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Abstract A method is described that allows experimental

S2 order parameters to be enforced as a time-averaged quantity

in molecular dynamics simulations. The two parameters that

characterize time-averaged restraining, the memory relaxation

time and the weight of the restraining potential energy term in

the potential energy function used in the simulation, are sys-

tematically investigated based on two model systems, a vector

with one end restrained in space and a pentapeptide. For the

latter it is shown that the backbone N–H order parameter of

individual residues can be enforced such that the spatial fluc-

tuations of quantities depending on atomic coordinates are not

significantly perturbed. The applicability to realistic systems is

illustrated for the B3 domain of protein G in aqueous solution.

Keywords Structure refinement � Nuclear magnetic

resonance � Force field � Conformational dynamics �
Statistical mechanics

Introduction

The interpretation of NMR observables measured for proteins

in solution usually requires the consideration of a structurally

heterogeneous ensemble of conformers rather than a single

static structure (Jardetzky 1980; Braun et al. 1981). This

makes molecular dynamics (MD) simulation in explicit sol-

vent a versatile tool to rationalize NMR measurements (van

Gunsteren et al. 1994, 2008; Gattin et al. 2009). It can be used

to select an ensemble of low-energy structures that are con-

sistent with a given set of experimental measurements.

However, the use of MD simulations is limited by finite, often

insufficient conformational sampling and force-field inaccu-

racies (Misura and Baker 2005; Kim et al. 2009; Gniewek

et al. 2012). Both limitations are connected because long

simulation times might be needed to uncover force-field

deficiencies (Raval et al. 2012). In addition to a continuous

effort to refine and test atomistic force fields (Beauchamp et al.

2012), the incorporation of information from experiments as

restraints contributing to the potential energy function may

serve to mitigate both sampling deficiencies and force-field

inaccuracies. An important caveat in pursuing this goal is,

however, to avoid corrupting the resulting conformational

ensemble with spurious and arbitrary biases.

Experiments on biomolecular systems yield values Qexp

for an observable Qðr~N ; p~NÞ that depends on the phase

space variables r~N ¼ ðr~1; r~2; . . .; r~NÞ; the Cartesian coordi-

nates of the N particles in the system, and p~N ¼
ðp~1; p~2; . . .; p~NÞ; the conjugate momenta of the N particles.

Many measurable quantities Q only depend on the con-

figurations r~N ; and not on p~N ; for which reason we simplify

the notation to Qðr~NÞ: The great majority of experiments on

biomolecular systems yield Qexp values that are averages

over molecules in the test tube and over time,

Qexp ¼ hhQimoleculesitime; ð1Þ

where the brackets h. . .i denote averaging over configura-

tions r~N :

MD simulation at constant temperature generally yields a

trajectory r~NðtÞ of configurations that are Boltzmann
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distributed and thus can be averaged straightforwardly to

obtain hQi values for comparison to Qexp values. Time-

averaging restraints were introduced (Torda et al. 1989)

using NOE derived atom-atom ði; jÞ distance, rij; information

with Q ¼ r�3
ij or Q ¼ r�6

ij ; followed by application to

chemical shift restraining (Harvey and van Gunsteren 1993),
3J-coupling restraining (Torda et al. 1993; Scott et al. 1998)

and crystallographic structure factor amplitude restraining

(Gros and van Gunsteren 1993; Schiffer et al. 1995; Schiffer

and van Gunsteren 1999). The time-averaging restraining

methods are characterised by two parameters, the force

constant or weight of the restraining potential energy term of

the interaction function and the memory relaxation time

representing the time span over which Qðr~NðtÞÞ is to be

averaged. Their behavior as function of these parameters has

been analysed for a variety of systems (Torda et al. 1989;

Pearlman and Kollman 1991; Schmitz et al. 1992, 1993;

Pearlman 1994a, b; Nanzer et al. 1995, 1997; Dolenc et al.

2010). The force constant should be taken as small as pos-

sible in order to avoid a restraining energy bias that destroys

the proper Boltzmann weighting in regard to the physical

interaction function or force field of the configurations while

being large enough to force hQi close to Qexp: The memory

relaxation time should be of the order of the experimental

averaging time that determines Qexp; but at least an order of

magnitude smaller than the length of the MD simulation in

order to secure sufficient statistics when averaging Qðr~NðtÞÞ
over t. In addition, the heating of the system due to the non-

conservative force resulting from the time-averaging

restraining term should be kept small.

The averaging over molecules can be accounted for by

simulating in parallel Nm independent systems for which

the initial coordinates and momenta ðr~Nðt0Þ; p~Nðt0ÞÞ are

Boltzmann distributed in regard to the physical interaction

function that is supposed to approximate the ‘‘real’’ inter-

action between the atoms of the system, which is easily

done for the momenta p~N because the kinetic energy term

of the Hamiltonian is quadratic in the momenta (in the

absence of coordinate constraints), but rather difficult if not

impossible for the configurations r~N of a biomolecular

system, because the potential energy term of the Hamil-

tonian is generally a complex function of the coordinates.

For liquids of small molecules one may choose r~Nðt0Þ more

or less arbitrarily, i.e. non-Boltzmann distributed, because

their short configurational relaxation times, e.g. of the order

of 10–100 ps for liquid water at physiological temperature

and pressure, allow each of the Nm different systems to

equilibrate to a Boltzmann distributed one within a period

about 10 times longer. In addition, the dependence of

averages of quantities Qðr~NÞ upon system size is small due

to the generally short-ranged nature of the spatial

correlations for liquids at physiological thermodynamic

conditions. For biomolecules such as proteins in aqueous

solution the situation is quite different. Relaxation times of

the system generally exceed the MD simulation time which

means that if the initial configurations r~Nðt0Þ of the Nm

systems are non-Boltzmann distributed, the averages hQi
over the Nm systems are very likely to result from non-

Boltzmann averaging. This is one of the reasons for which

averaging over molecules to obtain hQi should not be

applied (Fennen et al. 1995). We note, however, that the

long equilibration time needed for each system to reach a

Boltzmann distributed trajectory may be shortened by

applying replica-exchange techniques (Sugita and Okam-

oto 1999; Sugita et al. 2000; Fukunishi et al. 2002) that

swap configurations between the Nm molecules or systems

based on the Boltzmann probability of the respective

configurations.

Molecule-averaging restraints were introduced (Scheek

et al. 1991; Fennen et al. 1995) using NOE-derived atom-

atom distance information. The restraining term of the

potential energy function is made dependent on the average

hQi of a quantity Qðr~NÞ over the Nm molecules or systems

(Huber and van Gunsteren 1998). Molecule-averaging

restraining methods are also characterized by two param-

eters, the force constant or weight of the restraining

potential energy term of the interaction function and the

number of molecules or systems over which the averaging

is performed (Huber and van Gunsteren 1998; Hess and

Scheek 2003). However, in case the initial configurations

r~Nðt0Þ are not Boltzmann distributed over the Nm systems

and the simulation period is not much longer than the

system relaxation times, the average hQi over molecules

has only be shown to be Boltzmann weighted in the limit of

large numbers of molecules and of large restraining force

constants (Pitera and Chodera 2012; Roux and Weare

2013; Cavalli et al. 2013) and in the absence of noise in the

target data, i.e. the measured values for e.g. NOEs (Olsson

et al. 2013).

To evaluate the adequacy of protein force fields, com-

parisons between calculated and experimentally derived

backbone N–H order parameters have been carried out. The

backbone N–H order parameter is a measure for the spatial

restriction that the N–H vector experiences in a molecular

reference frame. It is dominated by the magnitude of the

local librations of the peptide plane, i.e. concerted fluctu-

ations of the neighboring wi�1 and ui torsion angles are

responsible for the N–H order parameter of the i-th residue

(Smith et al. 1995a). Generalized order parameters smaller

than one are difficult to interpret in the absence of specific

motional models, since they are consistent with a large

number of different motional models (Brüschweiler and

Wright 1994; Palmer et al. 1966; Luginbühl and Wüthrich

170 J Biomol NMR (2014) 60:169–187

123



2002; d’Auvergne and Gooley 2003; Johnson et al. 2008).

However, a great majority of published NMR backbone

relaxation dynamics studies uses a so-called model-free

analysis (Lipari and Szabo 1982) of the data (Jarymowycz

and Stone 2006). Order parameters calculated from

ensembles generated by MD simulations are not subject to

a specific motional model but depend on the local flexi-

bility inherent in the force field when solving classical,

Newton’s equation of motion and on whether the

assumption of internal motion being statistically indepen-

dent of overall tumbling is justified (Peter et al. 2001;

Feenstra et al. 2002; Wong and Case 2008; Johnson 2012).

Many simulation studies came to the conclusion that pro-

tein force fields allow too much local flexibility to repro-

duce experimental order parameters (Buck et al. 2006;

Hornak et al. 2006; Showalter and Brüschweiler 2007;

Trbovic et al. 2008), resulting in changes in the energetics

of torsional-angle terms for the u and w backbone angles in

the CHARMM and Amber force fields (Duan et al. 2003;

MacKerell 2004; MacKerell et al. 2004; Hornak et al.

2006) leading to better agreement between calculated and

experimentally derived order parameters for proteins.

NMR order parameters have been used to bias the

sampling using molecule or system averaging restraining

(Best and Vendruscolo 2004; Richter et al. 2007). This is

less straightforward than restraining other quantities

obtainable from NMR experiments such as NOEs or 3J-

couplings, because the order parameter S2 is not a function

of a single molecular configuration r~N ; but of the long-time

tail of a particular correlation function of a vector along a

particular bond or line connecting two atoms of a molecule.

This long-time limit or tail can be expressed (Henry and

Szabo 1985) as an ensemble- or time-average of a function

of the molecular configuration r~N ;

S2ðhf ðr~NÞiÞ: ð2Þ

This average can be taken over a particular, finite time

period or over a finite Boltzmann ensemble of configura-

tions r~N : However, because in the NMR measurement

practice the ‘‘long-time tail’’ is determined through a sen-

sitivity time window that depends on the overall rotational

tumbling time of the molecule, i.e. of the order of nano-

seconds for peptides and proteins, the application of time

averaging allows to represent this experimental sensitivity

time window in a restraining MD simulation, whereas this

is not possible using molecule averaging.

An implementation of molecule averaging is the

simultaneous simulation of Nm independent, identical sys-

tems, which are coupled together through an S2 restraining

term in the potential energy function that restrains S2 cal-

culated as an average over the Nm systems. As mentioned

before, such a restraining function will allow for a

Boltzmann distributed configurational ensemble, in regard

to the physical interaction function or force field, to be

generated in the simulation in the limits of the number of

systems and the force constants of the restraining terms

going to infinity (Huber and van Gunsteren 1998; Hess and

Scheek 2003), and in the absence of experimental noise

(Olsson et al. 2013). Unfortunately, neither condition is

met in practice: (1) The number of systems Nm should be

kept low, i.e. 10–100, in order to avoid a blow-up of the

computational effort; (2) The force constant of the

restraining term should be chosen as small as possible,

because the restraining term is unphysical in regard to the

other force-field terms that represent inter-atomic interac-

tions and it only serves to compensate force-field defi-

ciencies, deficiencies in the function f relating S2 to

configurations, and sampling deficiencies in the absence of

which no restraining term would be needed in simulations

(Torda et al. 1989; Pearlman and Kollman 1991; Schmitz

et al. 1992, 1993; Pearlman 1994a, b; Nanzer et al. 1995,

1997; Dolenc et al. 2010). If these deficiencies happen to

be large, a large force constant may force the trajectory to

bring hS2i close to S2
exp, but at the cost of misinterpreting

the energy of the system; (3) S2 order parameters are rather

sensitive to noise originating from the procedure to derive

them from measured data.

A third problematic aspect of the molecule or system

averaging restraining is the already mentioned difficulty to

choose properly Boltzmann-distributed initial configura-

tions for the Nm systems, i.e. with weights

Pðr~Nðt0ÞÞ / expð�Vpotðr~Nðt0ÞÞ=kBTÞ ð3Þ

proportional to the Boltzmann factor of the potential

energy Vpotðr~Nðt0ÞÞ of each initial configuration, with the

Boltzmann constant denoted by kB, and the temperature by

T . In practice (Best and Vendruscolo 2004; Richter et al.

2007), the choice

Pðr~Nðt0ÞÞ / N�1
m ð4Þ

is made, i.e. the initial configurations of the Nm systems

have equal weights irrespective their potential energies.

This means that it is assumed that the equilibration of each

of the Nm systems towards a Boltzmann distribution will be

sufficiently fast to avoid non-Boltzmann averaging when

calculating hS2i.
To avoid the problem of inappropriate weighting of

configurations i of the Nm molecules in the average

hQi ¼
XNm

i¼1

Pðr~NðiÞÞQðr~NðiÞÞ ð5Þ

the weights Pðr~NðiÞÞ can be taken as Boltzmann distributed

(Fennen et al. 1995; Huber et al. 1996),
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Pðr~NðiÞÞ ¼ expð�Vpotðr~NðiÞÞ=kBTÞ
PNm

j¼1 expð�Vpotðr~NðjÞÞ=kBTÞ
: ð6Þ

Because Eq. 6 implies a strong dependence of the weight

on the configurational potential energy, which may show

large fluctuations in an MD simulation, the instantaneous

potential energy value Vpotðr~NðiÞÞ in Eq. 6 was replaced by

an average over parts of the trajectory (Fennen et al. 1995).

Summarizing the investigation of Fennen et al. (1995) it

was concluded that space- or molecular averaging

restraints can be used, but that it is wise to use only time

averaging as a first approach and only resort to molecule

averaging when justified by evidence of the presence of

high barriers separating conformers that contribute signif-

icantly to hQi, because such barriers might mitigate the

sampling in an MD simulation. In the latter case, molecule

averaging is only likely to enhance the sampling if the

initial configurations of the Nm systems are on different

sides of the high barriers (Pepermans et al. 1988).

If the force field used in the simulation would be of infinite

accuracy, the sampling of configurations r~N would be infi-

nite, and the procedure or function f used in Eq. 2 to link an

S2 order parameter to configurations r~N is infinitely accurate,

no restraining potential energy term would be required in an

MD simulation in order to obtain correct S2 values from

trajectory configurations. Unfortunately, neither of these

three conditions is met in practice. If only one of these

conditions is wildly violated, restraining the configurational

sampling by whichever method is likely to introduce spuri-

ous and arbitrary biases. A variety of methods (Best and

Vendruscolo 2004; Richter et al. 2007; Pitera and Chodera

2012; Roux and Weare 2013; Cavalli et al. 2013; Olsson et al.

2013, 2014; White and Voth 2014) has been proposed that

aim at minimising the bias induced in the configurational

distribution Pðr~NÞ of the system while using molecule-

averaging in the restraining potential energy term that aims at

forcing the values of S2 as obtained by Eq. 2 to be close to a

target value S2
exp derived from measured data. When applied

to systems of practical interest, all restraining methods suffer

from various sources of uncertainty or error (Olsson et al.

2013): (1) errors or noise in the S2
exp values; (2) inconsistency

between different S2
exp values used in the restraining; (3)

propagation of deficiencies of the procedure or function f

into the configurational distribution Pðr~NÞ through the par-

ticular restraining procedure; (4) impossibility to represent

the time-averaging window inherent to the NMR experiment

used to determine S2
exp values. These sources of uncertainty

cannot be quantified. Their effect may be seen by analysing

time series or distributions of values of a set of (observable)

quantities of a system and comparing these with their

counterparts resulting from unrestrained MD simulation.

In the present work a time-averaging restraining

framework for S2 order parameter restraining is proposed.

The mathematical equations are given and the method is

tested with respect to the influence of a variation of the

values of its parameters upon some characteristic proper-

ties of the configurational ensemble generated using two

model systems, a vector with one end restrained in space

and a pentapeptide. The applicability to proteins in solution

is illustrated for the B3 domain of protein G.

Theory

The time-correlation function ĈðtÞ that describes the

relaxation due to dipole-dipole interaction between two

nuclei X and Y connected by the internuclear vector r~ðtÞ of

length rðtÞ and orientation hðtÞ; uðtÞ, is given by (Lipari

and Szabo 1982)

ĈðtÞ

¼ 4p
5

X2

m¼�2

Y2mðhlabðsÞ;ulabðsÞÞY�2mðhlabðsþ tÞ;ulabðsþ tÞÞ
rðsÞ3rðsþ tÞ3

* +

s

;

ð7Þ

where Y2mðhlab;ulabÞ is the second-order spherical har-

monic function defined in a laboratory coordinate frame

and h:::is denotes averaging over the initial times s. We use

the hat-accent to distinguish correlation functions and order

parameters that have a dimension of length�6 from their

dimensionless counterparts. Assuming an isotropically

tumbling molecule the overall rotational motion may be

decoupled from intramolecular motions, and the correlation

function can be factorized,

ĈðtÞ ¼ CrotðtÞĈintðtÞ: ð8Þ

If we assume that the overall rotational motion correlation

decays exponentially (i. e. random or Brownian rotation),

we have

CrotðtÞ ¼ e�t=srot ¼ e�6Drott ðt [ 0Þ ð9Þ

where srot and Drot are the correlation time and rotational

diffusion constant of the macromolecule, respectively. The

expression for the intramolecular correlation function

ĈintðtÞ is now as Eq. 7 but with hðtÞ and uðtÞ expressed

with respect to a molecular coordinate frame, hmolðtÞ and

umolðtÞ (Brüschweiler et al. 1992),

ĈintðtÞ

¼ 4p
5

X2

m¼�2

Y2mðhmolðsÞ;umolðsÞÞY�2mðh
molðsþ tÞ;umolðsþ tÞÞ

rðsÞ3rðsþ tÞ3

* +

s

:

ð10Þ
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Using the addition theorem of spherical harmonics

Plðcosðh12ÞÞ ¼
4p

2lþ 1

Xþl

m¼�l

Ylmðh1;u1ÞY�lmðh2;u2Þ ð11Þ

in which h12 is the angle between the radius vectors

ðh1;u1Þ and ðh2;u2Þ and

P2ðcos h12Þ ¼
1

2
3 cos2 h12 � 1
� �

; ð12Þ

we get

ĈintðtÞ ¼
P2ðcos h12ðs; tÞÞ

rðtÞ3rðsþ tÞ3

* +

s

¼ 1

2

3 cos2 h12ðs; tÞ � 1

rðtÞ3rðsþ tÞ3

* +

s

:

ð13Þ

We may also write this expression in Cartesian tensor

notation defining (Henry and Szabo 1985)

l1 ¼
x

r
; l2 ¼

y

r
; l3 ¼

z

r
or l~¼ r~

r
ð14Þ

and

UabðtÞ ¼
laðtÞlbðtÞ

r3ðtÞ
ð15Þ

which leads to

ĈintðtÞ ¼
1

2
f3 trhUð0ÞUðtÞi � htrUð0ÞtrUðtÞig ð16Þ

with

trU ¼
X3

i¼1

Uii: ð17Þ

In the limit of fast internal motion compared to overall

rotation we get using the property of correlation functions

that limt!1hAð0ÞAðtÞi ¼ hAi2,

lim
t!1

ĈintðtÞ ¼
1

2
3
X3

a¼1

X3

b¼1

hUabi2 �
X3

a¼1

Uaa

* +2
8
<

:

9
=

;

¼ 1

2
3
X3

a¼1

X3

b¼1

laðsÞlbðsÞ
r3ðsÞ

� �2

s

� 1

r3ðsÞ

� �2

s

( )

¼ Ŝ2 ¼ S2

ðreffÞ6
ð18Þ

where Ŝ2 is a generalized order parameter (Lipari and

Szabo 1982), S2 is a dimensionless order parameter and reff

is an effective internuclear distance between atoms X and

Y, evaluated for example as h1=r6ðsÞi�1=6
s (Brüschweiler

et al. 1992).

Note that the internal molecular reference frame,

although commonly used, is far from being defined

unambiguously. The reason of this is that due to the

dynamics of the molecule there is no ‘‘fix part’’ which

could be objectively chosen for reference (Gáspári and

Perczel 2010; Gapsys and de Groot 2013). In practical

applications, measurement of geometric parameters rela-

tive to the reference frame is often implemented by using

least-squares fitting of backbone atoms in regular second-

ary structure before calculating the values.

Order parameters as restraints

To use order parameters S2
XYðexpÞ derived from experiment

to restrain the motion of atoms X and Y in an MD simu-

lation we use the following restraining function

V restrðr~NðtÞÞ ¼ 1

2
Ksr S2

XYðr~
NðtÞÞ � S2

XYðexpÞ
h i2

ð19Þ

or a flat bottom alternative (Christen et al. 2007), allowing

for some uncertainty in the reference S2
XYðexpÞ values.

With Ksr we denote the force constant and S2
XYðr~

NðtÞÞ is the

time-averaged order parameter calculated from

S2
XYðtÞ ¼

1

2
3
X3

a¼1

X3

b¼1

QabðtÞ
h i2

� DðtÞ
h i2

( )
� ðreff

XYÞ
6

ð20Þ

The time averaged quantities QabðtÞ and DðtÞ are calcu-

lated in the usual damped memory manner (Torda et al.

1989) with the memory relaxation time ssr,

QabðtÞ ¼
1

ssr½1� e�t=ssr �

Z t

0

e�ðt�t0Þ=ssr Qabðt0Þdt0 ð21Þ

and

DðtÞ ¼ 1

ssr½1� e�t=ssr �

Z t

0

e�ðt�t0Þ=ssr Dðt0Þdt0 ð22Þ

and

Qabðt0Þ ¼
ðrXaðt0Þ � rYaðt0ÞÞðrXbðt0Þ � rYbðt0ÞÞ

ðrXYðt0ÞÞ5
ð23Þ

and

Dðt0Þ ¼ 1

rXYðt0Þ3
ð24Þ

with
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r~XY ¼ r~X � r~Y and rXY ¼ ðr~X � r~YÞ � ðr~X � r~YÞ½ �1=2

ð25Þ

and

rX1 ¼ x-component of vector r~X

rX2 ¼ y-component of vector r~X

rX3 ¼ z-component of vector r~X

ð26Þ

and likewise for r~Y: The discretized form, applicable to

atomic trajectories, in which configurations are separated

by a time interval Dt; is

QabðmDtÞ¼ ðrXaðmDtÞ� rYaðmDtÞÞðrXbðmDtÞ� rYbðmDtÞÞ
ðrXYðmDtÞÞ5

ð27Þ

and

QabðnDtÞ¼ QabðnDtÞ 1�e�Dt=ssr

n o
þe�Dt=ssr Qabððn�1ÞDtÞ

ð28Þ

and

S2
XYðnDtÞ¼ 1

2
3
X3

a¼1

X3

b¼1

QabðnDtÞ
h i2

� DðnDtÞ
h i2

( )
�ðreff

XYÞ
6

ð29Þ

with

DðmDtÞ ¼ 1

rXYðmDtÞ3
ð30Þ

and

DðnDtÞ ¼ DðnDtÞ 1� e�Dt=ssr

n o
þ e�Dt=ssr Dððn�1ÞDtÞ:

ð31Þ

The restraining force on atom X then becomes

f~XðtÞ ¼ �
oV restrðr~NðtÞÞ

or~XðtÞ
¼ �Ksr S2

XYðr~
NðtÞÞ � S2

XYðexpÞ
h i

� 1
2

3
X3

a¼1

X3

b¼1

2QabðtÞ
oQabðtÞ
oQabðtÞ

oQabðtÞ
or~XðtÞ

(

�2DðtÞ oDðtÞ
oDðtÞ

oDðtÞ
or~XðtÞ

)
� ðreff

XYÞ
6 ð32Þ

and the restraining force on atom Y becomes

f~YðtÞ ¼ �
oV restrðr~NðtÞÞ

or~YðtÞ
¼ �Ksr S2

XYðr~
NðtÞÞ � S2

XYðexpÞ
h i

� 1
2

3
X3

a¼1

X3

b¼1

2QabðtÞ
oQabðtÞ
oQabðtÞ

oQabðtÞ
or~YðtÞ

(

�2DðtÞ oDðtÞ
oDðtÞ

oDðtÞ
or~YðtÞ

)
� ðreff

XYÞ
6 ð33Þ

although using Eq. 28 we have

oQabðtÞ
oQabðtÞ

¼ oQabðnDtÞ
oQabðnDtÞ ¼ 1� e�Dt=ssr

h i
ð34Þ

the approximation (Scott et al. 1998)

oQabðtÞ
oQabðtÞ

¼ 1 ð35Þ

is often used, which only leads to a rescaling of Ksr in

practice, and likewise

oDðtÞ
oDðtÞ ¼ 1: ð36Þ

For the derivatives
oQabðtÞ
or~XðtÞ we find using Eq. 23, where we

omit the variable t and denote the three components of the

position vector r~X of atom X by rXc with c ¼ 1; 2; 3;

oQab

orXc

¼
ðrXYÞ5 dcaðrXb � rYbÞ þ dcbðrXa � rYaÞ

� �

ðrXYÞ10

� ðrXa � rYaÞðrXb � rYbÞ � 5ðrXYÞ4ðrXc � rYcÞðrXYÞ�1

ðrXYÞ10

¼
ðrXYÞ2 dcaðrXb � rYbÞ þ dcbðrXa � rYaÞ

� �
� 5ðrXa � rYaÞðrXb � rYbÞðrXc � rYcÞ

ðrXYÞ7

ð37Þ
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where dij is the Kronecker delta. For the derivatives
oQabðtÞ
or~YðtÞ

we find likewise

oQab

orYc
¼ � oQab

orXc
: ð38Þ

Thus the restraining force on atom Y is the negative of the

restraining force on atom X for this restraining function.

For the derivatives
oDðtÞ
or~XðtÞ we find using Eq. 24 likewise

oD

orXc
¼ �3ðrXc � rYcÞ

ðrXYÞ5
ð39Þ

and

oD

orXc
¼ � oD

orYc
: ð40Þ

Note that the use of order parameters to bias MD simula-

tions is conceptually different from the use of other prop-

erties such as nuclear Overhauser enhancement (NOE)

atom-atom distance bounds or 3J-coupling constants,

because order parameters are not instantaneous observ-

ables, i.e. the order parameter for a single configuration is

by definition equal to unity. Therefore, ssr represents not

only the memory relaxation but also the experimentally

determined averaging period. Thus it should be chosen

larger than the decay time of the internal autocorrelation

function of the vector connecting the two atoms, but not

larger than the sensitivity time window of the NMR

experiment.

Computational details

Simulated systems

The method was first tested on two systems, a single vector

with one end restrained to the origin of the coordinate

system and a freely rotating a-pentapeptide. In both cases

the solvent was treated as external field acting on the solute

by stochastic and frictional forces. The reason for using

stochastic dynamics (SD) (van Gunsteren et al. 1981; Yun-

Yu et al. 1988) instead of explicit solvent is that this allows

a much longer simulation period. But, biomolecular force

fields, such as the GROMOS one used here, are generally

developed, i.e. their parameters calibrated, for use in the

condensed phase, i.c. using water as solvent. Since water

has a dielectric permittivity of 78 at room temperature and

pressure, it has a large damping effect on Coulomb inter-

actions within the solute. Thus the force field used in the

pentapeptide simulation may not perform well under vac-

uum boundary conditions, which may induce conforma-

tional transitions that are an artefact of the toy character of

the model. The restraining force may also induce confor-

mational transitions in the solute, if the restraining force or

energy becomes large, i.e. in the case the restraining energy

is not a small perturbation of the energy of the system.

Thus we report in Table 2 energies of unrestrained and

restrained simulations in order to illustrate that the

restraining perturbation is small. Additionally, in a simu-

lation of the peptide without explicit solvent, the peptide is

more easily trapped in local energy minima (Daura et al.

1999), which allows focusing the order parameter analysis

on local fluctuations.

A vector of constant length, with orientation X ¼ ðh;uÞ,
moving randomly in the angular region

0� h� h0\p; �p�u� p, where h and u are the polar

and azimuth angles, respectively (see Fig. 1) was simulated

using two non-interacting atoms of mass 5 and 5,000 amu,

respectively, the latter one harmonically positionally

restrained to the origin with a force constant of

10,000 kJ mol�1 nm�2, connected through a constrained

bond of length 0.153 nm.

The a-pentapeptide had the amino acid sequence

Val1�Tyr2�Arg3�Lys4�Gln5. Initial coordinates were

taken from the tutorial files of the GROMOS11 program

package (http://www.gromos.net).

The method was subsequently applied to the B3 domain

of protein G, further called GB3, in aqueous solution. Fifty

backbone N–H order parameters derived from NMR

experiments using an anisotropic model of the overall

tumbling were taken from Hall and Fushman (Hall and

Fushman 2003). Initial coordinates were taken from the

NMR model structure deposited in the PDB as entry

2OED.

x y

z

θ
θ0

ϕ

Fig. 1 Illustration of a bond vector moving in the angular region

0� h� h0\p; �p�u� p
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Simulation parameters

All simulations were carried out using a modified version

of the GROMOS11 program package (Schmid et al. 2011a,

2012). For the SD simulations the 54B7 force field (Schmid

et al. 2011b) was used which is the one corresponding to

the 54A7 force field, but adapted in order to be used for

simulations of biomolecules in vacuum. These simulations

were performed under vacuum boundary conditions. The

Langevin equations of motion were integrated using the

leapfrog scheme (van Gunsteren and Berendsen 1988) with

a timestep of 0.5 fs for the randomly moving vector and

2 fs for the peptide. Bond lengths were constrained by

application of the SHAKE procedure (Ryckaert et al. 1977)

with a relative geometric tolerance of 10�4. The reference

temperature for all simulations was set to 298 K. A single

friction coefficient c of 91 ps�1 was used for all atoms.

In case of the peptide, the non-bonded van der Waals

and electrostatic interactions were calculated using a twin-

range cutoff scheme (Berendsen 1985), with short- and

long-range cutoff distances set to 0.8 and 1.4 nm, respec-

tively. The short-range interactions were calculated every

timestep using a group-based pairlist updated every fifth

timestep. The intermediate-range interactions were re-

evaluated at each pairlist update and assumed constant in

between. A reaction-field correction (Barker and Watts

1973; Tironi et al. 1995) was applied to account for the

mean effect of electrostatic interactions beyond the long-

range cutoff distance, using a relative dielectric permit-

tivity of one. The simulations were carried out for 110 ns

of which the latter 100 ns were used for analysis. Atom

coordinates and energies were saved for analysis every

10 ps.

For protein GB3, MD simulations were carried out using

the 54A7 force field (Schmid et al. 2011b). The simulations

were performed under minimum image periodic boundary

conditions based on cubic boxes, using 7,486 simple point

charge (SPC) water molecules (Berendsen et al. 1981). The

equations of motion were integrated using the leapfrog

algorithm (Hockney 1970) with a timestep of 2 fs. Bond

lengths and the bond angle of water molecules were con-

strained by applying the SHAKE algorithm (Ryckaert et al.

1977) with a relative geometric tolerance of 10�4. The

center of mass motion of the computational box was

removed every 2 ps. All simulations were performed at

constant pressure and temperature. The temperature was

maintained at 298 K by weak coupling to an external bath

(Berendsen et al. 1984) with a relaxation time of 0.1 ps.

Solute and solvent were coupled to separate heat baths. The

pressure was calculated using a group-based virial and held

constant at 1 atm using the weak coupling method with a

relaxation time of 0.5 ps (Berendsen et al. 1984) and an

isothermal compressibility of 4:575� 10�4 ðkJ mol�1

nm�3Þ�1
.

The nonbonded van der Waals and electrostatic interac-

tions were calculated as described above, but with a relative

dielectric permittivity eRF of 61, appropriate for SPC water

(Heinz et al. 2001). The reaction-field self-term and exclu-

ded-atom-term contributions to the energy, forces, and virial

were included as described previously (Christen et al. 2005).

The simulations were carried out for 25.5 ns of which the

latter 25 ns were used for analysis. Atom coordinates and

energies were saved for analysis every 2 ps.

Trajectory analysis

All analyses were carried out using the GROMOS?? suite

of programs (Eichenberger et al. 2011). The moving vector

was analyzed in terms of the ðh;uÞ-space sampled, the

distribution of the h-angle and the plateau value of the

internal autocorrelation function, Eq. 41.

The pentapeptide was analyzed in terms of the time

series and fluctuations of the u-w angles and N–H order

parameters of residues 2–4 after superimposing all struc-

tures according to the backbone atoms of these residues.

The protein was analyzed in terms of the N–H order

parameters of all residues after superimposing all structures

according to the backbone atoms of residues 3–56.

In the present study only atom pairs with constrained

internuclear distance were considered. Because the effect

of constraining bond lengths on simulated order parameters

is negligible (Pfeiffer et al. 2001), the expression for the

internal autocorrelation function can be simplified to

CintðtÞ ¼
1

2
3 cos2 hðs; tÞ � 1
� 	

s
ð41Þ

and the order parameter S2 is obtained from

lim
t!1

CintðtÞ ¼
1

2
3
X3

a¼1

X3

b¼1

laðsÞlbðsÞ
� 	2

s
�1

( )
¼ S2:

ð42Þ

Results and discussion

While the interpretation of trajectories of the vector mov-

ing in the ðh;uÞ-space in terms of an order parameter is

straightforward, there are subtleties present in the inter-

pretation of the peptide and protein trajectories. First, order

parameters are defined in a molecule-fixed reference frame

while the equations of motion are integrated in a simulation

box-fixed coordinate frame. This may cause an underesti-

mation of the time-averaged order parameter if the memory

relaxation time is not significantly smaller than the char-

acteristic time for overall tumbling of the molecule. In
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post-simulation analysis of proteins, order parameters are

usually calculated after a least-squares fit of the backbone

atom positions of trajectory structures in order to remove

overall rotation of the molecule. However, in case of major

structural transitions in the backbone this fit may introduce

spurious rotations leading to a decrease of the order

parameter. If such transitions are observed, Eq. 42 should

be applied separately to those parts of the trajectories

which are in the same conformational state.

Vector moving in ðh;uÞ-space

In an unrestrained SD simulation the motion of the bond

vector is isotropic, shown in Fig. 2a, leading to an order

parameter of S2 ¼ 0. In the setup studied here the motion is

in addition azimuthally symmetric about the z-axis, making

the order parameter dependent on the h-angle only. The

latter is distributed symmetrically with respect to the x-y

plane, see Fig. 2b. In that case, also referred to as diffusion

in a cone model, the order parameter vanishes not only for

h ¼ p but also for h ¼ p=2 (Brainard and Szabo 1981;

Lipari and Szabo 1982). Therefore, we restrict the analysis

of the restrained simulations to one of the two hemispheres.

Figure 2c shows the internal autocorrelation function of the

bond vector, which decreases to zero quickly.

The restrained simulations using time-averaging with an

exponentially decaying memory are characterized by two

parameters, i.e. the force constant Ksr and the memory

relaxation time ssr. The force constant controls the relative

weight of the artificial restraining energy with respect to

the force-field energy while ssr determines the length of the

exponential decay in Eqs. 28 and 31 and the system’s

sensitivity to its past. Figure 3 summarises a series of

simulations in which the two parameters were systemati-

cally varied. Note that for the vector randomly moving in

the ðh;uÞ-space no contribution from the physical force

field is present, i.e. the restraining forces only act against

the forces from the stochastic thermostat. Agreement with

the imposed restraints was judged by comparing the

imposed order parameter with the plateau value of the

internal autocorrelation function (Eq. 41) of the vector,

while the influence of the restraining parameters on the

configurational ensemble is evaluated from the distribu-

tions of the polar angles sampled, and the dynamics of the

vector is also analyzed (Fig. 4). The rows of Fig. 3 corre-

spond to the imposed S2 values of S2
0 ¼ 1:0, 0.9, 0.7 and 0.5

while the columns correspond to different force constants.

The different curves in each panel correspond to different

values of the memory relaxation time ssr. The plateau

values of the internal autocorrelation function are given in

the legends of each panel. Note that in the simulations a flat

bottom restraining potential energy function

V restrðS2Þ ¼ 0 if S2
0 � DS2\S2\S2

0 þ DS2; ð43Þ

was used allowing for differences of up to DS2 ¼ 0:01

between internal order parameters and imposed ones

without resulting in a restraining force. Only those results

are reported in Fig. 3 for which the maximum of the h-

angle distribution was clearly less than p=2. At constant

relaxation times, increased force constants lead to more

narrow distributions of the polar angle. At constant force

constant, increasing relaxation times lead to more narrow

distributions of the polar angle. Both trends are to be

expected because a larger force constant penalizes devia-

tion from the imposed order parameter more strongly,

while long relaxation times usually decrease the internal

order parameter leading to larger deviation from the

imposed one and thus to a larger force according to Eq. 19.

Restraining the motion to a restricted angular region is not

possible for all combinations of Ksr and ssr. The larger the

force constant the smaller is the minimal value of ssr for

which restraining is still observed. However, good agree-

ment with the imposed value is only achieved for the

largest force constants and relaxation times. To further

study the role of the relaxation time, the dynamic behavior

of the interatomic vector was investigated. Figure 4 shows

the polar coordinates of the positionally unrestrained atom

as function of time for an imposed order parameter of S2
0 ¼

0:9 and a force constant of 1,000 kJ mol�1. The different

rows demonstrate the effect of different values of ssr on the

time series of the u and h angles, i.e. the right panels in

rows B, C, and D correspond to the black, green and orange
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distributions in Fig. 3, panel IV-B. For the smallest relax-

ation time of 2 ps, corresponding to the panels in the

bottom row, the vector is drifting in the coordinate space, a

consequence of the decreasing influence of formerly visited

configurations on the restraining forces. The panels in the

first row of Fig. 4 show the time series of the polar coor-

dinates of the unrestrained simulation. In the latter, the

configuration space is sampled in an irregular manner as

expected due to the stochastic nature of the driving forces.

The individual coordinates show small amplitude
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The plateau values of the internal autocorrelation function are
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constants were constant for each column and set to I 100 kJ mol�1, II

200 kJ mol�1, III 500 kJ mol�1, IV 1,000 kJ mol�1. The imposed

order parameters S2
0 were constant for each row and set to a 1.0, b 0.9,

c 0.7, d 0.5. A flat bottom restraining function (Eqs. 19, 43) with a flat
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imposed order parameter S2
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0.9 and DS2 ¼ 0:01
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fluctuations at high frequency and have slower periods of

motion of up to 10 ps. The restrained simulations show the

same type of small amplitude fluctuations at high fre-

quency. The two rows in the middle demonstrate how the

configurational space of the h-angle is restricted by the

restraining force.

Pentapeptide

The results of the unrestrained simulation of the penta-

peptide are presented in Fig. 5a in terms of atom-positional

root-mean-square deviation (RMSD) from the starting

structure as function of time. After some rearrangements in

the initial phase, the RMSD adopts a stable regime for the

rest of the simulation period of 110 ns, showing only local

fluctuations but no major structural transitions. Figure 5b

presents the internal autocorrelation function of the N–H

bond vectors of residues 2–4 in the regime where the

RMSD is stable. The decay time of the internal

autocorrelation function is about 10 ps for residues 2 and 4

and about 40 ps for residue 3. The dashed lines in Fig. 5b

represent the autocorrelation functions calculated without

prior superposition of the backbone atoms, showing the

influence of overall tumbling of the molecule. The rota-

tional correlation times for the peptide, calculated from

single-exponential fits to the autocorrelation function of the

three normalized vectors defined by the Ca atoms of resi-

dues 2 and 3, 3 and 4, and by the cross product of the latter

(Feenstra et al. 2002) were in the range of 600–760 ps.

This defines an upper bound for the memory relaxation

time used in Eqs. 28 and 31 which should be considerably

smaller than the characteristic time for overall tumbling.

Figure 5c displays the time series of the wi�1 and ui angles

of residues 2–4 in the stable RMSD regime. As expected,

no major conformational transitions take place. In some

occasions the w1-angle adopts a different conformation

reflecting an enhanced flexibility of the outer residues

compared to the inner ones. Consistent with a lower
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r6
NH. c Time series of wi�1 and

ui angles for residues 2–4 of the

last 100 ns of the unrestrained

simulation
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plateau value of the internal autocorrelation function of

residue 3, i.e. a lower order parameter, the w2 and u3-

angles show larger fluctuations than the other w and u-

angles.

In a series of simulations the force constants and

memory relaxation times were systematically varied for

four different restraining cases. These represent situations

in which (1) the imposed S2
0 values for the N–H vectors of

residues 2–4 are compatible with the force field used, i.e.

S2
0 ¼ 0:8, 0.6, and 0.8, taken from the unrestrained simu-

lation (case R1), (2) the imposed S2
0 values are with a value

of S2
0 ¼ 0:9 for all three residues larger than the ones

compatible with the force field (case R2), (3) the imposed

values S2
0 ¼ 0:5 for all three residues are smaller than the

force-field compatible ones (case R3), and (4) the imposed

values S2
0 ¼ 0:7 for all three residues are larger for residue

3 and smaller for residues 2 and 4 than the force-field

compatible ones (case R4). The restrained simulations were

in each case carried out with force constants of 50, 100,

200, 500, 1,000 kJ mol�1 and memory relaxation times of

10, 20, 50, 100, 500, 1,000 ps. For each restraining case the

results showing the best agreement with the imposed order

parameters are presented in Figs. 6, 7 and 8 in terms of the

times series of the wi�1 and ui angles of residues 2–4.

Table 1 reports the average fluctuations ra of the wi�1 and

ui angles and the N–H order parameters evaluated

according to Eq. 42. The average fluctuations were evalu-

ated as averages of the root-mean-square fluctuations of

simulation periods of 1 ns and as the root-mean-square

fluctuations of the entire 100 ns trajectory. Likewise, order

parameters were evaluated using averaging time windows

of 1 and 100 ns. Disagreement between the two numbers

points to structural transitions in the backbone during the

simulations. An additional evaluation using an averaging

time window of 0.5 ns gives very similar results compared

to the one using an averaging time window of 1 ns, as

expected from the fast decay of the internal autocorrelation

functions to their plateau values. For practical applications

such as protein simulations in explicit solvent an averaging

time window of 1 ns would be realistic, corresponding to

the observation time in an NMR experiment (Chandrase-

khar et al. 1992; Smith et al. 1995b; Evenäs et al. 1999;

Stocker and van Gunsteren 2000; Sapienza and Lee 2010).

Therefore, the agreement with the imposed restraints was

judged by comparing the imposed order parameters to the
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Fig. 6 Time series of the w1 and u2 angles of the pentapeptide for

four different restraining cases, compared to the unrestrained

simulation. The upper panel U shows the results for the unrestrained

simulation. For the other panels the parameters were as follows:

R1 Ksr ¼ 100 kJ mol�1; ssr ¼ 20 ps; S2
0 for residues 2–4 taken from

the unrestrained simulation, R2 Ksr ¼ 200 kJ mol�1; ssr ¼ 20 ps;

S2
0ðresidues2�4Þ ¼ 0:9, R3 Ksr ¼ 200 kJ mol�1; ssr ¼ 20 ps; S2

0

ðresidues 2�4Þ ¼ 0:5, and R4 Ksr ¼ 100 kJ mol�1; ssr ¼ 20 ps;

S2
0ðresidues 2�4Þ ¼ 0:7. For each restraining case the time series of

the total restraining energy is shown in blue. Angles are presented in

degree and energies in kJ mol�1
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ones evaluated with Eq. 42 using an averaging time win-

dow of 1 ns.

Although the N–H order parameters result from a

combination of molecular motions that cannot directly be

interpreted in terms of backbone torsional-angle fluctua-

tions (Marchand and Roux 1998), the change in order

parameters upon using restraints is reflected in the average

root-mean-square fluctuations of backbone torsional

angles. The panels in Figs. 6, 7 and 8 illustrate the rela-

tionship between fluctuations of the neighboring wi�1 and

ui torsion angles and the N–H order parameter of the i-th

residue (Smith et al. 1995a). For residue 3 (Fig. 7), having

the smallest order parameter in the unrestrained simulation,

the fluctuations in the w2 and u3 angles are 23:1� and

27:1�, respectively. For residue 2 (Fig. 6), having the

second largest order parameter the fluctuations are rw1
¼

13:4� and ru2
¼ 10:5� while for residue 4 (Fig. 8), having

the largest order parameter they evaluate to rw3
¼ 11:7�

and ru4
¼ 10:6�.

The purpose of restraining case R1 was to identify values

for Ksr and ssr that resemble the unrestrained simulation. The

best agreement within the investigated parameter space was

obtained for a force constant of 100 kJ mol�1 and a memory

relaxation time of 20 ps. Increasing the relaxation time led to

mixing in contributions from overall tumbling, resulting in

restraining forces that are too large. Decreasing the relaxa-

tion time led to structural transitions in the backbone similar

to those seen in case R3 (see below). This behavior is to be

expected because for memory relaxation times smaller than

the decay time of the internal autocorrelation function, the

internal order parameter is overestimated. Increasing the

force constants to 200 or 500 kJ mol�1 had little effect on the

observed order parameters, but slightly reduced the fluctu-

ations in parts of the trajectory. One might wonder why the

time series of the dihedral angles of restraining case R1

slightly differ from the unrestrained case. This difference

reflects the difficulty of exactly imposing the order param-

eters of the unrestrained simulations as these are slightly

dependent on the averaging window used in the analysis (see

Table 1) and thus subject to some uncertainty. As a result the

restraining energy, shown in blue in Figs. 6, 7 and 8 is not

zero in this case.

For case R2, good agreement with the imposed order

parameters of S2
0 ¼ 0:9 was found for a force constant of
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Fig. 7 Time series of w2 and u3 angles of the pentapeptide for four

different restraining cases, compared to the unrestrained simulation.

The upper panel U shows the results for the unrestrained simulation.

For the other panels the parameters were as follows: R1 Ksr ¼
100 kJ mol�1; ssr ¼ 20 ps; S2

0 for residues 2–4 taken from the

unrestrained simulation, R2 Ksr ¼ 200 kJ mol�1; ssr ¼ 20 ps;

S2
0ðresidues 2�4Þ ¼ 0:9, R3 Ksr ¼ 200 kJ mol�1; ssr ¼ 20 ps;

S2
0ðresidues 2�4Þ ¼ 0:5, and R4 Ksr ¼ 100 kJ mol�1; ssr ¼ 20 ps;

S2
0ðresidues 2�4Þ ¼ 0:7. For each restraining case the time series of

the total restraining energy is shown in blue. Angles are presented in

degree and energies in kJ mol�1
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200 kJ mol�1 and a relaxation time of 20 ps. Increasing the

force constant did not improve the agreement with the

imposed values substantially, but rather led to an oscilla-

tion of the u-angle of residue 3 between two states with

rather long residence times of about 20 ns. The fluctuations

of the w2 and u3 angles decrease significantly compared to

the unrestrained simulation as expected because residue 3

has the lowest order parameter in the unrestrained simu-

lation. Case R3 assumes a scenario in which an unre-

strained simulation shows too large order parameters. For a

force constant of Ksr ¼ 200 kJ mol�1 the obtained order

parameters are somewhat too large, while Ksr ¼
500 kJ mol�1 leads to good agreement with the imposed

order parameters for residues 2 and 4 while for residue 3

the order parameter was underestimated. Note that for case

R3 the backbone adopts a different conformation regarding

the w1 and u2 angles compared to all other cases. Finally,

case R4 attempts to lower the order parameters for residues

2 and 4 while increasing the one of residue 3. Using a force

constant of Ksr ¼ 100 kJ mol�1 leads to the desired values

for residues 2 and 4 while the one for residue 3 is still too

small. By allowing for individual force constants for each

residue the agreement with the imposed values could be

improved using Ksr ¼ 200 kJ mol�1 for residue 3 and Ksr ¼
100 kJ mol�1 for residues 2 and 4, respectively. The

resulting order parameters were 0.75, 0.71 and 0.72 for

residues 2, 3 and 4, while the torsional angle fluctuations

were 15:0�; 16:0� and 14:9� for rwi�1
. and 9:7�; 20:6� and

15:4� for rui
:

On the basis of the present results a force constant

between 100 and 200 kJ mol�1 combined with a relaxation

time of 20 ps appears to be an appropriate choice. The

transferability of these parameters to proteins in solution is

discussed below.

Table 2 gives an overview of the most important ener-

getic terms of the simulations. The averaged values for the

total potential energy of all five simulations are of com-

parable size. The fluctuation of the potential energy of the

unrestrained simulation is slightly smaller than for the

restrained ones. Except for restraining case R3, all bonded

and electrostatic energies are very similar to the unre-

strained simulation. The reason for the deviation in case R3

is the different conformations the peptide adopted in terms

of the w1 and u2 angles. Finally, we note that the energies
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Fig. 8 Time series of w3 and u4 angles of the pentapeptide for four

different restraining cases, compared to the unrestrained simulation.

The upper panel (U) shows the results for the unrestrained simulation.

For the other panels the parameters were as follows: R1

Ksr ¼ 100 kJ mol�1, ssr ¼ 20 ps; S2
0 for residues 2 to 4 taken from

the unrestrained simulation, R2 Ksr ¼ 200 kJ mol�1; ssr ¼ 20 ps;

S2
0ðresidues 2�4Þ ¼ 0:9, R3 Ksr ¼ 200 kJ mol�1; ssr ¼ 20 ps;

S2
0ðresidues 2�4Þ ¼ 0:5, and R4 Ksr ¼ 100 kJ mol�1; ssr ¼ 20 ps; S2

0

ðresidues 2�4Þ ¼ 0:7. For each restraining case the time series of the

total restraining energy is shown in blue. Angles are presented in

degree and energies in kJ mol�1
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of the restraints are two orders of magnitude smaller than

the potential energies of the physical force field terms,

which indicates that the energetic bias due to the

restraining is very small.

Protein GB3

For GB3 the restrained simulations were carried out with

force constants of 100, 200, 300, 400 kJ mol�1 and mem-

ory relaxation times of 20, 50, 100 ps, restraining 50 out of

56 residues using experimentally derived order parameters

reported by Hall and Fushman (Hall and Fushman 2003).

Each trajectory was analyzed according to Eq. 42 using

two different averaging time windows of 0.5 and 1.0 ns,

respectively. Figure 9 shows a comparison of calculated

order parameters determined from unrestrained and

restrained simulations, the latter carried out with Ksr ¼
400 kJ mol�1 and ssr ¼ 100 ps. For the unrestrained simu-

lation the averaging time window has some influence on

the order parameters for residues 11–15, showing larger S2

values for the shorter averaging time, as expected. For the

restrained simulation no difference between the two

Table 1 Torsional-angle fluctuations and N–H order parameters as a function of simulation parameters

Simulationb Residue Torsional-angle fluctuationsa N–H order parameters S2
0

rwi�1
rui

0.5 nsc 1 nsc 100 nsc

Unrestrained 2 13.4 (16.5) 10.5 (10.8) 0.80 0.79 0.75 –

3 23.1 (24.5) 27.1 (29.8) 0.62 0.60 0.56 –

4 11.7 (13.4) 10.6 (10.9) 0.82 0.81 0.81 –

Case R1 2 15.0 (55.2) 11.3 (11.9) 0.79 0.77 0.70 0.8

Ksr ¼ 100 3 22.2 (26.4) 23.4 (26.6) 0.62 0.61 0.58 0.6

ssr ¼ 20 4 12.0 (14.7) 10.4 (11.8) 0.80 0.79 0.77 0.8

Case R2 2 12.0 (13.0) 9.5 ( 9.7) 0.85 0.85 0.83 0.9

Ksr ¼ 200 3 16.0 (19.0) 17.4 (20.2) 0.85 0.84 0.81 0.9

ssr ¼ 20 4 10.1 (10.6) 9.6 (10.0) 0.87 0.87 0.86 0.9

Case R3 2 18.3 (98.5) 15.2 (61.3) 0.60 0.59 0.26 0.5

Ksr ¼ 200 3 24.6 (24.6) 19.7 (22.8) 0.56 0.56 0.45 0.5

ssr ¼ 20 4 18.7 (18.7) 15.7 (18.0) 0.56 0.56 0.53 0.5

Case R4 2 13.8 (22.6) 11.8 (12.3) 0.72 0.70 0.63 0.7

Ksr ¼ 100 3 21.6 (25.3) 22.4 (27.2) 0.66 0.64 0.55 0.7

ssr ¼ 20 4 12.3 (15.7) 11.1 (11.5) 0.71 0.70 0.66 0.7

a ra (in degree) was calculated as 1
nb

Pnb

j¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

na=nb

Pjna=nb

i¼ðj�1Þna=nbþ1
ai � haij
� �2

r
where na is the total number of angles sampled, split into nb subsets of

equal number of samples. Here we used na = 10,000 and nb ¼ 100, corresponding to trajectory segments of 1 ns length. The values in

parentheses were obtained for nb ¼ 1, i.e. averaged over the entire 100 ns trajectory

b The units of Ksr and ssr are kJ mol�1 and ps, respectively. A flat bottom restraining function with DS2 ¼ 0:01 was used in cases R1–R4.

c Averaging time window used in Eq. 42 to obtain S2 values

Table 2 Average energies in unrestrained (U) and order-parameter restrained (R) simulations of 100 ns (in kJ mol�1)

U R1 R2 R3 R4

Potential energya -495.7 -493.6 -495.1 -495.7 -489.2

Fluctuation of potential energy 22.5 24.1 23.5 25.8 24.0

Bond angle energy 118.6 118.8 117.7 126.6 118.9

Improper dihedral energy 37.8 37.9 37.3 41.6 37.9

Proper dihedral energy 64.3 64.0 65.6 65.1 65.4

Electrostatic energy -655.0 -656.1 -654.2 -662.4 -652.3

van der Waals energy -61.5 -58.4 -61.6 -66.6 -59.1

Restraining energy 0.0 0.21 0.22 0.82 0.20

a Not including the restraining energy
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averaging time windows is observed. In the restrained

simulations the order parameters are close to the target

values except for residues 7, 12 and 36 that show a devi-

ation of about 0.04. However, we expect that the use of

individual force constants for these residues would lead to

better agreement. The results for the other combinations of

Ksr and ssr (not displayed) show that a relaxation time ssr of

20 ps seems to be too short for some of the residues. Force

constants Ksr smaller than 400 also lead to good agreement

with experimental data, with some deviations around res-

idues 7 and 22. In all cases the restraining energies were at

least two orders of magnitude smaller than the intra-solute

potential energies, again showing the very small energetic

bias of the restraining. A detailed analysis involving cross

validation with other NMR observables will be reported

separately.

Conclusion

The aim of the present work was to provide a mathematical

framework for time-averaged order parameter restraints for

use in MD simulations and to report an investigation of the

role of the two parameters that characterize these restraints.

As the order parameter is not an instantaneous obser-

vable, the memory relaxation time should be chosen such

that the plateau value of the internal autocorrelation func-

tion of the vector connecting the two atoms is reached.

However, its value should also be considerably smaller

than the rotational correlation time for overall molecular

tumbling. The peptide and protein simulations suggest that

values between 100 and 400 kJ mol�1 for the force con-

stant are appropriate. In general one should use the smallest

force constant that leads to agreement with the experi-

mental data.

The adequacy of the values found for the force constants

for other proteins in solution will be evaluated in future

work. It may make sense to use different force constants

and memory relaxation times for different residues as a

measure to minimize perturbing the dynamics resulting

from the physical force field. One may think of using

relaxation times for different residues derived from NMR

experiments. Yet, we refrained from pursuing this option

for various reasons: (1) The so-called ‘‘model free ana-

lysis’’ by Lipari and Szabo (1982) is de facto based on a

model, as is any analysis; (2) The uncertainty in relaxation

times for individual bond vectors is large due to the

assumptions and approximations of the procedure (called

function f in Eq. 2) used to derive relaxation times and

order parameters from measured NMR data; (3) Their

values depend on an estimate of the rotational tumbling

time of the molecule considered; (4) We prefer a

restraining procedure that is as simple as possible, with a

small number of adjustable parameters. Deriving values for

these parameters from experiments particular to the mol-

ecule considered may introduce noise, i.e. enhances the

chance of fitting the configurational distribution to noise in

the experimental data.
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