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Abstract Amphipathic polymers called amphipols pro-

vide a valuable alternative to detergents for keeping inte-

gral membrane proteins soluble in aqueous buffers. Here,

we characterize spatial contacts of amphipol A8-35 with

membrane proteins from two architectural classes: The

8-stranded b-barrel outer membrane protein OmpX and the

a-helical protein bacteriorhodopsin. OmpX is well struc-

tured in A8-35, with its barrel adopting a fold closely

similar to that in dihexanoylphosphocholine micelles. The

accessibility of A8-35-trapped OmpX by a water-soluble

paramagnetic molecule is highly similar to that in detergent

micelles and resembles the accessibility in the natural

membrane. For the a-helical protein bacteriorhodopsin,

previously shown to keep its fold and function in am-

phipols, NMR data show that the imidazole protons of a

polyhistidine tag at the N-terminus of the protein are

exchange protected in the presence of detergent and lipid

bilayer nanodiscs, but not in amphipols, indicating the

absence of an interaction in the latter case. Overall, A8-35

exhibits protein interaction properties somewhat different

from detergents and lipid bilayer nanodiscs, while main-

taining the structure of solubilized integral membrane

proteins.
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Abbreviations

A8-35 Polyacrylate-based amphipol, carrying

*25 % octylamide chains,

*40 % isopropyl-amide ones,

and *35 % free carboxylates

APol Amphipol

BR Bacteriorhodopsin

DDM n-Dodecyl-b-D-maltopyranoside

DHPC 1,2-Dihexanoyl-sn-glycero-3-

phosphocholine

DMPC 1,2-Dimyristoyl-sn-glycero-3-

phosphocholine

Gd(DOTA)- =

DOTAREM

A gadolinium ion chelated with 1,4,

7,10-tetraazocyclododecane-N,N0,N00,
N000-tetraacetic acid

OmpX Outer membrane protein X

Introduction

Biophysical and biochemical studies of integral membrane

proteins are of key interest for characterizing their structure

and function. Because membrane proteins are adapted to a

hydrophobic phase, keeping them soluble in aqueous

solutions is an intrinsic challenge, requiring the use of

surfactants that can substitute the hydrophobic environ-

ment of a natural membrane (Raschle et al. 2010). Whereas

detergent micelles represent the classical case, they can be

destabilizing to some membrane proteins or to protein–
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protein interactions. A number of alternative, milder sys-

tems have therefore been developed, such as lipid bilayer

nanodiscs or amphipols (APols) (Bayburt et al. 2002;

Bayburt and Sligar 2010; Popot et al. 2011; Tribet et al.

1996; Zoonens and Popot 2014). Results from multiple

techniques, including NMR spectroscopy (Catoire et al.

2010, 2009; Planchard et al. 2014; Zoonens et al. 2005),

electron microscopy (Althoff et al. 2011; Huynh et al.

2014; Liao et al. 2013) and molecular dynamics simulation

(Perlmutter et al. 2014) indicate that APols associate with

membrane proteins and keep them water soluble by

adsorbing specifically onto their hydrophobic transmem-

brane surface. Structure, dynamics and function of a

membrane protein may, however, depend on the surfactant

type (Champeil et al. 2000; Dahmane et al. 2013; Elter

et al. 2014; Etzkorn et al. 2013; Martinez et al. 2002;

Perlmutter et al. 2014; Popot et al. 2011).

Here, we use high-resolution NMR spectroscopy to

characterize the interactions of A8-35, a polyacrylate-based

APol (Tribet et al. 1996) with proteins from two architectural

classes, the b-barrel Escherichia coli outer membrane pro-

tein X (OmpX) and the a-helical bacteriorhodopsin (BR)

from Halobacterium salinarum. Whereas previous NMR

characterizations of OmpX/APol contacts were based on

amide proton protection factors (Catoire et al. 2010), we are

using here paramagnetic surface mapping, which provides a

complementary and more extensive coverage. In addition,

we examine the interaction of a polyhistidine (poly-His) tag

with three different surfactants, APols, lipid bilayer nano-

discs and detergent micelles. Poly-His tags are of widespread

use for protein purification and thus are frequently geneti-

cally fused to proteins. Because they are flexible, unstruc-

tured and relatively polar, they are expected to remain water

accessible. However, in the case of membrane proteins, the

uncharged nature of poly-His tags at alkaline pH can give rise

to an interaction with the surfactants associated with the

protein. We investigate, here, whether APol A8-35 interacts

with a poly-His tag fused to the N-terminus of BR.

Materials and Methods

[U-15N, *75 %-2H]-labeled OmpX was produced by over-

expression in E. coli BL21(DE3)pLysS cells transformed with

the plasmid pET3b-OmpX (Vogt and Schulz 1999). Cells

were grown in D2O-based M9 minimal medium containing
15NH4Cl as the sole nitrogen source. Cells were induced after

reaching an OD600 of 0.8 and harvested after 4 h by centri-

fugation. OmpX was purified from inclusion bodies and

refolded into DHPC (1,2-dihexanoyl-sn-glycero-3-phospho-

choline) micelles as described (Fernández et al. 2004). Par-

tially, deuterated A8-35 (batch DAPol-4) was synthesized

by F. Giusti (UMR 7099) following published protocols

(Gohon et al. 2006, 2004) and added to the protein solution.

Subsequently, the detergent was removed using BioBeads,

following standard protocols (Zoonens et al. 2005). The

remaining amount of detergent in the sample was assessed by

1D 1H NMR measurements. The final NMR sample contained

1 mM OmpX with deuterated A8-35 in a standard NMR

buffer (20 mM sodium phosphate, 100 mM NaCl, 5/95 %

D2O/H2O, pH 8.0). Titration of the OmpX solution was per-

formed by adding the paramagnetic relaxation enhancement

agent Gd(DOTA)- (DOTAREM; a gadolinium ion chelated

with 1,4,7,10-tetraazocyclododecane-N,N0,N00,N000-tetraacetic

acid; Laboratoire Guerbet, France) from an aqueous stock

solution. The 2D [15N,1H]-TROSY spectra for the

Gd(DOTA)- titration were recorded with 16 transients per

increment, t1max(15N) = 44 ms, t2max(1H) = 96 ms, at 30 �C

on a Bruker DRX 750 MHz NMR spectrometer with a triple

resonance TXI probe. Measurement of the rotational correla-

tion time was taken with the TRACT method (Lee et al. 2006).

BR was expressed using a cell-free expression system and was

refolded into DDM detergent micelles, DMPC lipid

bilayer nanodiscs or A8-35 following published protocols

(Etzkorn et al. 2013). NMR spectra of BR in the different

surfactant environments were recorded under identical buffer

conditions (20 mM sodium phosphate pH 7.3, 50 mM NaCl,

8 % D2O).

Results and Discussion

The 8-stranded b-barrel membrane protein OmpX was

refolded into dihexanoylphosphocholine (DHPC) detergent

micelles (Fernández et al. 2004; Pautsch et al. 1999) and

subsequently transferred to A8-35 (Catoire et al. 2009).

The correct fold of the protein in A8-35 was assessed by

comparing the 2D [15N,1H]-TROSY spectra of OmpX/A8-

35 and OmpX/DHPC (Fig. 1a, b). The glycine resonances,

which are upfield in the nitrogen dimension, as well as the

b-sheet peaks, which are shifted downfield in the proton

dimension, were found to feature highly similar chemical

shifts in both spectra and thus virtually identical peak

patterns resulted for 71 amide moieties. The high similarity

of resonance frequencies for large parts of the protein

backbone allows unambiguous transfer of resonance

assignments from OmpX in DHPC micelles to OmpX/A8-

35 complexes and, at the same time, directly indicates

identical secondary and tertiary structure for these residues

under both conditions. Importantly, most of the identified

residues are located in the b-barrel region, confirming that

the protein adopts the same fold in both environments.

Measurements of the 1H amide proton resonance line

widths show that these are increased in the complex with

A8-35 amphipols compared with DHPC by a factor

of approximately 2.0 (Fig. 1). Broader resonance lines of

966 M. Etzkorn et al.: Membrane Protein/Amphipol Interactions Studied by NMR

123



b-barrel membrane proteins in A8-35 as compared with

detergent micelles have previously been observed for

OmpX (Catoire et al. 2010) and for the transmembrane

domain of OmpA (Zoonens et al. 2005). We address the

contributions of decreased Brownian motion to the line

width by measurements of the rotational correlation time sc

with the TRACT method (Lee et al. 2006). Thereby, sc was

found to be 39 ± 5 ns in our OmpX/A8-35 preparations,

which are larger by a factor of 1.85 than the value of 21 ns

reported in DHPC micelles (Lee et al. 2006). Since the

resonance line width scales in first order linearly with sc,

these measurements can largely rationalize the increased
1H line width. Interestingly, previously reported prepara-

tions of OmpX/A8-35 complexes featured a sc value of

31 ns (Catoire et al. 2010). This difference may be attrib-

uted to the absence of EDTA in our sample buffer. EDTA

has been shown to sequester residual Ca2? ions, which can

bridge A8-35 particles involved in complexes with mem-

brane proteins, reducing molecular tumbling (Picard et al.

2006; Catoire et al. 2010). For solution NMR studies, it

should thus be generally recommended to include EDTA in

the preparations of MP/A8-35 samples.

The surface accessibility of amide moieties in OmpX/

A8-35 complexes was mapped using the paramagnetic

water-soluble relaxation agent Gd(DOTA)- (Fig. 2). In

these experiments, the solvent accessibility is quantified by

the intermolecular paramagnetic relaxation enhancement

effect, as expressed by the relaxivity constant e (Caravan
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Fig. 1 Global fold

characterization of OmpX in

partially deuterated A8-35. 2D

[15N,1H]-TROSY spectra of

a 1 mM [U-15N, 75 %-2H]-

OmpX in complex with

deuterated A8-35 amphipol and

b OmpX in DHPC solution,

both recorded at 30 �C. c 1D

cross sections of two glycine

resonances marked with an

arrow in panels a and

b. d TRACT analysis. Symbols

represent for experimental data

(integrals of the region

8.5–10.5 ppm, circles = Ra,

squares = Rb). Black lines

represent exponential fits,

resulting in Ra = 33 Hz,

Rb = 129 Hz and sc = 39 ns
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et al. 1999; Hilty et al. 2004). Thereby, e is an indicator of

the minimal distance that the paramagnet can approach a

given amide moiety. Large values of e indicate close

minimal distances and thus a high solvent accessibility. For

amide groups in b-barrel membrane proteins, differences in

e correspond to shielding by adsorbed surfactant molecules,

either detergent or APol. Using the value of

e = 2 s-1 mM-1 mM as threshold level for the classifi-

cation of amide moieties into a ‘‘protected’’ and an

‘‘accessible’’ group, we find that of the 71 assigned reso-

nances of OmpX in A8-35 amphipols, 57 are protected and

14 are accessible. The accessible amide moieties are

located in the turns and loops of OmpX, and the protected

amides are located in the barrel region (Fig. 2). In addition,

35 well-resolved, but unassigned resonances were detected

in these titration experiments, out of which 30 are acces-

sible and 5 are protected. The narrow chemical shift dis-

persion of these 35 resonances, suggests that most of them

are located in loop and turn regions of OmpX. The relax-

ivities of OmpX in A8-35 correlate remarkably well with

OmpX in the detergent DHPC (Fig. 3). Using the same

classification of amide moieties, we find that of the 71

assigned resonances, 54 are protected and 10 are accessible

in both conditions (Fig. 3). Only 7 resonances are in dif-

ferent classes in the two preparations. Overall, the solvent

accessibility mapping shows that both surfactants adsorb

specifically onto the hydrophobic surface of OmpX and in

a similar topology (Hilty et al. 2004). These findings are

consistent with previous NMR (Catoire et al. 2010) and

recent MD (Perlmutter et al. 2014) data. A8-35 thus acts as

a suitable membrane mimetic for OmpX.

In a second series of experiments, it was examined how

a poly-His tag fused to the N-terminus of the archaebac-

terial a-helical membrane protein BR interacts with each of

three different surfactant environments: The detergent

DDM, DMPC-based lipid bilayer nanodiscs and A8-35. It

has been shown previously that A8-35-trapped BR is both
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Fig. 2 Surface accessibility of OmpX/A8-35 complexes. a Paramag-

netic relaxivity e of backbone amide moieties by Gd(DOTA)-,

plotted versus the amino acid sequence of OmpX. The secondary

structure elements of OmpX are indicated below. b Structure of

OmpX [PDB 1QJ8; Vogt and Schulz (1999)], where all amide

moieties of OmpX in A8-35 that could be unambiguously assigned

are shown as spheres. Gray and magenta colors indicate protected

and accessible amide moieties, respectively, as classified by the

threshold level of e = 2 s-1 mM-1 (dashed line in panel a)
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Fig. 3 Comparison of surface accessibilities of OmpX/A8-35 and

OmpX/DHPC. Correlations of relaxivities e of OmpX/A8-35 deter-

mined in the present work for 71 residues are correlated with the

corresponding values in OmpX/DHPC (Hilty et al. 2004). Dashed

lines denote the threshold level of e\ 2 s-1 mM-1 used for the

classification of residues, and the gray area highlights the residues

classified as protected in both conditions. Residues are colored

according to their location in the OmpX structure (PDB 1QJ8): black,

b-strand within [2 positions from end; magenta, loops and turns;

blue, b-strand within B2 positions from end
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stable and functional (Dahmane et al. 2013; Gohon et al.

2008), and that its transmembrane, inner core region does

not experience significant structural changes when

embedded in either of these three different membrane-

mimicking environments (Etzkorn et al. 2013). However,

APols and nanodiscs do increase the thermal stability of

BR as compared with detergent micelles (Etzkorn et al.

2013; Popot 2010). In addition, NMR data indicate that for

several solvent-exposed loop residues, the APol environ-

ment shows closest similarity to solid-state NMR results

obtained on BR in its native purple membrane (Etzkorn

et al. 2013). Here, it was investigated whether a poly-His

tag fused at the N-terminus of BR interacts with the sur-

factant belt. For this assessment, use was made of the

differential proton exchange rates of unprotected and pro-

tected imidazole protons. Solvent-accessible imidazole

protons of the histidine ring feature proton exchange rates

with the surrounding water molecules in the fast chemical

exchange regime and thus are not detectable in the NMR

spectrum (Plesniak et al. 2011). 2D TROSY NMR spectra

of BR in DDM solution and in lipid bilayer nanodiscs

feature intense correlation crosspeaks in the imidazole

spectral region (Fig. 4). These resonances could be

unambiguously assigned to the poly-His tag, because BR

does not contain any histidine residue in its natural amino

acid sequence and because these resonances disappeared in

equivalent preparations of the protein after selective

cleavage of the poly-His tag with factor Xa (data not

shown). The presence of histidine resonances indicates that

the tag is at least partially protected from fast exchange

with water in DDM and lipid bilayer nanodiscs. Interest-

ingly, the resonances are not detected in BR/A8-35 com-

plexes suggesting that the poly-His tag is directly

accessible to the solvent and not embedded in the APol

belt. These observations show a remarkable difference

between APols, detergent and nanodiscs, possibly due to

the relatively small volume of polar moieties in A8-35

(carboxylate groups), as compared with glyceropho-

sphatidylcholine in nanodiscs and maltoside in DDM.

Conclusion

As increasingly sophisticated surfactants are developed to

handle membrane proteins in aqueous solutions, it becomes

apparent that attention should be paid to their effects on

membrane protein structure and dynamics, as compared

with biological membranes (Zhou and Cross 2013). Recent

NMR data, indeed, show that various environments may

affect the extramembrane loops of BR (Etzkorn et al.

2013), whereas MD calculations suggest that the dynamics

of both the b-barrel and loops of OmpX are damped in A8-

35 as compared with DHPC (Perlmutter et al. 2014). The

present experiments show, using these two membrane

proteins as models, that amphipol A8-35 does not detec-

tably interact with either the extramembrane regions of

OmpX nor with a tag fused at the N-terminus of BR.

Whereas the absence of such contacts cannot be generally

inferred, the present data do confirm that APols represent a

well-suited medium for biophysical and biochemical

studies of integral membrane proteins in aqueous solutions.
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