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Abstract Ascomycetes of the Phialocephala fortinii s.l.—
Acephala applanata species complex (PAC) are frequent root
endophytes of forest trees. Roots are colonized by multiple
PAC genotypes that interact, and recent findings indicate that
adverse effects on plant performance caused by pathogenic
PAC strains are attenuated by non-pathogenic PAC strains.
However, it was not known if this “self-control”works only in
planta, or also ex planta, i.e., prior to infection during
saprotrophic life of the PAC. Interactions between PAC strains
were therefore studied in a plant-free system on malt extract
agar. The mycelia of two pathogenic (A and T1) and two non-
pathogenic (B and C) PAC strains were mixed pairwise 5:1,
1:1 and 1:5 (fresh weight ratios) and incubated at 15 and
25 °C. Mycelial biomass of each strain was measured after 2
and 8 weeks. The combination of strains and the mixture ratio
had a significant effect on strain biomass, whereas tempera-
ture influenced only the biomass of pathogenic strain T1.
Biomass production of strain T1 was inhibited by all other
strains, whereas biomass production of the other pathogenic
strain A was significantly stimulated by the two non-
pathogenic strains. This contrasts strongly with results from
a previous experiment in planta using strains A, B and C,
because the two non-pathogenic PAC strains successfully
inhibited the pathogenic strain, probably by space occupation
or the induction of host resistance. Therefore, it is impossible

to predict the outcome of PAC-PAC interactions in planta
based on the results gained from interactions ex planta.

Keywords Microsatellite-based quantification .Mycelial
biomass . Competition . Root endophytes . Dark septate
endophytes (DSE)

Introduction

Ascomycetes of the Phialocephala fortinii s.l.—Acephala
applanata species complex (PAC) are ubiquitous tree-root
endophytes and dominate the endophytic assemblages in roots
of conifers and members of the Ericaceae in the Northern
hemisphere (Addy et al. 2000; Queloz et al. 2011; Grünig
et al. 2007, 2008a, b; Sieber 2002; Ahlich and Sieber 1996;
Holdenrieder and Sieber 1992). PAC form multicellular scle-
rotia and chlamydospores in phellem cells of roots exhibiting
secondary growth and in cortex cells of primary roots
(Tellenbach et al. 2010; Sieber and Grünig 2013). PAC can
behave as commensals, mutualists or opportunistic pathogens,
depending on genetic traits and environment, and may affect
plant performance (Grünig et al. 2008b). However, mutualis-
tic behaviour in terms of plant growth stimulation was not
exhibited by any of more than 30 PAC strains (Tellenbach
et al. 2011). All strains reduced the host’s growth increment,
but some strains provided control of soil-borne pathogens and
significantly reduced plant mortality (Tellenbach et al. 2011;
Tellenbach and Sieber 2012).

PAC species and genotypes live spatially closely together
in root cells, making competition for space and nutrients
highly probable (Sieber and Grünig 2006; Grünig et al.
2008b; Queloz 2008; Queloz et al. 2005; Reininger et al.
2012). The mechanisms of competition may include the pro-
duction of allopathic metabolites and toxins (antibiotics) in-
hibitory to other PAC species or genotypes, mycoparasitism,
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occupation of infection sites and the induction of systemic
resistance (Harman et al. 2004; Pareja-Jaime et al. 2010).
However, mycoparasitism or formation of barrier or inhibition
zones between different PAC genotypes interacting on cello-
phane overlaid on water agar could never be observed (Sieber,
unpublished). Colonies of different genotypes merge and hy-
phal growth is mutually limited only physically by the pres-
ence of hyphae, or biochemically by nutrient depletion. Thus,
PAC species probably compete directly for space and nutrients
on a first-come, first-served basis. Nevertheless, there seems
to be a kind of “self control” among PAC genotypes, i.e.,
pathogenic strains are controlled by non-pathogenic strains as
demonstrated recently by Reininger et al. (2012). The growth
increment of plants singly inoculated with a pathogenic PAC
strain was strongly reduced compared to that of plants dually
inoculated with the same pathogenic strain and a non-
pathogenic strain of PAC, indicating that non-pathogenic
PAC strains successfully compete with pathogenic strains,
probably by space occupation or the induction of systemic
resistance. PAC “self control” in planta seems to work inde-
pendently of temperature (Reininger et al. 2011a, 2012), an
important finding particularly with regard to global warming.
However, the contribution of the interaction between the PAC
strains during the saprotrophic phase outside the host (ex
planta) prior to the infection of the roots to this “self control”
system could not be differentiated from the contribution of the
interaction between the PAC strains during the biotrophic
phase inside the host (in planta). Therefore, a plant-free ex-
periment was designed to measure the pure effect of interac-
tions between PAC strains ex planta on mycelial biomass
production of PAC.

Materials and methods

Strain information and setup of experiment to test mycelial
interactions

Four PAC strains originating from roots collected at the same
location (Bödmerenwald, Switzerland, 46°58′57.13″ N/8°49′
23.90″ E) but differing in pathogenicity were used in this
experiment (Table 1). The strains were incubated on 2 % (w/
v) malt extract agar (MEA; 20 g l−1 malt extract (Hefe
Schweiz AG, Stettfurt, Switzerland), 15 g l−1 agar) at 20 °C
in the dark. After 2 weeks, one colonized plug of agar (diam-
eter 4 mm) from the margin of the growing colony was
transferred to 50 ml of 2 % malt broth (20 g l−1 malt extract)
in a 100-ml Erlenmeyer flask per strain and incubated at 20 °C
in the dark on a rotary shaker at 90 r.p.m. After 20 days, the
mycelium was harvested under sterile conditions by pouring
the content of the Erlenmeyer flask into a sieve. The retained
mycelium was washed twice with sterile water and blotted
dry. Mycelia of two strains were mixed at ratios of 5:1, 1:1 and

1:5 (w/w) for each of the six possible combinations of the four
strains. The total mycelial fresh weight of each mixture
amounted to 0.6 g. Correspondingly, 0.6 g mycelium of a pure
culture of each of the four strains served as controls. The
mycelia were suspended in 10 ml sterile water and homoge-
nized with a blender for 10 s. Then, another 30 ml of sterile
water was added to obtain a final mycelium concentration of
15 g l−1, and 1.4 ml of this suspension was distributed
homogenously on the surface of 20 ml MEA in each of four
Petri dishes per strain, strain combination and mixture ratio.
Two of the four Petri dishes were incubated at 15 °C and the
other two at 25 °C. Mycelium was harvested after 2 and 8
weeks of incubation as follows. Per Petri dish, three rectan-
gular colonized pieces of MEA measuring 10×20 mm in
surface view were cut with a scalpel and served as replicates.
The uppermost colonized 1 mm was then removed from the
rectangular MEA pieces, frozen at −80 °C, freeze-dried and
DNA extracted as described previously (Grünig et al. 2003).
Amplification of microsatellites and microsatellite fragment
analysis occurred according to Queloz et al. (2010), and
mycelial weight estimation according to Reininger et al.
(2011b) and Reininger and Sieber (2012, 2013) (see below).

Calibration of the microsatellite-based quantification method

Multiplex and singleplex PCR for the amplification of
microsatellites of PAC has been developed recently, and allele
data are available for more than 5,000 PAC strains (Queloz
et al. 2010). The suitability of four microsatellite loci
(mPF_043, mPF_049, mPF_142B, and mPF_860B) for
DNA quantification was tested by Reininger et al. (2011b),
and locus mPF_142B showed to be most suitable because this
locus produced fewest stutter bands. The same locus was also
used in this study and calibration of DNA amounts followed
the protocol of Reininger et al. (2011b). The four strains were
cultivated in malt broth as described above. The mycelium
was harvested and lyophilized. The freeze-dried mycelia of
the strain to quantify (target strain 1) and the admixed strain
(additional strain 2) were mixed according to the weight ratios
(m1/m2) 1:14, 3:12, 5:10, 7:8, 9:6, 11:4, 13:2, and 14:1
amounting to a total weight of 15 mg, and a constant amount
of 15 mgmycelium (mr) of a third strain (reference strain) was
added. Mycelial mixtures were homogenized, DNA extracted
as described previously (Grünig et al. 2003), locus mPF_142B
amplified by PCR, fragment lengths and peak areas deter-
mined (see below). The coefficients (slopes) (β1 and β2) of
the calibration curves were determined by linear regression
exploiting the proportionality of the peak and mycelial ratio
according to Reininger et al. (2011b): (pr/p1)∼(mr/m1), (pr/
p2)∼(mr/m2), respectively (pr=peak area of the reference
strain; p1, p2 peak areas of the target strain 1 and the additional
strain 2). The resulting equations were used to estimate the
mycelial weight of m1 andm2 in the colonized pieces ofMEA.
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Amplification of microsatellites by competitive PCR

Locus mPF_142Bwas amplified by PCR according to Queloz
et al. (2010) in 15 μl volumes containing 2 μl 1:50 or 1:500
diluted DNA, 50 mMKCl, 10 mMTris–HCl, 1.5 mMMgCl2,
200 μM dNTPs (Amersham Pharmacia Biotech), 0.4 μM of
each primer (F, GCTTTCACATCACCATCCAG; R, GGTG
AGTTGGTTGCGAGTTT) and 0.3 U Taq polymerase
(Amersham Pharmacia Biotech). The running conditions were
2 min at 94 °C followed by 36 cycles of denaturation for 30 s
at 94 °C, annealing for 30 s at 53 °C, and extension for 30 s at
72 °C (followed by a final extension step of 10 min at 72 °C).

Microsatellite fragment analysis

Fifteen-fold diluted triplicates were prepared from each PCR
reaction: 4 μl of the dilutions were mixed with 9.05 μl Hi-
Di™ formamide and 0.25 μl GeneScan™ 500 LIZ™
(Applied Biosystems). Fragment lengths and the peak area,
i.e., the amount of PCR product, of each fragment, were
measured using an ABI 3730xl DNA analyser (Applied
Biosystems) and analysed using the GeneMapper v. 4.0 soft-
ware (Applied Biosystems) (Queloz et al. 2010).

Statistical analyses

The effects of strain combination, mixture ratio, temperature
and duration of incubation on mycelial dry weight [used
synonymously: ‘mycelial density’, ‘mycelial biomass’; mg
freeze-dried mycelium per 200 mm3 (10×20×1 mm) of
MEA] of each strain was determined using ANOVA:

yijklm ¼ μþ αi þ β j þ γk þ δl þ eijklm ð1Þ

i 1, 2, 3, 4 (strain combination, e.g. A, A &B, A&C, A
& D)

j 1, 2, 3 (mixture ratio: 1:5, 1:1, 5:1)
k 1, 2 (temperature: 15 °C, 25 °C)
l 1, 2 (duration of incubation: 2 weeks, 8 weeks)
m 1, 2, 3, 4, 5, 6 (six replicates)
yijklm mycelial dry weight of the mth replicate of the ith

combination of strains mixed at the jth ratio incubated
for the lth duration at the kth temperature

μ overall mean mycelial dry weight
αi effect of the strain combination
βj effect of the mixture ratio
γk effect of temperature
δl effect of the duration of incubation
eijklm random error.

Interactions not shown in formula (1).

Goodness of fit and normal distribution of residuals were
tested using residual analyses. If necessary, the response var-
iable ‘Mycelial dry weight’ (yijklm) was transformed. The full
models were reduced deleting non-significant factors. Full and
reduced models were compared using chi-square tests to avoid
loss of fit. Tukey’s HSD post-hoc test was used for pairwise
comparisons. All statistical analyses were performed using R
(R_Development_Core_Team 2010).

Results

Macroscopically, all cultures looked uniform, and there was
barely a difference between dual and single cultures, indicat-
ing that the mycelia had been homogeneously distributed all
over the surface of the medium during inoculation. No demar-
cation lines or barrier zones could be recognized to differen-
tiate genotypically different thalli.

Calibration of the microsatellite-based quantification meth-
od was successful for all strain mixtures, since the additional
strain (strain 2) did not have a disturbing effect on the estima-
tion of the biomass of the target strain (strain 1) in any of the
strain mixtures. None of the β2 coefficients deviated signifi-
cantly from zero, i.e., the bivariate regressions could be re-
duced to univariate regressions. All β1 coefficients differed
significantly from zero and assumed values close to 1. Thus,
the resulting calibration curves allowed estimating the myce-
lial weight of any strain (m1 and m2) in any of the colonized
pieces of MEA (Reininger et al. 2011b).

The factors ‘strain combination’, ‘mixture ratio’ and the
interaction between these two factors had a significant effect
on the biomass of all strains (Table 2). Biomass was highest if
strains were cultured singly, except for strain A, which grew
better in combination with strain B or C (Fig. 1a; see below).
In addition, 8 weeks compared to 2 weeks of incubation led to
greater biomass of strains A, B and T1, but not of strain C. T1
was the only strain exhibiting a significant temperature effect.
It accumulated more biomass at 25 °C than at 15 °C. However,
although not significant, temperature had to be retained in the
models for strains A and B to avoid loss of fit. Strain B was
influenced by an intricate network of interactions between all
four factors.

Strains significantly differed in competitiveness. Strain A
was most competitive and accumulated more biomass per
volume of substrate (biomass density) than any other strain
independently on the strain combination, mixture ratio, dura-
tion of incubation and temperature (Fig. 1). In contrast to
single culture, growth of strain Awas statistically significantly
stimulated in dual culture with strain B or C at a mixture ratio
of A:B=A:C=5:1 (Fig. 1a). Even at a mixture ratio of 1:5,
biomass of Awas always greater than that of the other strain.
In contrast, presence of strain T1 did not lead to stimulation of
A (Fig. 1a). Strain B was significantly inhibited by A and C if
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mixed at B:A=1:5, B:C=1:5 or B:C=5:1 (Fig. 1b). Strain C
was significantly inhibited by all three strains if mixed at
C:A=C:B=C:T1=1:5, but not at a mixture ratio of 5:1
(Fig. 1c). T1 was inhibited by all other strains independently
on the mixture ratio (Fig. 1d).

Discussion

The microsatellite-based method developed by Reininger
et al. (2011b) proved to be reliable to measure fungal biomass
of each strain in strain mixtures, because both the correlation
coefficients (R2) and the slopes (coefficient β1) of the regres-
sion lines were close to 1, indicating excellent fit of measured
values and model. Strain A produced denser mycelia on malt
extract agar than any other PAC strain, and it was the only
strain showing significant growth stimulation in the presence
of other strains (Fig. 1). Similarly, growth of strain A was
stimulated on 1:1 (v/v) peat:vermiculite by the presence of
strain B or C in another study (Table 1) (Reininger, unpub-
lished). Under saprotrophic conditions, growth of A seems to

be stimulated by the presence of other PAC strains. This
contrasts with the performance of A under biotrophic condi-
tions in roots. Growth of the endophytic mycelium of A is
inhibited if the roots are simultaneously colonized by other
PAC strains (Table 1) (Reininger et al. 2012).

In single culture, formation of denser mycelia was posi-
tively correlated with pathogenicity, i.e., the two pathogenic
strains A and T1 produced denser mycelia than the non-
pathogenic strains B or C (Fig. 1). However, in dual culture
there was no such correlation since growth of Awas stimulat-
ed, whereas growth of T1was inhibited by the presence of any
other PAC strain (Fig. 1a and d).

Predictability of the endophytic biomass accumulating in
dually inoculated plants by the mycelial density developing in
plant-free dual culture is strain-dependent. Prediction was
possible for dual cultures of strains B and C, but not for those
including strain A. For example, presence of non-pathogenic
strain B stimulated growth of pathogenic strain A on malt
extract agar in the current experiment and in peat:vermiculite,
but inhibited growth in living spruce roots (Fig. 1a, Table 1)
(Reininger et al. 2012), indicating that strain A is a strong

Table 2 Results of the analyses
of variance showing the best
fitting, reduced model for the
mycelial dry weight of each strain

a significance levels: * 0.05≥
p>0.01; ** 0.01≥p>0.001;
*** 0.001≥p

Strains and factors Df Sum of
Squares

Mean
Square

F value p Significance
levela

Strain A

Strain combination (1) 2 7.078 3.5388 12.8257 <0.00001 ***

Mixture ratio (2) 2 19.312 9.6559 34.9961 <0.00001 ***

Duration of incubation (3) 1 6.8 6.7996 24.6439 <0.00001 ***

Temperature (4) 1 0.036 0.0361 0.1307 0.7181

Interaction (1)×(2) 4 7.402 1.8504 6.7065 0.00005 ***

Residuals 188 51.872 0.2759

Strain B

Strain combination (1) 2 26.3227 13.1614 290.2111 <0.00001 ***

Mixture ratio (2) 2 18.2748 9.1374 201.4818 <0.00001 ***

Duration of incubation (3) 1 0.2727 0.2727 6.0122 0.01527 *

Temperature (4) 1 0.0222 0.0222 0.4899 0.48499

Interaction (1)×(2)×(3)×(4) 29 10.9865 0.3788 8.3536 <0.00001 ***

Residuals 162 7.3469 0.0454

Strain C

Strain combination (1) 2 0.8404 0.4202 5.8547 0.00342 **

Mixture ratio (2) 2 8.101 4.0505 6.4372 <0.00001 ***

Interaction (1)×(2) 4 1.9392 0.4848 6.7549 0.00005 ***

Residuals 187 13.421 0.0718

Strain T1

Strain combination (1) 2 6.1635 3.08173 71.1574 <0.00001 ***

Mixture ratio (2) 2 4.7556 2.37778 54.903 <0.00001 ***

Duration of incubation (3) 1 0.3276 0.32761 7.5645 0.00655 **

Temperature (4) 1 0.2137 0.21373 4.9351 0.02755 *

Interaction (1)×(2) 4 1.0706 0.26766 6.1803 0.00011 ***

Residuals 182 7.8822 0.4331

Mycol Progress (2014) 13:1241–1247 1245



competitor on dead organic matter but not in living plant
tissues. This is probably the reason why this strain behaves
as a necrotrophic organism, i.e., it must kill the plant tissue to
exploit it. However, strain A is only able to kill if no other
PAC strain is present (Reininger et al. 2012; Tellenbach et al.
2011). In planta, non-pathogenic PAC strains B and C suc-
cessfully compete with pathogenic strainA, probably by space
occupation or the induction of host resistance, thereby keeping
endophytic biomass of pathogenic strains below the threshold
above which plant growth is inhibited significantly (Sieber
2007). In contrast to strain A, mycelial densities resulting from
interactions between the non-pathogenic strains B and C on
malt extract agar were mostly congruent with interactions
between the two strains in planta. Growth of B was signifi-
cantly inhibited by the presence of C, both onmalt extract agar
in the current experiment and in planta (Fig. 1b) (Reininger

et al. 2012). Pathogenic strain T1 behaved rather like non-
pathogenic strains B and C onmalt extract agar, i.e., complete-
ly different than pathogenic strain A. Biomass accumulation
of T1 was strongly reduced by the presence of any of the other
three strains (Fig. 1). Performance of T1 in plants dually
inoculated with T1 and another PAC strain has never been
tested, and thus, a comparison ex planta and in planta is not
possible for this strain.

In summary, predictability of the mycelial densities
resulting from a tripartite PAC-PAC-plant interaction by the
outcome of a dipartite interaction between two PAC strains in
a plant-free system depends on the strains involved.
Consequently, the outcomes of interactions in dual PAC-
PAC systems are not always additive, i.e., the results of a
tripartite interaction is not simply the sum of the results of all
dual interactions.

0

2

4

6

8

10

12

A A & B A & C A & T1

ratio A:add.strain 1:5 5:1 1:5 5:1 1:5 5:1

Strain A

b

b

a

b

ac

b
bc

a)

B B & A B & C B & T1

ratio B:add.strain 1:5 5:1 1:5 5:1 1:5 5:1

Strain B

ac

b

a

b b

ac c

additional strain

target strain B

b)

0

2

4

6

8

10

12

C C & A C & B C & T1

ratio C:add.strain 1:5 5:1 1:5 5:1 1:5 5:1

Strain C

a

b

ac

b ab bc ab

c)

T1 T1 & A T1 & B T1 & C

ratio T1:add.strain 1:5 5:1 1:5 5:1 1:5 5:1

Strain T1

a

b bc bc c

bc bc

d)

Strain Combination

M
yc

el
ia

l d
ry

 w
ei

g
h

t 
[m

g
]

additional strain

target strain A

additional strain

target strain C

additional strain

target strain T1

Fig. 1 Bar charts depicting the effects of the factors ‘Strain combination’
and ‘Mycelial mixture ratio’ on the mycelial dry weight [mg] of the target
(hatched areas) and the additional (blank areas) strain after 2 weeks of
incubation on MEA at 25 °C. (a) target strain A, (b) target strain B, (c)

target strain C, (d) target strain T1. Different letters above the bars
indicate significantly different effects of the treatments on mycelial dry
weight of the target strain (Tukey’s HSD)

1246 Mycol Progress (2014) 13:1241–1247



Interacting PAC genotypes do not show any signs of inhi-
bition (barrier zone formation, antibiosis), stimulation or
mycoparasitism when grown on artificial media ex planta.
Growth seems only to be limited by nutrient depletion of the
medium, and exploitation of the substrate occurs on a first-
come, first-served basis. Hyphae intermingle in the contact
zone and grow as far into the others’ “territory” as nutrients
support growth. Thus, the mechanisms responsible for the
attenuation of adverse effects on plant growth caused by
pathogenic PAC by non-pathogenic ones remain enigmatic
and require further studies.

References

Addy HD, Hambleton S, Currah RS (2000) Distribution and molecular
characterization of the root endophyte Phialocephala fortinii along
an environmental gradient in the boreal forest of Alberta. Mycol Res
104(10):1213–1221

Ahlich K, Sieber TN (1996) The profusion of dark septate endophytic
fungi in non-ectomycorrhizal fine roots of forest trees and shrubs.
New Phytol 132:259–270

Grünig CR, Linde CC, Sieber TN, Rogers SO (2003) Development of
single-copy RFLP markers for population genetic studies of
Phialocephala fortinii and closely related taxa. Mycol Res
107(11):1332–1341

Grünig CR, Brunner PC, Duò A, Sieber TN (2007) Suitability of methods
for species recognition in the Phialocephala fortinii–Acephala
applanata species complex using DNA analysis. Fungal Genet
Biol 44:773–788

Grünig CR, Duò A, Sieber TN, Holdenrieder O (2008a) Assignment of
species rank to six reproductively isolated cryptic species of the
Phialocephala fortinii s. l.-Acephala applanata species complex.
Mycologia 100(1):47–67

Grünig CR, Queloz V, Sieber TN, Holdenrieder O (2008b) Dark septate
endophytes (DSE) of the Phialocephala fortinii s.l.—Acephala
applanata species complex in tree roots: classification, population
biology, and ecology. Botany 86(12):1355–1369. doi:10.1139/b08-108

Harman GE, Howell CR, Viterbo A, Chet I, Lorito M (2004)
Trichoderma species—opportunistic, avirulent plant symbionts.
Nat Rev Microbiol 2(1):43–56

Holdenrieder O, Sieber TN (1992) Fungal associations of serially washed
healthy non-mycorrhizal roots of Picea abies. Mycol Res 96(2):
151–156

Pareja-Jaime Y, Martin-Urdiroz M, Roncero MIG, Gonzalez-Reyes JA,
Roldan MDR (2010) Chitin synthase-deficient mutant of Fusarium
oxysporum elicits tomato plant defense response and protects against
wild-type infection. Mol Plant Pathol 11(4):479–493

Queloz V (2008) La face cachée du Creux du Van: Présence des endo-
phytes racinaires Phialocephala fortinii s.l. et Acephala applanata
sur le pergélisole du Creux du Van. Actes de la societé jurassienne
d'émulation 2007:107-126

Queloz V, Grünig CR, Sieber TN, Holdenrieder O (2005) Monitoring the
spatial and temporal dynamics of a community of the tree-root
endophyte Phialocephala fortinii sl. New Phytol 168(3):651–660

Queloz V, Duo A, Sieber TN, Grünig CR (2010) Microsatellite size
homoplasies and null alleles do not affect species diagnosis and
population genetic analysis in a fungal species complex. Mol Ecol
Resour 10(2):348–367. doi:10.1111/j.1755-0998.2009.02757.x

Queloz V, Sieber TN, Holdenrieder O,McDonald BA, Grünig CR (2011)
No biogeographical pattern for a root-associated fungal species
complex. Glob Ecol Biogeogr 20(1):160–169. doi:10.1111/j.1466-
8238.2010.00589.x

R_Development_Core_Team (2010) R: A Language and Environment
for Statistical Computing. R Foundation for Statistical Computing,
Vienna

Reininger V, Sieber TN (2012) Mycorrhiza reduces adverse effects of
dark septate endophytes (DSE) on growth of conifers. Plos One
7(8):e42865. doi:10.1371/journal.pone.0042865

Reininger V, Sieber TN (2013) Mitigation of antagonistic effects on plant
growth due to root co-colonization by dark septate endophytes and
ectomycorrhiza. EnvironMicrobiol Rep 5(6):892–898. doi:10.1111/
1758-2229.12091

Reininger V, Grünig CR, Sieber TN (2011a) Are plant communities
shaped by fungal root endophytes? Phytopathology 101(6):
S151–S152

Reininger V, Grünig CR, Sieber TN (2011b) Microsatellite-based quan-
tification method to estimate biomass of endophytic Phialocephala
species in strain mixtures. Microb Ecol 61(3):676–683. doi:10.
1007/s00248-010-9798-z

Reininger V, Grünig CR, Sieber TN (2012) Host species and strain
combination determine growth reduction of spruce and birch seed-
lings colonized by root-associated dark septate endophytes.
Environ Microbiol 14(4):1064–1076. doi:10.1111/j.1462-2920.
2011.02686.x

Sieber TN (2002) Fungal Root Endophytes. In: Waisel Y, Eshel A,
Kafkafi U (eds) Plant roots : The Hidden Half. 3rd edn. Marcel
Dekker, New York, pp 887–917

Sieber TN (2007) Endophytic fungi in forest trees: are they mutualists?
Fungal Biol Rev 21(2/3):75–89

Sieber TN, Grünig CR (2006) Biodiversity of fungal root-endophyte
communities and populations in particular of the dark septate endo-
phyte Phialocephala fortinii. In: Schulz B, Boyle C, Sieber TN (eds)
Microbial Root Endophytes, vol 9, Soil Biology Series. Springer,
Berlin, pp 107–132

Sieber TN, Grünig CR (2013) Fungal root endophytes. In: Eshel A,
Beeckman T (eds) Plant Roots—The Hidden Half, 4th edn.
CRC Press, Taylor & Francis Group, Boca Raton, FL, USA,
pp 38.31–38.49

Tellenbach C, Sieber TN (2012) Do colonization by dark septate endo-
phytes and elevated temperature affect pathogenicity of oomycetes?
FEMS Microbiol Ecol 82:157–168

Tellenbach C, Grünig CR, Sieber TN (2010) Suitability of quantitative
real-time PCR to estimate the biomass of fungal root endophytes.
Appl Environ Microbiol 76(17):5764–5772. doi:10.1128/aem.
00907-10

Tellenbach C, Grünig CR, Sieber TN (2011) Negative effects on survival
and performance of Norway spruce seedlings colonized by dark
septate root endophytes are primarily isolate-dependent. Environ
Microbiol 13(9):2508–2517. doi:10.1128/aem.00907-10

Mycol Progress (2014) 13:1241–1247 1247

http://dx.doi.org/10.1139/b08-108
http://dx.doi.org/10.1111/j.1755-0998.2009.02757.x
http://dx.doi.org/10.1111/j.1466-8238.2010.00589.x
http://dx.doi.org/10.1111/j.1466-8238.2010.00589.x
http://dx.doi.org/10.1371/journal.pone.0042865
http://dx.doi.org/10.1111/1758-2229.12091
http://dx.doi.org/10.1111/1758-2229.12091
http://dx.doi.org/10.1007/s00248-010-9798-z
http://dx.doi.org/10.1007/s00248-010-9798-z
http://dx.doi.org/10.1111/j.1462-2920.2011.02686.x
http://dx.doi.org/10.1111/j.1462-2920.2011.02686.x
http://dx.doi.org/10.1128/aem.00907-10
http://dx.doi.org/10.1128/aem.00907-10
http://dx.doi.org/10.1128/aem.00907-10

	Control...
	Abstract
	Introduction
	Materials and methods
	Strain information and setup of experiment to test mycelial interactions
	Calibration of the microsatellite-based quantification method
	Amplification of microsatellites by competitive PCR
	Microsatellite fragment analysis
	Statistical analyses

	Results
	Discussion
	References


