Faculté des sciences

Non-Fermi-liquid behavior in cubic phase BaRuO₃: A dynamical mean-field study

Huang, Li ; Ao, Bingyun

In: Physical Review B, 2013, vol. 87, no. 16, p. 165139

Motivated by the recently synthesized cubic phase BaRuO₃ under high pressure and high temperature, a thorough study has been conducted on its temperature-dependent electronic properties by using the state-of-the-art ab initio computing framework of density-functional theory combined with dynamical mean-field theory. At ambient condition the cubic phase BaRuO₃ should be a correlated Hund's... Plus

Ajouter à la liste personnelle
    Summary
    Motivated by the recently synthesized cubic phase BaRuO₃ under high pressure and high temperature, a thorough study has been conducted on its temperature-dependent electronic properties by using the state-of-the-art ab initio computing framework of density-functional theory combined with dynamical mean-field theory. At ambient condition the cubic phase BaRuO₃ should be a correlated Hund's metal with frozen spin magnetic moment. The spin-spin correlation function and local magnetic susceptibility can be well described by the Curie-Weiss law over a wide temperature range. The calculated low-frequency self-energy functions of Ru 4d states apparently deviate from the behaviors predicted by Landau Fermi-liquid theory. Beyond that, the low-frequency optical conductivity can be fitted to a power law ℜσ(ω)∼ω−0.98, which further confirms the non-Fermi-liquid metallic state