driven way. As reported in Section 2, most contemporary
approaches to syntactic productivity emphasize the role of semantics, which
poses the methodological problem of defining and operationalizing word mean-
ing and semantic similarity. As discussed in Section 3, none of the current
solutions is entirely satisfactory. In Section 4, an alternative solution to this
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methodological problem is described that makes use of distributional informa-
tion as a proxy to meaning in order to derive a measure of semantic similarity. In
Section 5, this method is applied to a case study of the construction “V the hell
out of NP” (e.g. You scared the hell out of me) in American English. It is shown
that a distributional approach to word meaning not only is adequate for the
study of syntactic productivity, but also presents the advantage of allowing the
use of visualization techniques and statistical analysis.

2 Determinants of syntactic productivity

The notion of productivity has a long history in the field of morphology, where it
refers to the property of a word formation process to be used by speakers to coin
new words. For example, the suffix -th, as in length, health, and growth, cannot
be used in modern English to form new nominalizations, and is therefore to be
considered as not (or no longer) productive, whereas the suffix -ness is readily
available to speakers for deriving a noun from an adjective (cf. Plag 2003:
44–45). A prime example would be nouniness, describing the extent to which a
word behaves as a noun, which was, to my knowledge, first coined by Ross
(1973) from the adjective nouny, itself productively derived from the adjective-
forming suffix -y and the noun noun.

It is only in recent years that a similar notion was applied to the domain of
syntax, which had long been dominated by the conception of grammar as a
system of abstract rules separated from the lexicon that enables speakers to
produce an infinite number of sentences, including those that they have neither
used nor heard before (cf. e.g., Chomsky 1986). Under this view, lexical items
can be freely combined with syntactic structures as long as the former match the
grammatical specifications of the latter. However, studies of language use have
made it increasingly clear that words and syntactic constructions combine in
non-trivial ways, in that the slots of constructions are not equally likely to be
filled by any lexical item, even when the resulting combination would make
perfect sense. It is often the case that combinations that could be expected either
do not occur (or marginally so), or are even judged unacceptable. For example,
Goldberg (1995: 79) notes that the adjective slot (“Adj”) in the construction [drive
NP Adj], e.g., The kids drove us crazy, is mostly restricted to describe a state of
insanity, such as crazy, mad, insane, nuts, etc. Hence, even though the con-
struction itself conveys a resultative meaning (i.e., ‘X causes Y to become Z’)
which could in principle combine with any predication in a sensible way, most
instances with other kinds of adjectives (especially positive ones), like *drive
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someone successful, are unacceptable. Hence, in much the same way as mor-
phological patterns, syntactic constructions, or rather, their “slots”, display
varying degrees of productivity. Zeldes (2012) reports similar findings in the
domain of argument selection, in that semantically similar verbs may be very
different in their tendency to be used with novel arguments. Under this view,
fully productive, unconstrained constructions, as per Chomsky’s (1986) defini-
tion of productivity, occupy one extreme end of a continuum of productivity,
with more restricted constructions such as [drive NP Adj] lower down the scale,
and fairly lexically-specific patterns at the other extreme (e.g., look/stare some-
one in the eye but not *gaze/peer someone in the eye(s)).

The notion of syntactic productivity can be applied to the description of
various kinds of linguistic behavior. In language acquisition, it accounts for the
children’s ability to generalize beyond their inherently limited input by produ-
cing combinations of words and constructions they might not have witnessed in
the speech of their caregivers (Bowerman 1988; Pinker 1989). Of course, children
are not the only productive speakers, as adults too do at times use the resources
of their language creatively to produce unconventional expressions (cf. Pinker
1989 for some examples). By the same token, the concept of syntactic produc-
tivity also applies in synchrony when new words enter the language, in that
there may be several constructions in competition for using a novel word in a
sentence (cf. Barðdal 2008 for examples with recent Icelandic verbs related to
information technology and to novel means of communication). Finally, in
language change, syntactic productivity may refer to the property of the slots
of a syntactic construction to attract new lexical fillers over time, thereby
forming novel combinations of words and constructions (Barðdal 2008); it is
this last aspect that will be the focus of this paper. While it is not clear whether
these various phenomena should be considered to involve the same underlying
process, there is evidence that at least some of them are driven by similar factors
(cf. Barðdal 2008; Suttle and Goldberg 2011; Wonnacott et al. 2012; Zeschel 2012),
although there might be differences in the relative importance of these factors.

At first blush, syntactic productivity appears to be partly arbitrary, in that,
as was just pointed out, there can be many combinations of lexemes and
constructions that make perfect sense following compositional semantics but
are nevertheless never uttered, if they are considered acceptable at all. However,
a growing body of evidence seems to indicate that the productivity of a con-
struction is ultimately tied to the previous experience of speakers with that
construction. In this usage-based view, it has been proposed very early on that
syntactic productivity is promoted by high type frequency, i.e., by a high
number of different items attested in the relevant slot of a construction (Bybee
and Thompson 1997; Goldberg 1995). This hypothesis is motivated by findings
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from morphology (Bybee 1985, Bybee 1995), thus drawing a parallel between the
two domains. The idea makes intuitive sense: speakers should be more con-
fident that a pattern can be extended to new items if they have witnessed this
pattern with many items than if they have seen it restricted to only a few.
However, if this intuition is correct, it is clear that the diversity of items matters
at least as much as their sheer number, as pointed out by Goldberg (2006). Since
an increase in type frequency is usually correlated with an increase in varia-
bility, type frequency provides an indication of a pattern’s degree of productiv-
ity, but is not necessarily the source of this productivity. Under this view, a
pattern is only productive to the extent that it instantiates a high number of
dissimilar items.

Barðdal (2008) combines the two factors (type frequency and semantic
variability) by proposing that productivity is a function of the inverse correlation
between type frequency and semantic coherence (i.e., the inverse of variability),
in that the relevance of type frequency for productivity decreases with semantic
coherence. Hence, a construction witnessed with few items will only be produc-
tive if these items are highly similar, and, even so, will only allow novel uses
within the restricted semantic domain defined by its distribution; the construc-
tion [drive NP Adj] mentioned above falls into this category (cf. Bybee 2010).
Conversely, a construction occurring with highly dissimilar items will not neces-
sarily allow novel uses, in that the semantic variability must be attested by a
sufficient number of items (high type frequency). These two types of construc-
tions, i.e., low type frequency and high semantic coherence vs. high type
frequency and low semantic coherence, correspond to two kinds of productivity
at the extreme ends of the continuum, that are traditionally kept apart in the
literature, respectively analogy-based productivity and schema-based (or rule-
based) productivity, which Barðdal sees as two sides of the same coin.

In line with this usage-based approach to productivity, many studies report
that the occurrence of a novel item in a construction seems to depend on its
similarity to previous usage. Barðdal (2008: Ch. 3) finds that novel verbs related
to information technology in Icelandic come to be used in an argument structure
construction with which semantically similar verbs are already attested.
Similarly, Bybee and Eddington (2006) find semantic similarity with frequent
attested instances to be a significant determinant of the acceptability of infre-
quent uses of Spanish Verb-Adjective copular constructions with the verbs of
becoming quedarse and ponerse. They take their findings as providing evidence
for an exemplar-based model of grammatical constructions in which productiv-
ity is driven by analogy with previously stored instances (see also Bybee 2010).
Barðdal (2008) also draws on analogical extensions, on the basis of individual
verbs or lower-level constructions corresponding to clusters of semantically

Using distributional semantics 153

Brought to you by | Universitaetsbibliothek Basel
Authenticated

Download Date | 4/29/19 4:28 PM



similar verbs, to explain the occasional occurrence of particular novel verbs in
constructions with low type frequency when a more type-frequent alternative
exists. On the other hand, she also reports cases where, even in the presence of a
highly similar item in the distribution of a construction, some novel verbs are
used in another construction with high type frequency and semantic variability,
which seems to act as a kind of highly productive ‘default’ construction,
recruited more or less independently of lexical semantics (cf. Barðdal 2008:
Ch. 4, Barðdal 2011). This indicates that there does not always have to be a
similar item in the distribution of a construction for a new coinage to occur, in
that a construction can become virtually open to any compatible item once it has
been attested with a sufficient amount of variability.

In an experimental study, Suttle and Goldberg (2011) aim to tease apart type
frequency, variability, and similarity, and evaluate the respective contribution of
these three factors to syntactic productivity. Participants were presented with sets
of sentences in a fictitious language. All sentences consisted of two noun phrases
with a definite article and a novel nonsense noun, and an English verb followed
by a nonsense particle (e.g. The zask the nop toast-pe). Each set of sentences
exemplified a different construction; the constructions differed according to the
position of the verb (initial, medial, or final) and the particle, which was unique
for each construction. After each exposure set, participants were asked to rate the
likelihood of another instance of the same construction with a different verb (the
target). With this design, Suttle and Goldberg could systematically manipulate the
three following factors: (i) type frequency, by varying the number of different
verbs in each set, (ii) variability, by choosing the stimuli verbs from the same vs.
three different semantic classes, as determined by Levin’s (1993) classification,
and (iii) similarity, by choosing the target verb from one of various semantic
classes, respectively one represented in the stimuli set (high similarity), vs. a
similar class, i.e., concrete actions for both stimuli and target verbs (moderate
similarity), vs. an unrelated class, i.e., verbs of cognition for the target (low
similarity). They found that type frequency and variability each have an indepen-
dent effect, and that they are also involved in a positive interaction, i.e., the effect
of type frequency is stronger when variability is high. This finding is in line with
Barðdal’s idea that type frequency is a more important predictor of productivity
for highly variable constructions than for semantically coherent constructions.
They also report a main effect of similarity, in that the closer a coinage is to
an attested utterance, the more acceptable it is found by participants.
Interestingly, the effect of variability also varies greatly according to the degree
of similarity of the target verb to the stimuli verbs. When similarity is high, the
effect of variability is negative, in that subjects are more confident about the
coinage when the distribution of the construction is less variable, which Suttle
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and Goldberg suggest is because participants in the low variability condition see
more verbs from the same class attested in the construction (since type frequency
was held constant), and therefore receive more evidence suggesting that any verb
from this class may be used in the construction. With moderate similarity, there is
a positive effect of variability, showing that the acceptability of unattested classes
improves when there is evidence that the construction is already attested in
multiple, relatively similar classes. However, when similarity is low, there is no
effect of variability, which means that variability is irrelevant when the target
bears no resemblance to any attested item.

To explain their results (especially the complex interaction between variabil-
ity and similarity), Suttle and Goldberg (2011) propose the notion of coverage that
they define as “the degree to which attested instances ‘cover’ the category
determined jointly by attested instances together with the target coinage” (Suttle
and Goldberg 2011: 1254). This notion is reminiscent of Clausner and Croft’s (1997:
263) definition of the degree of productivity of a schema as “[t]he proportion of
[its] potential range [i.e., the range of concepts consistent with the schema] which
is actually manifested”. In addition, the concept of coverage also calls attention to
how the semantic domain of a construction is populated in the vicinity of a given
target coinage, and more specifically to the density of the semantic space. If the
semantic space around the novel item is dense (high coverage), i.e., if there is a
high number of similar items, the coinage will be very likely. The sparser the
semantic space around a given item (lower coverage), the less likely this item can
be used, which is in no small part related to variability, since if the same number
of items are more “spread out” around a given coinage, the density of the
semantic space will decrease. Hence, Suttle and Goldberg’s proposal conceives
of productivity not as an absolute property of a construction, but as a phenom-
enon that takes into account the relation between attested items and potential
instances. Following the notion of coverage, a construction can rarely be said
(if ever) to be productive in absolute terms; rather, a construction is productive to
various degrees in different semantic domains.

To summarize, the view of productivity that emerges from previous research
is that of a phenomenon that is strongly tied to the previous usage of construc-
tions. In a nutshell, speakers are likely to use a construction in similar ways to
its priorly witnessed usage, unless the structure of its distribution invites them to
depart from it. Importantly, previous studies point to a strong semantic compo-
nent, in that novel uses must be semantically coherent with prior usage. The
importance of semantics for syntactic productivity implies that the meaning of
lexical items must be appropriately taken into account when studying the
distribution of constructions, which gives rise to a number of methodological
issues, described in the next section.
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3 Factoring in semantics in studies of syntactic
productivity

As previously mentioned, most current accounts of syntactic productivity heav-
ily rely on semantics. Consequently, any attempt to test these models against
empirical data requires an operationalization of the semantic aspects of produc-
tivity. More specifically, it requires an assessment of such aspects of meaning as
variability in a set of items and similarity between items. This section discusses
how meaning can be captured in empirical research on productivity, and
describes the methodological and practical issues involved (see also Zeschel
2012 for a similar discussion). An alternative is suggested that relies on distribu-
tional semantics.

The motivation behind the present research stems from a simple observa-
tion: linguistic meaning is not directly observable in the same way that mor-
phosyntactic or phonetic properties are. This is especially true for corpus
studies: a corpus only ever contains signifiers (or forms), and accessing the
meaning of these forms requires a human interpreter. Since searching a corpus,
as opposed to, for instance, collecting behavioral data from native speakers, is
the only way to observe earlier stages of a language, the issue of factoring in
semantics is inescapable for the study of syntactic productivity from a diachro-
nic perspective, which is the one adopted in this paper.

The most basic and probably the most common way to deal with meaning in
corpus studies is for the analyst to perform manual semantic annotation. This can
take a number of forms, depending on the requirements of the study: from adding
simple semantic features, such as animacy or concreteness, to more subtle judg-
ments such as word sense distinctions, and even more complex tasks like identi-
fying instances of an abstract construction. Some semantic annotation tasks can
be facilitated by deriving the annotation scheme from an external source, such as
Levin’s (1993) verb classes or the lexicographic database WordNet (Miller 1995),
although the efficiency of such sources may be limited by their coverage.

Importantly, manual annotation primarily produces categorical data, as the
judgments it is based on consist in deciding which category a given item belongs
to. As such, it does not allow to directly derive gradient measures of similarity
and variability, which limits its usefulness for studies of syntactic productivity.
Surely, it is in principle possible for the analyst alone to estimate degrees of
similarity between items or posit semantic groupings, but such data are not
clearly amenable to precise quantification and hardly reflect the complexity of
the semantic space. It should be acknowledged that a form of similarity measure
can be derived from categorical data if the annotation scheme specifies relations
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between categories. This is the case of the WordNet database, which encodes
various kinds of relations between word senses, such as hyperonymy/hypo-
nymy, entailment, meronymy, etc. The graph structure of WordNet, and in
particular the taxonomic hierarchy it defines through hyperonymy/hyponymy
relations, can be used to derive various kinds of similarity measures based on
the number of graph edges that need to be traversed to connect two word
meanings (cf. Budanitsky and Hirst 2006). These WordNet-based similarity
measures are conceptually not unproblematic, since the taxonomic hierarchy
primarily reflects the structure of the lexicon, but not necessarily the semantics
of the words it contains. The hyponymy relation is given the same weight
regardless of the amount of semantic information that separates the words it
connects, which may vary across such word pairs. Moreover, the precision of
semantic distinctions is limited by the range of lexical concepts that receive a
distinct word form in the language, and in particular by the most abstract level
that is still lexicalized in a given hierarchy, above which everything is merged
meaninglessly into an empty “root” node, with no possible way to retrieve
intermediate degrees of similarity. Despite these inherent limitations, WordNet-
based similarity measures seem to achieve good performance at least for nouns,
but they have been much less systematically tested on other parts of speech. The
usability of WordNet for studies of syntactic productivity is not explored in this
paper, but it is certainly a topic worthy of further investigation.

More generally, manual semantic annotation poses the methodological
problem that it is based on the semantic intuitions of a single individual,
which renders it potentially subjective: different annotators might disagree as
to how to categorize items, or what pairs of items are more similar to each other.
Admittedly, the issue can be addressed by assigning the task to several annota-
tors and checking for agreement. Along these lines, Bybee and Eddington (2006)
conducted a semantic norming study in which similarity judgments were col-
lected from a group of native speakers. Participants were presented with pairs of
items and asked to rate how similar they found these items on a given scale.
Zeschel (2012) suggests a refined version of this task that takes into account
various kinds of semantic relations, such as antonymy, hyponymy, and meto-
nymical shift. By pooling the data from all participants/annotators, a more
objective (or at least intersubjective) measure of semantic similarity can be
obtained that should be more faithful to the intuitions of the linguistic commu-
nity. What is more, this measure lends itself directly to quantitative analysis. The
norming study design is probably the soundest way to assess semantic similar-
ity, both theoretically and methodologically, but it is decidedly less convenient
and probably more time-consuming than manual annotation, not to mention
that it necessitates access to a population of native speakers ready to provide
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semantic judgments, possibly for a compensation.1 More importantly, it is also
inherently limited in scope in that it is constrained by the number of judgments
that one may reasonably collect from a single speaker. Since each item from the
set under consideration must be compared to every other item, the number of
judgments grows exponentially with the size of the set and quickly reaches a
number that makes the study practically unfeasible. Bybee and Eddington side-
step this issue by limiting their study to 20 items, which already requires 190
judgments. By way of comparison, 50 and 100 items, which even a moderately
productive construction easily attains, respectively require 1,225 and 4,950 judg-
ments, ideally per participant. In sum, while a norming study is the most
appropriate solution in theory, it is in practice not applicable to a great many
examples of constructions.

In the light of these issues, this paper evaluates another possible solution to
the problem of assessing semantic similarity that was already mentioned by
some scholars but has not yet, to my knowledge, been explored further for the
purpose of studying syntactic productivity. Throughout its history, it has been
common for corpus linguistics to borrow various techniques from neighboring
fields to handle corpus data, especially from computational linguistics. It is
especially true in the case of automatic annotation, which is nowadays com-
monly used to add additional layers of linguistic information to electronic
corpora, such as part of speech, lemma, or syntactic structure. To the extent
that it fulfills its purpose with enough accuracy, automatic annotation eschews
the need for manual checking by human annotators, which is costly and time-
consuming. Along similar lines, the present study shows how distributional
semantics and its main computational implementation, the vector-space
model, can also be fruitfully used to augment corpus data with information
about lexical meaning in an automatic, data-driven way that, to a large extent,
dispenses with the need for human semantic intuitions. This technique is
described in the next section.

1 Note that this requirement has been relaxed by the advent of online experiments (cf. the
WebExp system, http://www.webexp.info/ [consulted Feb 7 2014]), which are gaining increas-
ing acceptance as appropriate sources of empirical data in psychology. The World Wide Web
provides researchers with a wealth of participants for their studies, and, importantly, dispenses
with considerations of time (any number of subjects can participate at the same time and at any
moment) and space (anybody in the world with an Internet connection can participate). In
particular, Amazon Mechanical Turk provides a platform both for posting online experiments
and surveys and for recruiting subjects that is growing increasingly popular among
psychologists.
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4 Distributional semantics and vector-space
models

Distributional semantics is the dominant and to this day most successful
approach to semantics in computational linguistics (cf. Lenci 2008 for an intro-
duction). It draws on the observation that words occurring in similar contexts
tend to have related meanings, as epitomized by Firth’s (1957: 11) famous state-
ment “[y]ou shall know a word by the company it keeps”. Therefore, a way to
access the meaning of words is through their distribution (cf. Miller and Charles
1991 for experimental evidence supporting this view). For example, the semantic
similarity between the verbs drink and sip will be seen in their co-occurrence with
similar sets of words, such as names for beverages (water, wine, coffee), contain-
ers (glass, cup), or, more subtly, words related to liquids (pour, hot, cold, steam-
ing) and dining/drinking practices (table, chair, bar, counter, dinner, restaurant).
This is not to say that drink and sip will not share some of these collocates with
other, more distantly related words (like for instance spill), but because drink and
sip are so similar, it is expected that their distribution will show a particularly
high degree of overlap in a corpus of sufficient size. In sum, in distributional
semantics, the semantic similarity between two words is related to the number of
their shared frequent collocates in a vast corpus of naturally occurring texts.2

Conversely, differences in the distributional profile of two words are expected to
correspond to differences in their meaning.

Vector-space models are the main technical implementation of distributional
semantics (Turney and Pantel 2010; Erk 2012). They owe their name to the fact
that they derive semantic information by associating words with arrays of
numerical values (i.e., vectors) based on co-occurrence counts. The first step in
creating a vector-space model is to build a co-occurrence matrix, with the set of

2 According to Sahlgren (2008), this conception of distributional semantics captures paradig-
matic similarity in particular, i.e., the extent to which words can be substituted in context, as
opposed to syntagmatic similarity, i.e., the extent to which words tend to co-occur in the same
units of text. The latter kind of similarity is captured by vector-space models that take the
frequency of occurrence of words in documents as input; hence, each column corresponds to
one document, and words occurring in the same documents are judged more similar. An
example of document-based vector-space semantic modeling is Latent Semantic Analysis
(Landauer et al. 1998). As it turns out, syntagmatic similarity tends to relate words involving
similar topics (e.g., hospital, doctor, nurse), and semantically similar verbs are rarely related in
this way. Hence, paradigmatic similarity is more appropriate for the case study presented in this
paper, and, more generally, better captures the kind of semantic relatedness that is relevant to
syntactic productivity.
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words under consideration as rows, and the collocates against which the mean-
ing of these words is assessed as columns. The matrix is filled by counting, for
each occurrence of the target words in a corpus, their frequency of co-occurrence
with other words within a set context window. Function words (articles, pro-
nouns, conjunctions, auxiliaries, etc.) and other semantically near-empty items,
such as numbers or frequent modifiers (very, really), are usually ignored, as they
are assumed not to contribute to the identification of relevant semantic distinc-
tions, and would therefore only be a source of noise if they were included.
A frequency threshold is also often used to avoid data sparsity. For example,
Table 1 below presents a co-occurrence matrix for drink and sip based on the
mini-corpus given in Figure 1, which contains three occurrences of these two
verbs in the Corpus of Contemporary American English (Davies 2008) in a five-
word context window (i.e., five words to the left and five words to the right).

Such a small sample is obvious not enough to make any robust claims about
the meaning of sip and drink on the basis of their distribution, but some basic
trends are already visible.3 As expected, both words co-occur with names for
beverages: beer, champagne, water; other words related to drinking and dining
practices are found: food, glass (two words also related to beverages), pizzeria,
table. The two verbs share three of these collocates: beer, cold, and glass; with a
larger sample, we would probably obtain more shared collocates of the same
kind, while the other cells would remain mostly empty. This example illustrates
the idea that the distribution of words reflects aspects of their meaning.

Various kinds of transformations are usually applied to the co-occurrence
matrix. Weighting employs information-theoretic measures, such as point-wise
mutual information, to turn raw frequencies into weights that reflect how dis-
tinctive a collocate is for a given target word with respect to the other target
words under consideration, i.e., to what extent the collocate occurs with that
word more often than with other words. Also, dimensionality reduction can be
employed to transform the matrix so that it contains fewer columns, selecting
and consolidating the most salient contextual features by means of linear
algebra such as singular value decomposition. In addition to making operations
on the matrix computationally more tractable, dimensionality reduction also
singles out the most informative aspects of word distributions.

In the (possibly transformed) co-occurrence matrix, each row is a word
vector, which represents the distributional profile of this word. Under the

3 Admittedly, these contexts were carefully selected for the sake of the example, but it would
not be hard to reproduce the same trends on randomly selected instances, although a much
larger number would be necessary.
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assumption that semantic distance between words is a function of distributional
differences, similarity between rows approximate semantic similarity, which can
be quantified by mathematical measures. In that connection, the co-occurrence
matrix is often conceptualized as representing a multi-dimensional semantic
space, in which each word receives coordinates according to its distribution.
To derive semantic similarity, or its converse, semantic distance, the cosine
measure is by far the most frequently used in distributional models of word
meaning.4 Its main advantage is that it normalizes for word frequency, in that
two words from a different frequency range will be judged similar if their
collocates occur with proportionally similar frequencies, even though the raw
frequencies of co-occurrence might differ substantially.

A caveat should be added at this point. The term “semantic similarity” might
not be the most fitting to describe the measure derived from distributional
information, as it should not be interpreted as entailing synonymy. Indeed,
groups of words that are found most similar according to distributional seman-
tics are not necessarily synonyms. Antonyms, for instance, are often found to be
similar in distributional models precisely because they tend to co-occur with the
same words, as a reflection of the semantic component that they share, i.e., the
scale on which they are opposites. Technically, distributional similarity reflects
the extent to which two words can be substituted for each other, which might
capture different aspects of their meaning. Besides synonymy and antonymy,
other kinds of semantic relations can cause words to occur in similar contexts,
such as co-hyponymy and hyperonymy. In sum, the semantic measures derived
from distributional information should be considered measures of unspecified
semantic relatedness rather than semantic similarity proper. This does not,
however, undermine the usability of this measure in the context of syntactic
productivity, since various kinds of semantic relations have been found to
matter for this phenomenon (cf. Zeschel 2012).

A common criticism leveled at vector-space models is that they ignore polys-
emy, in that distributional information is assigned to word forms, and thus each
word form is associated with a single semantic representation. While this com-
ment is in order, whether or not it is an actual problem for a particular application
is an empirical question. The problem does obviously not arise with monosemous

4 In mathematics, the cosine function varies between 0 and 1 in positive space (like the
distributional space derived from frequency counts). A cosine of 1 means that the vectors are
identical, in the sense that they point to the same direction; a cosine of 0 means that they are
orthogonal, i.e., maximally divergent. Therefore, the cosine is per se a measure of similarity. To
turn it into a distance measure, as required by the analyses reported in Sections 5.4, 5.5, and
5.6, the cosine values can be subtracted from 1, i.e., distancecos (V1, V2) = 1 – cosine (V1, V2).
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words, and it is often not problematic to consider related or similar senses as a
single meaning; the issue is of course more serious in the case of true homonymy.
It is also not uncommon that the distribution of words with multiple senses is
dominated by a single sense in corpora. In that case, polysemy can be seen as a
mere source of noise for the assessment of that particular sense. Truly polysemous
words, i.e., with clearly differentiated senses balanced in frequency, should be
treated with a grain of salt, since they will tend to be considered mildly similar to
several different words. Some researchers have suggested methods to identify
multiple word senses in distributional information (Pantel and Lin 2002;
Purandare and Pedersen 2004; Schütze 1998). In this study, the polysemy issue
can largely be ignored, since most of the verbs submitted to distributional classi-
fication have a low degree of polysemy.

The main benefit of vector-space models over other, non-quantitative
approaches to word meaning is that the informal notion of semantic representa-
tion is turned into an empirically testable semantic model. In such an approach,
semantic similarity can be quantified, which opens a range of useful applications
for empirical studies, such as the derivation of other quantitative measures or
statistical testing (cf. Section 5.6). Also, while the status of distributional seman-
tics as a theory of semantic representation and acquisition is still much debated
(cf. Glenberg and Robertson 2000), distributional models have been argued to
display some potential for psychological reality. Some implementations have
been shown to correlate positively with human performance on various tasks,
such as synonymy judgments, word association, and semantic priming (Lund
et al. 1995; Landauer et al. 1998), which means that they are at least good models
of human behavior. Andrews et al. (2008) evaluate the relative importance of
distributional knowledge and experiential information (i.e., based on properties
available to the senses) for semantic representations, by comparing the perfor-
mance of models based on each kind of information with one based on a
combination of both. They find that a model based on both kinds of information
provides more coherent results and also performs better on a set of comparisons
with human-based measures of semantic representation (lexical substitution
errors, association norms, semantic priming in word recognition, and interference
in word production). These results suggest that distributional information might
well be a key component of how human beings acquire and process semantic
information. Hence, the present study’s attempt to use a distributionally derived
measure of semantic similarity to study syntactic productivity does not only
address the practical concern of obtaining semantic information without relying
on human intuitions: it might also qualify, to some extent, as a cognitively
grounded approach to the issue. That being said, it should be emphasized that
vector-space modeling is merely seen as providing a proxy to word meaning in

Using distributional semantics 163

Brought to you by | Universitaetsbibliothek Basel
Authenticated

Download Date | 4/29/19 4:28 PM



this paper, which remains agnostic as to whether distributional information
should be considered as a cognitive representation of meaning itself.

Vector-space models are widely known in computational linguistics and
have been used for many practical applications, including word-sense disambi-
guation (Pedersen 2006), automatic thesaurus generation (Grefenstette 1994),
and information extraction (Vyas and Pantel 2009). Yet, while distributional
information of any kind is used increasingly commonly by linguists to ground
linguistic generalizations in patterns of usage (e.g., Divjak and Gries 2006; Croft
2010; Wälchli and Cysouw 2012), distributional semantics in particular has been
much less frequently employed in theoretically-oriented work. Among the rare
occurrences, Gries and Stefanowitsch (2010) draw on distributional semantics to
inductively identify verb classes in the distribution of constructions by clustering
verbs according to their frequent collocates. Similarly, Levshina and Heylen
(2014) use a vector-space semantic model to identify contrasting sets of semantic
classes for the causee argument in Dutch periphrastic causative constructions
with doen and latten. In historical linguistics, distributional semantics has been
used by some scholars to track recent semantic change (Boussidan 2013; Cook
and Stevenson 2010; Gulordava and Baroni 2011; Sagi et al. 2009). However, no
attempt has yet been made to apply distributional semantics to the study of
syntactic productivity in diachrony. This paper seeks to mend this gap. As will
be shown, adopting distributional methods to the problem of handling semantic
information is an empirically appropriate solution to the issues mentioned in the
last section. As a result, it increases the scope of possible studies, since it raises
the constraint on the number of lexemes that can be considered. The next
section presents a case study demonstrating the appropriateness of a distribu-
tional approach to lexical semantics for the study of syntactic productivity, and
the analytical advantages that it offers.

5 Case study

5.1 The hell-construction

The case study presented in this paper considers the construction corresponding
to the syntactic pattern “V the hell out of NP” (Hoeksema and Napoli 2008; Haïk
2012), as exemplified by the following sentences from the Corpus of
Contemporary American English (hereafter COCA; Davies 2008).

(3) Snakes just scare the hell out of me.
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(4) It surprised the hell out of me when I heard what he’s been accused of.

(5) Damn this man loved the hell out of his woman.

(6) Me and Jeff want to beat the hell out of each other.

(7) You might kick the hell out of me like you did that doctor.

The construction is typically used with two-participant verbs, and basically
consists in a two-argument construction where the post-verbal argument is
preceded by the phrase the hell out of. Compared to a regular transitive con-
struction, the hell-construction generally conveys an intensifying function, very
broadly defined. The examples above illustrate the most common and straight-
forward case, in which the construction intensifies the effect of the action or the
effort of the agent. Hence, scare/surprise/love the hell out of means “scare/
surprise/love very much”, and beat/kick the hell out of means “beat/kick very
hard”. Examples (8) and (9) below with play and wear exemplify another less
common, though relatively regular case, in which the action is a performance, or
is construed as such in the case of wear, and it is the quality of this performance
that is intensified.5

(8) Phil and his music-mates […] could play the hell out of any song.

(9) [A]wards-show-bound actors and directors show twelve different ways to
wear the hell out of a tuxedo.

In some cases, the particular aspect that is intensified may be highly specific to
the verb and may depend to some extent on the context. With ride in (10), the
event is longer and involves more strain on the vehicle than usual. In (11), sell
the hell out of means (in this case) “sell a lot”. Both examples relate to the
intensification of the agent’s effort, as mentioned previously, and so do exam-
ples (12) and (13), which also focus on the insistence of the agent to obtain a
particular result.

(10) Our test team rode the hell out of these bikes on your behalf.

(11) By then I was selling the hell out of Buicks at Petz’s.

5 Examples (8) to (13) are also from the COCA.
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(12) I kept Googling the hell out of ‘stress fracture’ and ‘femoral neck’.

(13) If you ever hear that I’ve committed suicide, investigate the hell out of it.

Instances of the hell-construction superficially look as if they consist of a direct
object followed by a prepositional phrase headed by the complex preposition out
of, and therefore appear to be instances of the removal construction (Goldberg
2011) conveying the meaning ‘X CAUSES Y to MOVE from Z’, e.g., He took the gun
out of the holster. In fact, as argued by Hoeksema and Napoli (2008), the hell-
construction probably emerged from uses of the removal construction describing
an exorcism scenario, specifically expressions like beat the devil out of X,
literally meaning ‘causing a demon to leave a person’s body by beating them’.
At some point towards the end of the nineteenth century, expressions of this
kind started to undergo semantic bleaching as they were used in contexts where
they did not convey an exorcism scenario literally but only through hyperbolic
reference, for the purpose of intensification, as in (14) below.

(14) Yes, Loubitza will beat the devil out of her when she gets her home – her and
her broken jar! (1885; cited by Hoeksema and Napoli 2008: 371)

Concomitantly, the phrase the devil in this and other constructions was progres-
sively being replaced, by metonymy, with the hell, and this new expression gave
rise to the modern hell-construction, which retained the bleached meaning of
intensification, and became increasingly popular from the 1930s onwards
(cf. Section 5.2).

While the hell-construction probably arose from a literal meaning of
removal, there is evidence that it developed into a construction that no longer
patterns semantically and syntactically like instances of the removal construc-
tion. First, as noted by Haïk (2012), the preposition in the hell-construction is
restricted to be out of, and other prepositions with a similar ‘removal’ meaning
like off and from are barred from it, as shown in (15a). Such restrictions do not
hold for the removal construction, as shown in (15b).

(15) a. *He kicked the hell off/from me.
b. He took the gun off/out of/from her hands.

Secondly, while there seems to be evidence that the phrase the hell has some
syntactic properties of direct objects (in particular with regards to passivization,
cf. Hoeksema and Napoli 2008; Haïk 2012), its semantic status as a theme
argument in the removal construction is highly questionable. Evidently,
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sentences (3) to (13) do not involve caused motion, and, in fact, the hell is not
even referential (even in a figurative sense), as shown by the impossibility of
anaphoric reference by a pronoun (cf. [16]).

(16) *He scared the hell out of Sam, and kicked it out of Bill too.

This questions whether the hell should be treated as a noun phrase in the
traditional sense. It rather appears to be an instance of some kind of expressive
phrase that can also be found in other expressions to convey a similar excla-
matory function, e.g., What the hell is going on?, get the hell out of here, for the
hell of it (cf. also expressions like one hell of a mess). Added to the fact that the
referent of the prepositional phrase complement bears the same semantic role as
the direct object of the transitive counterpart, this suggests that the hell-
construction could be treated as a case of particle insertion, or as an alternation
à la Levin (1993), whereby the expression the hell out of is inserted before the
direct object argument and modifies the predication in a quasi-compositional
way. However, while the overwhelming majority of verbs occurring in the con-
struction are transitive, uses with intransitive verbs are also attested, such as
listen in (17a). Listen cannot be used transitively as in (17b); its non-subject
argument must be preceded by the preposition to, as in (17c). Hence, there is no
transitive construction from which example (17a) could be derived through the
addition of the phrase the hell out of.

(17) a. I’ve been listening the hell out of your tape. (COCA)
b. *I’ve been listening your tape.
c. I’ve been listening to your tape.

Taken together, these observations suggest that the pattern cannot be derived
compositionally from any other constructions in the language, and therefore
forms its own generalization. As also noted by Hoeksema and Napoli (2008:
375), the hell-construction lends itself nicely to a construction grammar analysis
(Goldberg 1995), whereby the abstract meaning of intensification is directly
associated with the whole phrasal pattern “V the hell out of NP”. As such, the
hell-construction can be seen as a case of constructionalization, in which an
instance of an existing construction gradually evolved into an independent gen-
eralization (Bybee 2013; Traugott and Trousdale 2013). The hell-construction is
similar to more “vulgar” variants in which hell is replaced by other taboo words
(e.g., crap, fuck, shit; see Hoeksema and Napoli 2008 for a thorough list of
attestations), and could therefore be considered a member of a family of related
constructions (Goldberg and Jackendoff 2004).
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5.2 Corpus data

This study uses the Corpus of Historical American English (COHA; Davies 2010) as
a source of data on the diachronic development of the verb slot in the hell-
construction. The COHA consists of about 20 million words of written American
English for each decade between 1810 and 2009 and is available online.6 The
corpus is roughly balanced for genre, in that each decade contains texts of four
types (fiction, magazines, newspapers, non-fiction) in about the same proportions.7

The string “[v*] the hell out of” was searched for in the COHA, which returned
instances of all verbs followed by the sequence “the hell out of”. All tokens were
downloaded and the instances of the hell-construction were filtered out manually,
mostly ruling out locative constructions like get the hell out of here. The diachronic
evolution of the verb slot in terms of token and type frequency is plotted in several
diagrams in Figure 2. Most of the first attestations of the construction in the corpus

Figure 2: Diachronic development of the hell-construction in token frequency normalized by
million words (A), type frequency (B), and token/type ratio (C), per decade.

6 Twenty million words is a rough average; recent decades tend to be markedly bigger (there
are no less that 29 million words for the 2000s), and the earliest sections smaller.
7 This is true at least for all decades from the 1870s onwards; before that, the corpus contains little
to no newspaper data, and the other genres are balanced slightly differently. See http://corpus.
byu.edu/coha/help/texts_e.asp (consulted Feb 7 2014) for details on the composition of the corpus.
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date back to the 1930s. One instance, reported in (18) below but not included in
Figure 2, was found in 1928 with the verb lick used in the sense of ‘beat, defeat’.

(18) Swap generals with us and we’ll lick the hell out of you.

This suggests that the construction was present (although perhaps less common)
before the 1930s. This is confirmed by a quick survey in the American portion of
the much larger Google Books n-gram corpus (Davies 2011), where the hell-
construction is first attested (though scarcely) in the 1910s and 1920s, and
undergoes a sudden rise in frequency in the 1930s.

At any rate, plot (A) in Figure 2 shows that the construction has been
steadily increasing in frequency since its arrival in the language. Also, more
and more different verbs are attested in the construction, as seen by the increase
in type frequency in plot (B). Because the type frequency measured in a corpus
depends to a large extent on the token frequency of the relevant construction, it
is also pertinent to relativize the increase in type frequency by calculating the
token/type ratio, which is also a common measure of morphological productiv-
ity (Baayen and Lieber 1991). Except for two sudden declines in the 1950s and in
the 1990s, the token/type ratios also point to a general increase in the scope of
the construction, as seen in plot (C).

The increase in type frequency and token/type ratio reflects an expansion of
the productivity of the construction, but it does not show the structure of this
productivity. For instance, it does not say what kinds of verbs joined the distribu-
tion (and when), whether there are particular semantic domains preferred by the
construction, and whether and how this changes over time. To answer these
questions, this study analyzes the distribution of the construction from a semantic
point of view by using a measure of semantic distance derived from distributional
information. The distributional semantic model is described in Section 5.3, and
evaluated in Section 5.4. In Section 5.5, two visualization techniques are presented
that use this model to investigate the diachronic development of the semantic
distribution of the construction. In Section 5.6, the diachronic data is submitted to
statistical analysis to evaluate how the semantic structure of the distribution
predicts how verbs are productively used in the construction.

5.3 The vector-space model

One of the goals of this case study is to assess the structure of the semantic domain
of the hell-construction at different points in time, using measures of semantic
distance derived from distributional information. To achieve this, we need to
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obtain naturally occurring instances of all verbs attested in the construction from a
large corpus, in their context of use. Various corpora of sufficient size for vector-
space semantic modeling are available, some of which are commonly used for that
purpose: for instance, the 100 million-word British National Corpus, the two
billion-word ukWaC corpus of blogs from the .uk domain, and Wikipedia dumps.
This study uses the COCA, because as a well-balanced corpus of American English
it is more ecologically valid for this study than the other cited resources, which
consist of a different variety of English and/or are more genre-specific. The COCA
contains 464 million words of American English consisting of the same amount of
spoken, fiction, magazine, newspaper, and academic prose data for each year
between 1990 and 2012. Admittedly, an even more ecologically valid choice
would have been to use data from a particular time frame to build a vector-
space model for the analysis of the distribution of the construction in the same
time frame. However, it did not prove possible to find enough data to achieve that
purpose, since even the twenty or so million words per decade from the COHA
turned out to be insufficient to assess the meaning of words from their distribution
with a reasonable degree of reliability. Using data from the 1990s and 2000s to
model the semantics of lexemes used in earlier decades is actually not as proble-
matic as it might sound, since the meaning of the verbs under consideration are
not likely to have changed considerably within the relatively short and recent time
frame of this study, in which American English had long been standardized and its
semantics (just like its grammar) regulated by such authoritative sources as
Webster’s American Dictionary of the English Language, whose first edition had
been published in 1828.8 Besides, using the same distributional data entails that a
common semantic space will be used for all time periods, which makes it easier to
visualize changes.

All instances of the relevant verbs were extracted from the online version of
the COCA with their context of occurrence. Verbs judged not frequent enough to
assess their meaning from their distribution (i.e., less than 2,000 occurrences)
were excluded from the study: bawl, belt, cream, dent, disgust, flog, grease,
horsewhip, infilade, infuriate, irk, lam, micromanage, mortgage, nag, nuke, sodo-
mize, and squash. This left a total of 92 usable verbs. The words in the sentence
contexts extracted from the COCA were lemmatized and annotated for part-of-

8 This is not to say that semantic changes cannot occur within this time frame; after all, there
have been major social, cultural, and technological changes since the 1930s that are most likely
to be reflected in language. Both Boussidan (2013) and Gulordava and Baroni (2011) detect
semantic change in distributional data for particular words within much shorter time spans.
Semantic change should however be minimal since the 1930s for the verbs considered in this
study, especially as far as the similarity between them is concerned.
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speech using TreeTagger (Schmid 1994).9 The matrix of co-occurrences between
the target verbs and their lemmatized collocates within a five-word window was
computed on the basis of the annotated data, as described in Section 4. Tokens
with the same lemma and a different part of speech (e.g., the noun place as in
dinner at my place, and the verb place as in place the envelope in the printer tray)
were considered different collocates and, accordingly, received a different fre-
quency count. Only the noun, verb, adjective, and adverb collocates listed
among the 5,000 most frequent words in the corpus were considered (to the
exclusion of the verbs be, have, and do),10 thus ignoring function words (articles,
prepositions, conjunctions, etc.) and all words that did not make the top 5,000.

The co-occurrence matrix was transformed by applying a Point-wise Mutual
Information weighting scheme, using the DISSECT toolkit (Dinu et al. 2013).11

The resulting matrix, which contains the distributional information for 92 verbs
occurring in the hell-construction, constitutes the semantic space under consid-
eration in this case study. The rest of the analysis was conducted on the basis of
this semantic space in the R environment (R Development Core Team 2013).

5.4 Evaluation of the vector-space model

Before turning to the analysis of the hell-construction proper, the validity of the
vector-space model to capture semantic similarity between verbs is first evaluated.
To visualize similarity relations and possible groupings that can be inferred from
the distributional data, the rows of the co-occurrence matrix were submitted to
hierarchical clustering, using the “hclust” function of the R environment.
Hierarchical clustering is an unsupervised learning technique aimed at the classi-
fication of a set of objects into homogenous categories (cf. Aldenderfer and
Blashfield 1984), according to a set of numerical variables against which each
object (here, each verb) is characterized. In the present case, the variables are the
weighted co-occurrence counts recorded in each row of the matrix, and two rows
are considered more similar if they have similar co-occurrence counts in the same
columns, which was measured by the cosine distance, using the “cosine” function
from the R package lsa (Wild 2007). The hierarchical clustering algorithm uses
pairwise distances between rows to recursively merge the two most similar
observations or clusters of observations into a higher-level cluster, until there is
only one cluster containing all objects. The distance between clusters depends on

9 http://www.cis.uni-muenchen.de/~schmid/tools/TreeTagger/ (consulted Feb 7 2014).
10 The list of the 5,000 most frequent words in the COCA was downloaded from http://www.
wordfrequency.info/free.asp (consulted Feb 7 2014).
11 http://clic.cimec.unitn.it/composes/toolkit/ (consulted Feb 7 2014).
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which linkage criterion is used. For this study, Ward’s linkage method was
chosen. Ward’s criterion aims to minimize the variance within clusters when
choosing which two clusters to merge, and, compared to other linkage methods,
it has the property of generating more “compact” clusters.

The output of the hierarchical clustering algorithm is thus, as the name
indicates, a hierarchy of clusters. This hierarchy is generally presented in the
form of a tree diagram, or dendrogram, in which the observations are leaves,
and the clusters are branches linking the observations at different levels. The
dendrogram resulting from the cluster analysis of the 92 verbs found in the
hell-construction between 1930 and 2009 is presented in Figure 3. This kind of

Figure 3: Cluster dendrogram for all verbs in the distribution of the hell-construction between
1930 and 2009.
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diagram arranges items according to their similarity, and as it were, traces
the history of cluster mergers by the algorithm, from the earliest ones on the
rightmost side of the graph, to the last one on the leftmost side. Clusters
located towards the top of the tree (here on the right) represent tight groupings
of highly similar items, while clusters located at lower levels (here on the
left) correspond to looser groups of items related by more abstract
commonalities.

A number of highly meaningful groupings can be found in the dend-
rogram; they are indicated by branch labels and different color codings in
Figure 3. First, there are several pairs of synonyms or near-synonyms that were
merged together as a single cluster before being linked to other clusters. In
other words, these words were nearest neighbors in the semantic space: from
top to bottom, entertain and amuse (1), irritate and annoy (4), scare and
frighten (5), love and adore (6), slice and cut (12), and whip and beat (13).
Love and adore are joined by like and enjoy in a higher-level cluster. There are
also several groups containing words that clearly relate to the same notional
domain without necessarily being synonyms: impress, admire, and fascinate
from group (2) lexicalize feelings of awe, stun, shock, surprise, and startle from
(3) relate to astonishment, and sing and play (7) are verbs of performance. At a
yet more abstract level, we find that some verbs seem to fall in the same
cluster because they share some abstract property related to their experiential
Gestalt and/or other entities typically involved in the event they describe. In
group (8), understand, explain, and analyze relate to mental processes and
typically involve complex and abstract ideas. In (9), squeeze, pinch, and twist
share the notion of contact and exertion of a force, typically with the hand or
fingers, and in (10), rub, lick, and scratch involve repeated motion on a
surface. The two clusters are merged at a higher level, presumably because
they are unified by the notion of contact. Shoot and chase in (14) correspond to
different aspects of hostile engagement with a target (like in hunting), and
bomb and kill in (15) are both violent and harmful to human beings. Finally,
(11) is a large cluster that contains almost all verbs of hitting (especially in a
violent way) found in the distribution: slap, pound, kick, smash, slam, bang,
knock, hit, whack, plus push, which also contains a similar force component.
This group constitutes a coherent semantic class that can evidently be derived
from distributional information.

At a higher level, the clustering algorithm partitions the distribution in a
way that also makes intuitive sense. As indicated in Figure 3, the verbs are
neatly divided into concrete and abstract domains, i.e., verbs primarily describ-
ing physical actions vs. verbs describing actions that do not have a clear
concrete manifestation, such as feelings, emotions, mental processes and other

Using distributional semantics 173

Brought to you by | Universitaetsbibliothek Basel
Authenticated

Download Date | 4/29/19 4:28 PM



abstract events. The two types of verbs are further divided into four semantically
coherent groups, labeled A to D in Figure 3. Group (A) mostly contains psych-
verbs describing feelings and emotions: please, surprise, hate, worry, annoy, like,
etc. Group (B) contains the other kinds of abstract actions. Group (C) mostly
contains physical actions that typically involve contact and exertion of a force
on a second participant, resulting in an effect that is often damaging: scrub,
slap, push, whack, cut, beat. The verbs in group (D) have a weaker force
component (if at all), and do not necessarily involve contact. A few of them
describe perfectly harmless actions that do not have the causative character of
the verbs in group (C), e.g., drive, sell.

More could be said about the cluster analysis reported in Figure 3 and the
semantic distributional model it is based on, but the comments made so far
already amply illustrate that the measure of semantic similarity provided by
this vector-space model accurately reflects semantic intuitions. This is not to
say that the model never makes mistakes or would not enter in disagreement
with human speakers as to what verbs are more similar to each other, as
indeed there seems to be a few misclassifications. For example, want, but not
enjoy or love, turns out as the nearest neighbor of like (contrary to intuition),
and depress is grouped with verbs of physical actions. Such mistakes occur
when a word shares more of its distribution with words that are not truly
similar to it than with words that are, and could possibly be avoided by relying
on a finer notion of word context (for instance by taking into account gram-
matical dependencies, cf. Padó and Lapata 2007). Be that as it may, this
distribution-based measure of semantic similarity is on the whole highly satis-
factory, which warrants its use for the study of the syntactic productivity of the
hell-construction.

5.5 Visualizing productivity with semantic plots

One of the advantages conferred by the quantification of semantic similarity is
that lexical items can be precisely considered in relation to each other. Taking
up the conception of meaning as a space populated by words which lexicalize
portions of it, a distance measure can be seen as providing a way to locate
words in that space with respect to each other. By aggregating the semantic
distance information for all items in the distribution, we can form an impres-
sion of the structure of the semantic domain of the construction, which can be
given a visual depiction. In particular, a visual representation allows to
observe how verbs in that domain are related to each other, and to immedi-
ately identify the regions of the semantic space that are densely populated

174 Florent Perek

Brought to you by | Universitaetsbibliothek Basel
Authenticated

Download Date | 4/29/19 4:28 PM



(with tight clusters of verbs), and the regions that are more sparsely populated
(with fewer and/or more scattered verbs). In turn, by observing the structure of
the semantic domain of the construction at different points in time, we can
gain insights into the diachronic development of its productivity. This section
presents an analysis of the hell-construction in diachrony that draws on two
well-known visualization techniques to identify patterns in the semantic
distribution.

The first of these techniques, multidimensional scaling (MDS), provides a
way both to aggregate distance information and to represent it visually. It aims
at placing objects in a space with (usually) two dimensions such that the
between-object distances are preserved as much as possible. Each object is
assigned coordinates by the algorithm, which can be used to generate a plot
that visually depicts the similarity relations between objects. The pairwise
distances between all verbs in the distribution were submitted to multidimen-
sional scaling into two dimensions, using the “isoMDS” function from the
MASS package in R. This is essentially tantamount to mapping the high-
dimensional distributional space of the co-occurrence matrix, where each of
the 4,683 collocates is one dimension, into a two-dimensional space, which
should offer an approximation of the semantic space. The new distance matrix
computed in the resulting two-dimensional space displays a good level of
correlation with the original distance matrix (Pearson’s r=0.8295, t(4184) =
96.0795, p << 0.001), and the algorithm returns a satisfactory stress value
(Kruskal’s stress = 0.2017, cf. Kruskal 1964). This shows that the two-dimen-
sional space returned by MDS is reasonably faithful to the original high-
dimensional space.

To visualize changes in the semantic domain of the hell-construction, the
diachronic data set was divided into four successive twenty-year periods: 1930–
1949, 1950–1969, 1970–1989, and 1990–2009. This division was chosen for
purely practical reasons: the corpus is sampled by decades, but decades turned
out to be too short timespans to observe significant changes from one period to
another. The distribution of the construction in each time period was extracted
and plotted in a separate graph, using the set of coordinates returned by MDS.
These semantic plots are presented in Figure 4. For convenience and ease of
visualization, the verbs are color-coded according to the four broad semantic
groupings that were identified by the cluster analysis presented in Section 5.4
(cf. Figure 3). For the sake of comprehensiveness, token frequency is also
represented in the plots, although it will not be subsequently discussed. Verbs
with a token frequency greater than one are plotted with a circle in addition to
their label; the size of the circle is proportional to the natural logarithm of the
token frequency.
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By comparing the plots in Figure 4, we can follow the semantic development of
the hell-construction.12 First, one thing that is particularly striking is that the
construction is clearly centered around two kinds of verbs: psych-verbs

Figure 4: Semantic plots of the hell-construction in four successive twenty-year periods. The
colors correspond to the four clusters of verbs identified by cluster analysis (cf. Figure 3).

12 Note that this idea and its technical implementation are similar to the concept of motion
charts, proposed by Hilpert (2011) to visualize linguistic change on the basis of the frequency of
co-occurrence of lexical and grammatical features. The semantic plots showcased in this paper
differ from Hilpert’s motion charts in two respects: (i) they are exclusively based on co-
occurrences with lexical items as a means to represent semantic relations, and (ii) they are
designed to visualize not how grammatical patterns of usage change over time (as reflected by
the motion of items in the plotted space), but how the semantic domain of a construction is
filled at different points of its history.
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(surprise, please, scare, etc.) and verbs of hitting (smack, kick, whack, etc.), a
group that is orbited by other kinds of forceful actions (such as pinch, push, and
tear). These two types of verbs account for the lion’s share of the distribution at
the outset, and they continue to weigh heavily throughout the history of the
construction. These two classes also correspond to the regions of the semantic
domain that attract the most new members, and they constantly do so in all
periods. Outside of these two clusters, the semantic space is much more sparsely
populated. In the first period (1930–1949), only a few peripheral members are
found. They are joined by other distantly related items in later periods, although
by no more than a handful in each. In other words, the construction is markedly
less productive in these outer domains, which never form proper clusters of
verbs.

These observations illustrate the role of type frequency and variability in
productivity. In the semantic space, densely populated regions appear to be the
most likely to attract new members. However, this observation is derived by
informally eyeballing the data, and is not the result of a systematic and prin-
cipled analysis. Besides, one problem with MDS is that it often distorts the data
when fitting the objects into two dimensions, in that some objects might have to
be slightly misplaced if not all distance relations can be simultaneously com-
plied with. Even though the results of MDS received good measures of reliability,
some distortion can indeed be seen in Figure 4 in the spatial overlap between
the groupings that were identified by cluster analysis (for instance blow, a
member of group D, is placed among verbs of group C), as well as in the fact
that some verbs are clearly misplaced. For instance, play and sing are positioned
far apart from each other, while they were identified as nearest neighbors in the
high-dimensional space. In sum, even though MDS is decidedly useful for the
purpose of exploratory analysis, the semantic plots it generates should be taken
with a grain of salt and its results be compared with another, more reliable
method.

To analyze how regions of the semantic space fill up over time, verbs can be
grouped according to cluster analysis, as diagrammed in Figure 3. If the den-
drogram of Figure 3 is cut at a given level, a list of clusters of comparable
internal coherence can be obtained. By combining a given clustering solution
with the diachronic partition of the distribution into periods created to construct
the semantic plots, the variation in the size of each cluster over time can be
plotted. This is presented in Figure 5. Each plot charts the number of verbs in
each cluster for four clustering solutions, respectively containing three, four,
five, and six clusters. The exact nature of these clusters and the verbs they
contain can be determined from the dendrogram in Figure 3, but this informa-
tion is not necessary in order to observe that it is always the groups containing
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the most members at the outset that most quickly gain new members afterwards.
There is indeed a high and significant correlation between the initial size of a
cluster and its mean growth, i.e., the mean increase in size of the cluster in later
periods, across the four clustering solutions (Pearson’s r=0.8024, t(16) = 5.3786,
p < 0.0001). Two clusters in particular stand out as the front runners in the
productivity of the construction at any degree of granularity; unsurprisingly,
they correspond more or less to the two semantic classes described above
(psych-verbs and forceful actions). In sum, the results of cluster analysis are
largely in line with the semantic plots, confirming previous observations with a
more principled and reliable method. These findings illustrate one aspect of the

Figure 5: Type frequency variation of semantic clusters at different levels of granularity (viz.,
different numbers of clusters).
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role of type frequency in productivity: within a given semantic class, new items
are more likely to appear if many items are already present. Outside of the two
identified domains of predilection, other classes never become important
because they do not receive a “critical mass” of items, and therefore attract
new members more slowly.

At the same time, there is a notable difference between forceful action verbs
and psych-verbs that is more visible in the semantic plots than in the dendro-
gram: the former always form a tight and compact cluster, while the latter
occupy more space. This is coherent with the intuition that the two categories
differ in the variety of situations that they can cover: the types of hitting and
other forceful actions are rather limited, but the range of feelings and emotions
experienced by humans is more varied. The two clusters start with a similar
number of verbs, but they have a different structure, in that psych-verbs are
more scattered, leaving gaps that are gradually filled over time. I would argue
that it is a crucial difference that accounts for why psych-verbs turn out to be
more productive than forceful action verbs, despite having the same starting
type frequency, in line with the idea that semantic variability promotes produc-
tivity. Importantly, this finding illustrates another useful aspect of semantic
plots: compared to cluster dendrograms, they allow to better appreciate how
items are spread in the semantic space, and not only how they cluster together,
and to visualize the shape of clusters, and not only their size.

5.6 Statistical analysis

The visualization techniques described in the previous section (multidimen-
sional scaling and cluster analysis) prove useful to explore and analyze the
productivity of constructions on the basis of distributional semantic data. There
is, however, more to be offered by the distributional quantification of meaning
for the study of syntactic productivity. In particular, one major advantage
presented by a quantification of meaning over an introspective approach is
that it allows measures capturing particular aspects of the semantic space to
be derived and used in statistical analysis. In this section, it is shown that a
measure of density derived from a distributional semantic space is a significant
predictor of syntactic productivity.

The quantitative analysis presented in this section is based on the following
premises. Given that the hell-construction conveys essentially the same meaning
since its inception, all verbs ever attested in the construction form equally
plausible combinations with it from a semantic point of view. However, they
are clearly not all equally likely to occur at any point in the history of the
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construction, as shown by the diachronic data presented in the last section.
According to contemporary usage-based accounts of syntactic productivity, the
probability of a new coinage depends on properties of the prior usage of the
construction (cf. Section 2), especially as it relates to the presence of similar
items in the attested distribution. In diachrony, this usage-based account trans-
lates into the expectation that the usage of a construction at a given point in
time should determine its distribution at a later point (at least partly). More
precisely, a given item is not likely to join the distribution of the construction
until a particular set of conditions are met. This prediction can be tested by
determining if there is a relation between the probability that a given verb will
join the distribution in a given period of the history of the hell-construction, and
the structure of the semantic domain of the construction in the immediately
preceding period. In particular, it is suggested in this section that the occurrence
of a new item in the construction is related to the density of the semantic space
around this item. This notion of density can be seen as an operationalization of
the concept of coverage suggested by Suttle and Goldberg (2011) to explain their
experimental results (cf. Section 2).13

For each verb in the distribution, the period of first occurrence in the
construction was determined. For the verbs first occurring in 1970–1989 and
1990–2009, the binary variable OCCURRENCE was set as true for the first period of
occurrence, and as false for all earlier periods (later periods were ignored). The
verbs first occurring before 1970 could not be included in the analysis for two
logical reasons. For verbs first occurring in 1930–1949, there is no earlier period
from which to extract a measure of density. For verbs first occurring in 1950–
1969, there is no period of non-occurrence with which to establish a comparison,
because that period would be 1930–1949, which, as just pointed out, cannot
receive a measure of density.

For each verb-period pair thus obtained, a measure of density was computed
that captures how populated the semantic space was in the neighborhood of the
verb in the immediately preceding period. For instance, explain is first attested
in the construction in the fourth period (1990–2009); the variable OCCURRENCE is
thus true for VERB=explain and PERIOD=1990–2009, and the measure of density is
computed on the semantic space from the third period (1970–1989). Two other

13 As pointed out by one of the anonymous reviewers, an operationalization of Barðdal’s (2008)
concept of semantic coherence could also be similarly arrived at using distributional measures
of semantic similarity. However, contrary to the notion of density described here, a measure of
semantic coherence would not be defined relative to a particular point of the semantic space
where a potential new coinage is considered, but would be a property of a construction as a
whole.
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data points are added for explain with PERIOD = 1950–1969 and PERIOD = 1970–
1989, with OCCURRENCE set to false, and the density measures are respectively
calculated from the semantic spaces of 1930–1949 and 1950–1969. I used mixed
effects logistic regression to determine if there exists a quantitative relation
between the measure of density and the probability of first occurrence of the
verb in the construction.

One of the main questions to be addressed is how to measure the density of
the semantic space at a given point in this space (corresponding to a particular
verb). The measure of density should take both the number of neighbors and
their proximity into account, in that it should capture to what extent a large
number of items are found in the close vicinity of that point. Also, the measure
of density should be defined locally, i.e., it should consider a limited portion of
the semantic space and by no means all of it, otherwise it will not be a good
predictor of the probability of a new coinage, since it will invariably increase
with the sheer number of attested items in the entire space, regardless of how
relevant these items are (see Suttle and Goldberg 2011: 1243 for a similar
observation). In this study, I suggest a measure of density that considers the
set of the N nearest neighbors of a given item in the semantic space. This
measure of density is defined by the following formula:

DensityV,N = 1−

PN
n= 1 d V,Vnð Þ

N

where d(X, Y) is the distance between two items X and Y, and Vn is the n-th
nearest neighbor of V. In plain language, the density around a given item V is
equal to one minus the mean distance of the N neighbors to this item. The mean
distance to nearest neighbors decreases with the density of the surrounding
space, and is therefore technically a measure of sparsity; since cosine distances
are between 0 and 1, subtracting the mean distance from one returns a measure
of density. For instance, for N = 3, the density of the semantic space around a
verb V that has V1, V2 and V3 as nearest neighbors at the respective distances of
0.3, 0.4, and 0.5 amounts to 1−(0.3 + 0.4 + 0.5)/3 = 0.6.

The dataset was used to fit a linear mixed effects model using the function
“lmer” from the lme4 package (version 1.0-5) in the R environment (Bates et al.
2011). In this model, OCCURRENCE is the dependent variable, and the measure of
density is the single predictor. As for random effects, the model also includes by-
verbs random intercepts and random slopes for DENSITY. This was done in order
to factor in variation in density related to individual verbs; recall that what we
want to test is whether the first occurrence of a new verb is heralded by an
increase in the density of the semantic space around that verb. Different versions
of the density measure were calculated by considering different numbers of
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nearest neighbors between 3 and 8 (the N variable in the formula). The pre-
dictive power of each version of the density measure was tested in a different
model. The results of these models are summarized in Table 2.

For all values of N, a positive effect of DENSITY is found. In other words, a higher
space density positively increases the odds that a new verb occurs in the
construction. However, the effect is only significant for N ≥ 7; more generally,
the p-value decreases as N increases. In sum, the effect of density is both
stronger and more robust when a larger number of neighbors is considered in
its calculation. The variation in effect strength indicates that a higher N helps to
better discriminate between dense clusters where all items are close together
from looser ones that consist of a few ‘core’ items surrounded by more distant
neighbors. The variation in p-value means that the relation between DENSITY and
OCCURRENCE is not as systematic when DENSITY is measured on fewer neighbors. I
would argue that this fact is another manifestation of the role of type frequency
in syntactic productivity: a measure of density that is supported by a higher
number of types makes more reliable predictions than a measure supported by
fewer types. This means that productive uses not only depend on whether the
meaning of a potential coinage is sufficiently related to the existing semantic
space, they also occur more reliably when this relation is supported by many
items. These findings point to complementary roles that the semantic distribu-
tion of a construction and its type frequency play in syntactic productivity, as
argued by Barðdal (2008): the former sets the necessary conditions for a new
coinage to occur, while type frequency increases the confidence that this coin-
age is indeed possible.

As one reviewer points out, it should be acknowledged that the effect of
density appears to be partly in contradiction with my earlier observation from
Figure 4 that the tight cluster of forceful action verbs at the outset (1930s–1940s)

Table 2: Results of mixed effects logistic regression models predicting the first occurrence of a
verb in the hell-construction from measures of semantic density based on 3 to 8 nearest
neighbors. Model formula: OCCURRENCE ~ DENSITY + (1 + DENSITY | VERB)

Nearest neighbors (N) Effect of DENSITY p-value significant?

 . . no
 . . no
 . . marginally
 . . marginally
 . . yes
 . . yes
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turns out to be less productive in later periods than the looser cluster of psych-
verbs, since the former indicates higher semantic density than the latter, and yet
does not seem to attract as many new items. For reasons previously explained,
the statistical models summarized in Table 2 were trained on data for the verbs
occurring in the third and fourth period (1970–1989, 1990–2009) for the first
time; hence, they are not affected by this discrepancy. That being said, this
seems to indicate that the density-based model only provides a partial account
of the productivity of the construction. The situation found for the hell-construc-
tion, which was given an intuitive explanation, is in line with Suttle and
Goldberg’s (2011: 1253) finding that a coinage located next to a tight cluster
(low variability, moderate similarity) is judged less acceptable than one located
next to a loose cluster (high variability, moderate similarity). Both findings
suggest that productivity is not sensitive to the mere presence of similar items,
but also, and perhaps more importantly, to the distribution of these items in the
semantic space, which the present measure of density does not capture.

It should be insisted that the method presented in this section is only
intended to illustrate how statistical analysis can be applied to the study of
syntactic productivity in the approach advocated in this paper. As such, the
coarse density-based models described above are obviously not meant to cap-
ture the phenomenon in its full complexity, but merely to identify a general
trend. In future research, other, more complex measures of density capturing
different aspects of the semantic space should be devised, and other factors
tested in order to identify the determinants of syntactic productivity on a
quantitative basis. In the meantime, it is hoped that the present work demon-
strates the methodological potential of a distributional approach to semantics
for such studies.

6 Conclusion

This paper presents the first attempt at using a distributional measure of seman-
tic similarity for the study of syntactic productivity in diachrony, i.e., the
property of the slots of grammatical constructions to attract new members over
time, thus extending their distribution. According to contemporary accounts of
syntactic productivity, speakers tend to use constructions with items that are
semantically similar to the previously attested items, and only depart from the
established semantic domain if there is already some variability in the distribu-
tion (Barðdal 2008; Bybee and Eddington 2006; Suttle and Goldberg 2011).
Crucially, these accounts rely to a large extent on semantics, especially with
respect to how a potential new item semantically relates to the existing
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distribution. Consequently, testing these theories on empirical data necessitates
an operationalization of the meaning of words in general, and of semantic
similarity in particular, which raises methodological issues.

Neither of the two existing approaches to the operationalization of meaning
is entirely satisfactory: using the semantic intuitions of the linguist raises issues
of objectivity and mainly produces categorical data, from which it is not possible
to directly derive measures of similarity and variability, while collecting judge-
ments of similarity from native speakers raises problems of scalability, in that it
is practically feasible only when a limited number of items are considered. In
this paper, a third alternative was considered that avoids the limitations of both
kinds of approaches, consisting in using distributional information as a proxy to
word meaning. Drawing from the observation that words with a similar meaning
tend to have similar collocates, it is possible to base a measure of semantic
similarity on co-occurrence information derived from large corpora. The measure
of semantic similarity provided by so-called vector-space models of word mean-
ing usually compares well to human semantic intuitions, and presents the
advantage of being entirely data-driven.

In a case study of the construction “V the hell out of NP” (e.g., You scared the
hell out of me) in American English, it was shown how the distributional
semantic approach to semantic similarity can be applied to the study of syntac-
tic productivity in diachrony. Multidimensional scaling and cluster analysis were
used as means of visually representing the distributional semantic information
provided by a vector-space model. It was shown how these visualization tech-
niques can be used to identify the semantic domains preferred by the construc-
tion, and to plot its semantic evolution in four successive 20-year periods from
1930 to 2009. The results of this exploratory analysis were in line with current
views on the determinants of syntactic productivity. Finally, the data were
submitted to statistical analysis using mixed effects logistic regression, which
revealed a positive effect of the density of the semantic domain of the construc-
tion around a particular item on the probability that this item will join the
construction in the next time period. This finding is compatible with Suttle
and Goldberg’s (2011) notion of coverage as a driving factor of productivity,
which indicates the relevance of this notion to diachronic data. Moreover, it was
also found that the robustness of this effect increases with the number of items
that are considered in the calculation of the density measure. This finding points
to a complementary role of type frequency, which increases the confidence that
a particular coinage is possible.

In sum, the present study demonstrates that a distributional approach to
meaning not only provides an appropriate measure of semantic similarity, it also
enables the use of methods for which quantification is necessary, such as data
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visualization and statistical analysis. That being said, this paper has only
scratched the surface of what this method can accomplish, and the range of
other questions it could address is yet to be explored. In particular, it could
allow for testing the influence of different aspects of the semantic space (beyond
density) on productivity, which the case of the hell-construction did not exem-
plify, such as the interaction between semantic similarity and token frequency
(Bybee 2010). In conclusion, distributional semantics is a promising approach
for the study of syntactic productivity, and possibly for other domains where
semantic similarity is relevant.
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