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Abstract Motivated by the applications of ultrasonic

particle manipulation in a biotechnological context, a study

on acoustophoresis of hollow and core-shell particles is

presented with analytical derivations, numerical simula-

tions and confirming experiments. For a long-wavelength

calculation of the acoustic radiation forces, the Gor’kov

potential of hollow, air-filled particles and particles with

solid or fluid core and shell is derived. The validity as well

as the applicable range of the long-wavelength calculation

is evaluated with numerical simulations in Comsol Multi-

physics�. The results are experimentally verified in the

acoustic field of an intrinsically two-dimensional fluid

resonance mode, which allows for a more complex analysis

than the common one-dimensional ultrasonic standing

waves or their superposition to two-dimensional fields.

Experiments were conducted with hollow glass particles

(13.9 lm diameter) in a microfluidic chamber of

1.2 mm 9 1.2 mm 9 0.2 mm on a silicon-based device

with piezoelectric excitation around 870 kHz. The descri-

bed resonance mode is of additional interest for particle

trapping and medium exchange on certain particle types,

and it reveals a novel approach for particle characterization

or separation.

Keywords Acoustophoresis � Acoustofluidics �
Ultrasonic particle manipulation � Core-shell

particles � Gor’kov potential

1 Introduction

The movement of particles by the forces of an acoustic

field, namely acoustophoresis, continues to hold significant

promise for emerging applications in bio- and microtech-

nology on lab-on-a-chip systems. Ultrasonic particle

manipulation offers methods for microfluidic tasks such as

the handling (Manneberg et al. 2009), positioning (Oberti

et al. 2007), separation (Laurell et al. 2007) and charac-

terization (Hartono et al. 2011) of cell-sized particles, as

recently reviewed in Lab on a Chip (Bruus et al. 2011).

The main focus of recent works on acoustophoresis has

been on the manipulation of homogeneous, full particles.

However, hollow and filled core-shell microparticles, double

emulsions as well as droplets with encapsulated microbeads

have experienced an increased interest in the microfluidic

community. Such particles exhibit properties that are sub-

stantially different from those of homogeneous particles,

thus making them attractive from both a scientific and a

technological viewpoint. Microfluidic platforms for the

fabrication of such particles are readily available: Utada

et al. (2005) proposed the generation of double emulsions on

a microcapillary device. Hennequin et al. (2009) and Choi

et al. (2009) synthesized microcapsules with controlled

geometrical and mechanical properties. Jeong et al. (2012)

recently reported on double emulsion droplets, silica cap-

sules and microfluidic emulsification. A variety of
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biotechnological applications including encapsulation and

delivery of drugs, cells, microbeads and nutrients, high

throughput screening, catalysis, separation, sensors and

microreactors are feasible (Griffiths and Tawfik 2006),

whereas intrinsic advantages of microparticles come into

play, for example their large specific surface area and tunable

morphologies. Furthermore, ultrasound contrast agents as

well as commercially available magnetic particles are based

on a core-shell structure. Acoustophoresis offers a valuable

manipulation method for these particles, which is one of the

motivations of the paper at hand. In addition, hollow parti-

cles allow their buoyancy to be tuned to the suspending fluid,

such that acoustophoresis processes could be further opti-

mized with respect to minimal particle sedimentation.

Acoustic theory on hollow and shelled/filled particles in

nonviscous fluids has been well studied over the past few

decades. Hasegawa et al. (1993) derived the acoustic

radiation pressure on a spherical shell placed in a plane

progressive wave. Mitri (2005) extended Hasegawa’s work

by deriving the acoustic radiation force on elastic and

viscoelastic shells in standing wave fields. Their derivation

is valid for arbitrary ratios between particle size and

wavelength. As distinguished from this work, regarding

acoustophoretic theory, the goal of this paper lies in the

calculation of acoustic radiation forces for hollow and

core-shell particles in the framework of Gor’kov’s theory

(Gor’kov 1962) in order to provide an expedient long-

wavelength approximation. This approach based on Gor’-

kov’s theory results in a simplification of the equations, so

they can efficiently be evaluated with analytical calcula-

tions and not only by complex and numerically intensive

calculations on computers. Furthermore, the derived

equations give insight into the underlying physical effects.

The validity of our approach is analyzed with numerical

studies, which confirmed our approach in the typical

wavelength range of applied acoustophoresis.

To provide a complete picture, enlightening experiments

were conducted in a rectangular microfluidic chamber with

a similar design as Manneberg et al. (2008b), but in a

different operation mode. Whereas experimental acousto-

phoresis on micro-electro-mechanical systems (MEMS)

dealt mostly with one-dimensional ultrasonic standing

waves or their superposition to two-dimensional fields so

far (Oberti et al. 2007; Manneberg et al. 2008b), here, we

employ a different and intrinsically two-dimensional res-

onance mode. This resonance mode within a rectangular

chamber geometry was chosen because it reveals particle-

dependent acoustophoretic effects which are not obser-

vable in one-dimensional standing waves within common

channel geometries or in the superposition of such one-

dimensional fields within chambers. Additional to the

experimental evaluations of this novel resonance mode

itself, it allows to confirm our coinciding analytic and

numerical findings regarding the specific acoustophoretic

behavior of hollow particles. A discussion of the varying

force potentials within the chamber is a further step toward

particle-dependent acoustophoresis with its promise for

particle characterization and separation. The chamber will

also be discussed in the context of its biotechnological

applications, namely acoustic particle traps (Evander and

Nilsson 2012) for long-term microscopy studies (Vanher-

berghen et al. 2010), analysis of perfused particle clusters

(Lilliehorn et al. 2005) with medium exchange (Evander

et al. 2007), bead-based bioaffinity assays (Wiklund et al.

2012; Wiklund and Hertz 2006) and the selective trapping

of bioparticles (Svennebring et al. 2009).

The studies of this paper will allow to expand acousto-

phoresis on hollow and core-shell particles. We aim at

providing a theoretical and experimental basis for the on-

chip handling of such microparticles, paving the way for

their manifold biotechnological applications. Along this

way, novel particle-dependent aspects of two-dimensional

ultrasonic particle manipulation are revealed.

2 Acoustophoretic theory

2.1 Basic equations

The basic equations for the calculation of acoustophoretic

forces on particles are recapitulated in the following. The

Gor’kov potential U (Gor’kov 1962; Bruus 2012b) in the

acoustic domain reads:

U ¼ 2pr3
oqwa

p2
1

� �

3q2
wac2

wa

f1 �
v2

1

� �

2
f2

� �
ð1Þ

with the outer particle radius ro, the density qwa and the

speed of sound cwa in the fluid (here water), the first-order

pressure and velocity fields p1, v1 and the factors f1, f2
which depend on the particle and fluid materials. qwa is the

density of water in the quiescent state (namely the zero

order density q0). v1 describes the magnitude of the real

part of the complex velocity field vector, v1 ¼ Re v1ð Þk k2.

Time averaging is denoted by h.i. The Gor’kov potential is

valid for particles with ro « k with the acoustic wavelength

k, in other words, in the long-wavelength range. Particles in

the acoustic domain are attracted to the minimum of the

Gor’kov potential U, which is a particle-dependent

weighted sum of p2
1

� �
and v2

1

� �
. The acoustic radiation

force F on a particle equals

F ¼ �rU ð2Þ

The first factor f1 yields

f1 ¼ 1� jp

jwa

ð3Þ
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with the compressibility jp of the particle material and jwa

of the surrounding water. Hereby, the compressibility j is

defined as

j ¼ � 1

V

oV

op
ð4Þ

with the volume V. For fluids, the compressibility is

calculated as

j ¼ 1

qc2
ð5Þ

For a solid, its compressibility is the inverse of the bulk

modulus K of elasticity:

j ¼ 1

K
¼ 3 1� 2mð Þ

E
ð6Þ

with Young’s modulus E and Poisson’s ratio m. The second

factor f2 determines the influence of the velocity field in the

Gor’kov potential. With the particle density qp it is given

as

f2 ¼
2 qp � qwa

� �

2qp þ qwa

: ð7Þ

2.2 Derivation of f1, f2 for hollow particles

We propose the calculation of acoustic radiation forces on

hollow particles, i.e., particles with a linear elastic solid

shell filled with air, by deriving their factors f1, f2 in the

Gor’kov potential (Eq. 1). This approach is outlined in the

following by density and compressibility considerations.

The derivation of these factors is motivated by their

influence on the force potentials of later experiments,

where they caused a particle-dependent acoustophoretic

response.

For the derivations of the next two sections, we build on

certain assumptions: the long-wavelength assumption and

spherically symmetric particle deformation, both underly-

ing Gor’kov’s theory, and the assumption of linear elas-

ticity. The first two limitations will be clarified with

numerical simulations in Sect. 2.4. Concerning the third

limitation, a linear analysis is appropriate for the particles

discussed here; however, a nonlinear analysis might

become necessary for shells undergoing large deformations.

For the calculation of f2 from Eq. 7, the spatially aver-

aged density �qp of a hollow particle is relevant. It is cal-

culated by volume considerations as

�qp ¼ qshell 1� a3
� �

ð8Þ

with the density qshell of the shell’s bulk material and the

ratio a = ri/ro between the inner particle radius ri and the

outer radius ro as illustrated in Fig. 1, while the density of

the air fill is neglected.

For the calculation of f1, the compressibility jp of a

hollow particle has to be found. Its derivation in linear

elasticity is based on three cornerstones: The equilibrium

equations, strain-displacement relations and pressure

boundary conditions. Spherical coordinates are particularly

suited for this case. Based on these equations, for a pres-

surized hollow sphere the spherically symmetric displace-

ment u at a position rer (where er is a unit vector in radial

direction) can be derived as outlined by, e.g., Bower

(2009). The result is:

uðrÞ ¼ 1

2E r3
o � r3

i

� �
r2

2 pir
3
i � por3

o

� �
1� 2m½ �r3

�

þ pi � poð Þ 1þ m½ �r3
or3

i

	
er

ð9Þ

with outer and inner pressures po and pi and the material

parameters E, m of the shell material. In our case, the outer

pressure equals the atmospheric pressure patm (zero order)

plus the first-order pressure perturbation p1 of the acoustic

field, po = patm ? p1. The inner pressure is assumed to be

approximately constant at pi = patm due to a filling gas,

e.g., air.

Then, the overall volume V of the deformed particle is

V ¼ 4p ro þ u roð Þ � erð Þ3

3
ð10Þ

Now the compressibility jp of the particle around an initial

equilibrium state with po = pi = patm can be derived.

Assuming patm = 0, a small deviation from the initial state

is neglected, which is valid as uinitial roð Þj j\\ro for typical

solid materials at ambient pressure. With Eq. 4, it follows

that:

jp ¼
3

2E 1� a3ð Þ 2� 4mþ a3 1þ m½ �
� �

ð11Þ

As a plausibility check, it can be seen that with ri = 0, the

above equation equals the bulk compressibility of a

homogeneous particle, Eq. 6.

With Eqs. 3 and 7, we plotted the values of f1 and f2 in

Fig. 2. For hollow particles with small values of a, f2 is

similar compared to the case of a homogeneous particle of

the same material which would be at a = ri/ro = 0.

However, as a increases beyond 0.5, we can observe how f2
varies substantially—even the sign of f2 can easily be

changed as for the hollow particles which will be evaluated

ri

ro

po

pi

Fig. 1 Illustration of a hollow

glass particle (LSM image, Kis-

ker PBGH–18) with outer radius

ro & 7 lm, inner radius ri and

outer and inner pressures po, pi
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in the experimental Sect. 3 (hollow glass particles Kisker

PBGH–18, material parameters given in Table 1). On the

other hand, f1 is found to be less sensitive to the inner

radius of a hollow particle. A common value to charac-

terize the particle behavior in a one-dimensional standing

wave is the acoustophoretic contrast factor (Yosioka and

Kawasima 1955):

/ ¼ f1

3
þ f2

2
¼ 1

3

5
qp

qwa
� 2

2
qp

qwa
þ 1
� jp

jwa

 !

ð12Þ

Most common particles (e.g., glass, polystyrene, cells)

exhibit / [ 0, so they are attracted to the pressure nodes of

a one-dimensional standing wave. Particles with /\0

[e.g., lipid particles, air bubbles smaller than their resonant

size (Blake 1949)] are moved toward the pressure antin-

odes. In Fig. 2, it becomes clear that—depending on their

hollowness—hollow solid particles with /\0 can be

fabricated even from a material which yields / [ 0 for

homogeneous particles. The relevance of this interesting

finding for biotechnological separations will be discussed

in the conclusions.

2.3 Derivation of f1, f2 for core-shell particles

Whereas the last section covered hollow particles with

negligible core material properties, here we will proceed to

particles with a solid or fluid core and shell material.

Figure 3 gives a sketch of such a particle.

For the calculation of f2, the spatially averaged density

of the particle yields

�qp ¼ qshell 1� a3
� �

þ qcorea
3 ð13Þ

To determine f1, as in the last section, we calculate a

particle’s overall compressibility jp. First, the

compressibility ji of the fluid or solid core material

follows from Eqs. 5 or 6. According to Eq. 4, we can then

write

opi

oui

¼ � 1

Vji

oV

oui

¼ �S

Vji

¼ �3

riji

ð14Þ

with ui ¼ u rið Þ � er and the particle surface area S, so for

small volume variations, the pressure pi can be linearized

as

pi ¼
�3ui

riji

þO u2
i

� �
ð15Þ

where we neglect the O u2
i

� �
terms.

Now, we have to distinguish between solid and fluid

shell materials. First, we will treat particles with a solid

shell, then particles with a fluid shell. For a linear elastic

solid shell of material parameters E and m, with Eqs. 15 and

9 evaluated at ro and ri, we can calculate the compress-

ibility of the overall particle with an analogous calculation

to that in the last section:

jp ¼ �3ð1þ mÞð�3þ Eji þ 6mÞa3
�

þ3ð�1þ 2mÞð3þ 2Eji þ 3mÞg

� 2Eð�3þ Eji þ 6mÞa3 � Eð3þ 2Eji þ 3mÞ
� 	�1

ð16Þ

A first special case is when ji !1, which means an

approximation for gases such as air. Then, the above

equation simplifies into the same result as for the hollow

particles, Eq. 11. Further, special cases are plausible: With

ri = ro, the equation yields jp = ji. With ri = 0, we get

again the bulk compressibility of a homogeneous particle,

Eq. 6, and if the compressibility of core and shell is equal,

the dependency on a cancels out.

In Fig. 4, the above equation is plotted for the example

of a glass-shelled particle. Indeed, the calculation with an

air core results in almost the same curve as for the simpler

approximation of a hollow particle, Eq. 11. A fill with

0 0.2 0.4 0.6 0.8 1

−0.5

0

0.5

1

α=r
i
 /r

o

 f
1

f
2

Φ

Fig. 2 The prefactors f1 and f2 of Gor’kov’s potential for a hollow

glass particle and its acoustophoretic contrast factor / are plotted over

the ratio a between its inner and outer radius ri and ro. The vertical

line denotes this ratio for the hollow glass particles of the later

experiments

Table 1 Material parameters and particle properties at room temperature. f1 and f2 are calculated for particles in water as suspending fluid

Material Speed of sound (m/s) Density f1 f2 Diameter/other

Water (Bruus 2012a) cwa = 1497 qwa = 998 kg/m3 0 0

Copolymer (Oberti et al. 2007) cco = 3000 qco = 1050 kg/m3 0.76 0.034 2 ro = 17 lm

Ca-alginate 2.5 % (Salsac et al. 2011) cal = 1533 qal = 1096 kg/m3 0.13 0.061 2 ro & 100 lm

Pyrex (Bruus 2012a) cpy = 5661 qpy = 2230 kg/m3 0.94 0.45 E = 63 GPa,m = 0.22

Hollow glass (PBGH–18) �qho ¼ 600 kg=m3 0.602 -0.362 2 ro& 13.9 lm, 2 ri& 12.5 lm
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water leads to a more compressible particle compared to a

homogeneous glass particle because jwater [jglass. Vice

versa, a glass particle becomes less compressible when

filled with steel because jsteel \ jglass.

Now we consider a particle with a fluid shell around a

fluid core (double emulsion) or solid core. With Eq. 4 and

po = pi in this case, we can derive the particle’s

compressibility

jp ¼ �
1

V

o Vi þ Voð Þ
opo

¼ 1

V
Viji þ Vojoð Þ ð17Þ

¼ jia
3 þ jo 1� a3

� �
ð18Þ

with the volume Vi of the core, the volume Vo of the shell,

the particle volume V = Vi ? Vo and the compressibility

jo of the fluid shell material. The result equates to the

spatially averaged compressibility of the core-shell particle

with the special cases jp = ji for ri = ro and jp = jo for

ri = 0 or for jo = ji.

With these compressibilities, f1 can be calculated

according to Eq. 3. The formulas also allow one to deal

with particles having more than one shell layer by calcu-

lating the compressibility of the core and most inner shell

first, reinserting this result in a next step as ji seen by the

next shell layer and so forth.

The discussed findings are of interest concerning acou-

stophoresis of biological cells. The approach to model a

cell with a core-shell particle as derived above suggests

itself. Lim et al. (2006) give a review on the various

existing mechanical cell models, where it becomes clear

that the modeling of a cell as a core-shell particle is a rather

rough model, because it does not include viscoelasticity.

Nevertheless, several researchers report evidence of an

elastic nature to cells (Caille et al. 2002; Mishra et al.

2012), whereas the varying mechanical properties of the

organelles contribute differently to an overall acoustic

radiation force. Concluding, we believe our model to be

useful for at least a qualitative information. For example,

organelles within the cell with higher stiffness or density

than the surrounding water increase the factors f1 or f2 of

the overall cell. With such approaches, possibly insights

into the cell’s internal structure might be inferred from

their acoustophoretic behavior.

2.4 Numerical simulations on the acoustic radiation

force

In this section, the analytic calculations of hollow particles

(Sect. 2.2) are compared to and validated with numerical

simulations of the acoustic radiation force. The numerical

simulations are computationally intensive, complex and

time-consuming. However, their validation of our former

analytic derivations is crucial, so in future, the expedient

analytic equations can be used by a broad audience for

significant and simple acoustophoretic evaluations.

The former analytic calculations are valid under the

assumptions of Gor’kov’s theory, namely in the long-

wavelength range. We are considering numerical simula-

tions, because then Gor’kov’s theory and its assumptions

can be circumvented by calculating the acoustic radiation

force on a particle (in an inviscid fluid) with the more

fundamental equation (Bruus 2012b; Dual et al. 2012;

Yosioka and Kawasima 1955; Mishra et al. 2012)

F ¼ 1

2
qwa

Z

S0

v2
1

� �
� 1

q2
wac2

wa

p2
1

� �

 �

ndS

� qwa

Z

S0

n � v1ð Þv1h idS

ð19Þ

where the integration takes place over an arbitrary fixed

surface S0 enclosing the particle. The calculation of F with

the above equation is not restricted to the long-wavelength

range; however, it requires a particle to be placed in the

simulation domain at a specific location. This requirement

clarifies the value of the convenient Gor’kov approach,

which allows to calculate a force field directly from the

pressure- and velocity fields without any particle in the

simulation domain.

We chose the software Comsol Multiphysics� to evalu-

ate the above expression. In a three-dimensional

modeling space, a single particle was placed in a speci-

fied one-dimensional standing wave field of p1 xð Þ ¼

po

pi

core

shell

ri

ro

surrounding
fluid
(water)

Fig. 3 Sketch of a filled spherical particle, consisting of a core and a

shell, both either fluid or solid. po, pi are the outer and inner pressures

0 0.2 0.4 0.6 0.8 1

5

10

15

x 10
−11

α=r
i
 /r

o

κ p

Without core (hollow sphere)
Air core
Water core
Steel core

Fig. 4 Compressibility jp of a glass-shelled particle for several core

materials
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pa cos kxxð Þ e�ixt as illustrated in Fig. 5. The particle was

located in the middle between the pressure node and anti-

node in order to experience maximal acoustic radiation

force. The simulations consisted of two acoustic domains,

namely the surrounding water and an air core in the particle,

as well as one linear elastic domain for the particle shell of

glass. The corresponding one-dimensional analytic calcu-

lation (Bruus 2012b)

F ¼ F � ex ¼ 4p
f1

3
þ f2

2

� �
kxr3

oEac sin 2kxxð Þ ð20Þ

with the acoustic energy density Eac = pa
2/(4qwa cwa

2 ) and

f1,f2 according to Eq. 11 is compared to the simulation

results of an air-filled glass particle in the plot of Fig. 6 for

a exemplary acoustic pressure amplitude of pa = 0.2 MPa

(Barnkob et al. 2010). The agreement between the analytic

calculation and the simulation verifies the results for the

chosen frequency and radius values which lead to the

parameter kx ro = 0.11, which is a typical value in applied

acoustophoresis.

With regard to the long-wavelength constraint, we build

on numerical simulations to characterize a limit up to

which the analytic calculations are valid. Figure 7 shows a

plot over some magnitudes of the kxro = xro/cwa value.

The dimensionless quantity Y = F/(SEac) [called Y factor

or acoustic radiation pressure function (Hasegawa et al.

1993)] is plotted, which is the force F per cross-sectional

area of the particle S = pro
2 and per energy density Eac. For

the smaller kx ro, the long-wavelength assumption ro \\ k
of Gor’kov’s derivation is met. Therefore, the analytic

calculation matches the simulations well, and we conclude

that it is a reasonable approximation up to about kx ro&
0.3, so the typical range of applied acoustophoresis is well

covered and our analytical approximations hold well in this

range. However, for larger kx ro, the approximation error

becomes increasingly large: At kx ro = 0.3, the error

amounts to 7 % for a = 0, to 11.5 % for a = 0.85 and to

2.5 % for a = 0.93. The relative error appears different for

these a values because of differently weighted f1 and f2.

The difference between the analytic results and the simu-

lations at large kx ro values is comprehensible: In the long-

wavelength assumption, the whole particle experiences an

almost uniform pressure around itself, whereas at large kx

ro the relatively large particle extends over a wide area of

the wave, so the pressure on one side of the particle differs

from the pressure on its other side, which affects the wave

scattering and thus the radiation force. Additionally, at

larger kx ro values, resonances of the particle core or shell

occur (a core resonance is visible in the plot around kx ro &
0.55), which are also not comprised in Gor’kov’s model.

P
M

L

PML

P
M

L

PML

Air-filled
glass
particle

x

Fig. 5 Illustration of the three-dimensional acoustic numerical sim-

ulation. An air-filled particle is placed in a preset one-dimensional

standing wave field, whose sinusoidal pressure field is visualized with

a contour plot (vertical lines). The field plot represents the scattered

pressure field, which is absorbed by perfectly matched layers (PML)

at the borders of the modeling space

0 0.2 0.4 0.6 0.8 1

0

5

10

15

x 10
−11

α=r
i
 /r

o

A
co

us
tic

 r
ad

ia
tio

n 
fo

rc
e 

[N
]

Analytic calculation
Numerical simulation

Fig. 6 Acoustic radiation force on the example of a hollow glass

particle with radius ro = 7 lm in a one-dimensional standing wave of

3.7 MHz. The comparison between the analytic curve and the

simulation results with the more general Eq. 19 shows good

agreement, verifying the former in the long-wavelength range, here

with kx ro = 0.11

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

1.5

2

2.5

 k
x
 r

o

 Y

A, α=0 (homogeneous particle)

A, α=0.85
A, α=0.93
N, α=0 (homogeneous particle)

N, α=0.85

N, α=0.93

Fig. 7 Y factor (acoustic radiation pressure function), comparing

analytic calculations ‘‘A’’ on homogeneous and hollow glass particles

with numerical simulations ‘‘N’’ of homogeneous and air-filled

particles for 3 exemplary a = ri/ro values. For small kx ro values, the

analytic approximation is valid and matches the simulation well. As

expected and characterized with this plot, for higher kx ro values—

where the long-wavelength assumption is not met—the analytic

approximation is no longer valid, and inner particle resonances are

visible
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Yet, the simulation can resolve these effects, which were

also analytically described by the model of Mitri (2005).

2.5 A two-dimensional resonance mode and its effect

on hollow particles

Motivated by the experiments presented in Sect. 3, we

discuss the background theory of a two-dimensional reso-

nance mode. This resonance mode will allow to observe an

acoustophoretic response which is specific for the f1 and f2
factors of hollow particles. It is this dependency on two

different physical parameters which proves this resonance

mode to be most valuable here compared to the common

one-dimensional resonance modes, where a dependency on

only one parameter, the acoustophoretic contrast factor /,

can be observed. We follow the theory as summarized by

Bruus (2012a), where the detailed derivations are given.

With first-order perturbation theory for linear acoustics of

inviscid fluids, the Helmholtz equation

r2p1 ¼ �
x2

c2
wa

p1 ð21Þ

is valid for the first-order pressure field p1, the angular

frequency x = 2pf = k cwa of its time-harmonic

oscillation, the wave number k and the speed of sound

cwa in the fluid, which is water here. Since we are

considering a microfluidic chamber as acoustic domain

with its height dimension being much smaller than half the

acoustic wavelength k/2, we assume a two-dimensional

pressure field in the chamber along its length l and width

w. The following pressure fields with spatial coordinates

x and y are possible solutions to the Helmholtz equation

above (with the point of origin x = y = 0 in a chamber

corner):

p1 x; yð Þ ¼ pa cos kxxð Þ cos kyy
� �

e�ixt ð22Þ

with a pressure amplitude pa, the wave numbers kx = nxp/

l and ky = nyp/w and the numbers nx = 0, 1, 2,

..., ny = 0, 1, 2, ... of the eigenmode, which we refer to

as the ‘‘ nx; ny

� �
mode’’. As usual in the phasor approach

with the time-harmonic term e-ixt, the physically

meaningful pressure is meant to be the real part Re p1ð Þ
of the complex p1 value. These solutions fulfill the hard-

wall boundary conditions, which are a valid

approximation for a water-silicon boundary as present in

the experiments. The oscillation frequency of the pressure

field is given as

f
nx;nyð Þ ¼

cwa

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2

x

l2
þ

n2
y

w2

s

ð23Þ

The corresponding first-order velocity vector field v1

follows:

v1 x; yð Þ ¼ �i

qwax
rp1 ð24Þ

¼ ipa

qwax
kx sin kxxð Þ cos kyy

� �

ky cos kxxð Þ sin kyy
� �

� �
e�ixt ð25Þ

The time-averaged squared pressure and velocity fields

which determine the Gor’kov potential yield

p2
1

� �
¼ p2

a

2
cos2 kxxð Þ cos2 kyy

� �
ð26Þ

v2
1

� �
¼ p2

a

2q2
wax

2
k2

x sin2 kxxð Þ cos2 kyy
� �

þ k2
y cos2 kxxð Þ sin2 kyy

� �n o

ð27Þ

Previous experimental work in two-dimensional

acoustophoresis based on the superposition of two one-

dimensional modes, e.g., a (1, 0) mode with a 0; 1ð Þ mode

in Manneberg et al. (2008b) with different driving

frequencies. Oberti et al. (2007) explained such

superpositions in theory and experiments for two

standing waves with the same as well as differing driving

frequencies. In contrast, in our experiments, the

intrinsically two-dimensional (1, 1) mode will be employed,

because it has a different specific effect on hollow and

homogeneous particles as outlined in this section. Following

Eq. 23, this mode occurs at a frequency fð1; 1Þ ¼
ffiffiffi
2
p

fð1; 0Þ in

square chambers.

In the (1, 1) mode, the p2
1

� �
term has a different

analytical form than the v2
1

� �
term, as it becomes clear in

the plot of Fig. 8a, b. Therefore, in this mode, the pres-

sure and velocity term form a qualitatively different and

unique Gor’kov potential for each particle characteristics

f1 and f2, resulting in a unique particle accumulation

pattern for each particle type. This is different to the

superposition of one-dimensional resonance modes, where

the p2
1

� �
and v2

1

� �
terms showed the same shape as plotted

in Dual et al. (2012), Fig. 4, for the superposition of a

2; 0ð Þ and a 0; 2ð Þ mode. There, only two qualitatively

different cases of Gor’kov potential fields were observed,

namely the case with a positive or a negative acoustic

contrast factor /. Beyond those two cases, the particle

characteristics only influenced quantitatively the magni-

tude, but not qualitatively the shape of the Gor’kov

potential.

Generally speaking, a positive and negative factor f1
contributes forces toward the minima and maxima of the

p2
1

� �
field (pressure nodes and antinodes), respectively. A

positive and negative factor f2 contributes forces toward the

maxima and minima of the v2
1

� �
field (velocity antinodes

and nodes), respectively. Therefore, in the (1, 1) mode, the

achievable particle patterns can be classified in 4 catego-

ries, depending on positive and negative factors f1 and f2,

Microfluid Nanofluid (2014) 16:513–524 519

123



which will allow us to distinguish acoustophoretically

between hollow and homogeneous particles.

Representing particles with f1 [ 0 and f2 [ 0, the

Gor’kov potential for homogeneous copolymer particles is

shown in Fig. 8c (material parameters in Table 1). A large

f1 and small f2 lead to a dominating influence of the p2
1

� �

term, arranging the particles in a cross shape, and a minor

influence of the v2
1

� �
-term, which attracts the particles

slightly toward the 4 spots at the chamber edges.

However, the (1, 1) mode has a different effect on hollow

glass particles with f1 [ 0 and f2 \ 0 (here Kisker PBGH–18).

As the force vectors F in Fig. 8d show, these hollow particles

will be strongly attracted to the chamber center because there

the pressure as well as the velocity term are minimal. This

finding will be shown experimentally in the next section.

Notably, the (1, 1) mode is ideal to trap the mentioned

hollow particles in a microfluidic chamber. Its Gor’kov

potential looks quite similar to the one of a superposed (1,

0) and 0; 1ð Þ mode trap for homogeneous particles, yet

those superposed traps cannot trap particles with /\0 or

/ � 0. In the (1, 1) mode, the mentioned hollow glass

particles with / ¼ 0:02 experience a maximal force in the

chamber which is about 10 times higher than in a trap with

switching (Oberti et al. 2009) between the (1, 0) and the

0; 1ð Þ mode with the same pressure amplitude.

Likewise, third and fourth cases in the (1, 1) mode for

particles with f1 \ 0, f2 [ 0 and f1 \ 0, f2 \ 0 (e.g., small

air bubbles) can be derived. (The behavior of air bubbles

depends on their size (Blake 1949). Here, we mean air

bubbles which are smaller than their resonant size, for

larger air bubbles further physical effects come into play.)

In conclusion, the calculation of the force fields for

particles in the (1, 1) mode shows to be highly dependent

on the particle characteristics. Conversely, when we see the

particle pattern formed by a large amount of particles

accumulated in the chamber, their particle characteristics

can be deduced. The specific outlines of the particle pat-

terns in the following experiments of Fig. 10 reveal their

ratio between f1 and f2. This consideration might represent

a novel possibility for particle characterization.

Particle-dependent acoustophoresis has recently gained

momentum especially for experiments related to biological

cells. Hartono et al. (2011) as well as Augustsson et al.

(2010) report the measurement of several cell lines’ con-

trast factors / based on the analysis of particle trajectories

in a (1, 0) mode. Such measurements of mechanical

properties of cells are of great importance to identify cell

types, cell differentiation and cell diseases. Similarly to the

cited work, the presented (1, 1) mode here might also be

employed for cell characterization by trajectory analysis,

whereby a trajectory in the more complex (1, 1) mode

reveals not only one parameter /, but even two parameters

f1 and f2. Such acoustophoretic approaches for on-chip

measurements of a cell’s mechanical properties are

advantageous as they are fast, direct and contactless.

Thinking one step further, the multidimensional particle

dependency of the (1, 1) mode might even be harnessed for

the advancement of acoustofluidic particle separation,

which has recently been shown in the (1, 0) mode (Liu and

Lim 2011; Augustsson et al. 2012); Kanazaki and Okada

2012). The higher (1, 1) mode enables more complex

particle separation, since particles with higher and lower

density or compressibility than the surrounding fluid are

attracted to different spots in the chamber.

3 Experiments in a microfluidic chamber

3.1 Device and experimental setup

Experiments on hollow glass particles were achieved in the

following microdevice.
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Fig. 8 Contour plots in x- and y- direction in the (1, 1) mode (red

maxima, blue minima, zero). The pressure field in a and the velocity

field in b show a differently shaped function. The particle-dependent

Gor’kov potential U comprises both these fields; therefore, each

particle type exhibits a differently shaped U. In c, the Gor’kov

potential for typical solid particles with f1 [ 0, f2 [ 0 (copolymer, see

Table 1) is shown. It is mostly influenced by the pressure term from a,

so it forms a cross shape. The velocity term causes the particle-

attracting potential minimum (blue) to be located at the 4 spots that

are marked with red arrows. In d, the Gor’kov potential for hollow

glass particles (listed in Table 1) with f1 [ 0 and f2 \ 0 is

fundamentally different to the one in c. These hollow particles are

attracted to the center x = kx/4,y = ky/4, which corresponds to the

pressure and velocity minima (color figure online)
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In order to provide an acoustic chamber, a microdevice

with a main part of a 24 mm 9 8 mm silicon plate (wafer

thickness 425 lm) was fabricated as illustrated in Fig. 9. In

the silicon substrate, a 1.2 mm 9 1.2 mm fluidic chamber

was dry etched 200 lm deep inside by an inductive cou-

pled plasma system. The chamber was covered with a glass

plate (thickness 500 lm) by anodic bonding. For the

actuation of the resonances, a 4 mm 9 4mm piezoelectric

transducer (thickness 1 mm, Ferroperm piezoceramics

Pz26) was glued on the bottom of the device with con-

ductive epoxy (Epo-Tek H20E).

As proposed in earlier work (Oberti et al. 2007; Neild

et al. 2007), the piezoelectric transducer had been prepared

by cutting its back side superficially into smaller seg-

mented electrodes. Figure 9b shows the resulting strip

electrodes of 800 lm width, whereas electrode 1 and 2 are

especially intended for excitation in x- and y-direction,

respectively.

For the experiments, the piezoelectric transducer was

excited by a function generator (Stanford Research,

DS345) connected to an amplifier (ENI, 2100L). The

applied excitation voltages ranged between 20 and 40 Vrms.

Both the electrodes 1 and 2 were connected to this voltage

excitation at the same time. The advantage of this electrical

wiring lies in its simplicity: Only one frequency generator

and amplifier are needed, but still an excitation in two

directions is achieved. For filling of the fluidic chamber

with a liquid, a conic inlet and outlet were also etched as

illustrated. At the end of the conic inlet and outlet, the

silicon plate was etched through from the back side, so that

two circular holes were formed. In order to connect these

microscale holes to flexible macroscale tubes, two small

blocks of polydimethylsiloxane (PDMS) of about

7 mm 9 7 mm 9 4 mm were bonded on the silicon back

side, centered above the holes. Through the PDMS blocks,

a hole of about 2 mm diameter had been punched, where

flexible silicone tubes could easily be introduced by a press

fit. The bonding of the PDMS blocks on the silicon device

was enabled by oxygen plasma activation of the surfaces,

which is a widely reported method (Duffy et al. 1998).

The inlet and outlet are designed quite small at the

chamber entrance because of concerns that they might

influence the acoustic field within the chamber. On our

design, these concerns were allayed with confirmative

experiments in the 0; 1ð Þ and (1, 0) mode as well as two-

dimensional acoustic eigenmode simulations of the water

domain. They showed that the proposed pressure field of
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electric
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-

(back side)

Fluidic chamber (front side, )1.2×1.2mm2

Fluid inlet
Fluid outlet

Glass plate
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x

yz

(a)

Grounded
electrode

1
edortcel

E

Electrode 2 800 µm

m
m

4

x

y

(b)

8 mm

Fig. 9 a Three-dimensional sketch of the 24 mm 9 8 mm silicon

microdevice. The centered fluidic chamber, etched in a silicon

substrate, was filled through a conic inlet channel with attached tube

on the device back side. The piezoelectric transducer underneath the

chamber was further patterned as shown in b, the close view on the

back side electrode of the 4 mm 9 4 mm 9 1 mm piezoelectric

transducer. The strip electrodes 1 and 2 were contacted for excitation

in x- and y-direction. The rest of the back side electrode as well as the

electrode on the other side of the piezoelectric transducer were on

ground potential

(a)

(b) (c)

Fig. 10 Experimental results for the (1, 1) mode within a water-filled

microfluidic chamber in a device according to Fig. 9. The key

experiment in a with hollow glass particles of f1 [ 0, f2 \ 0 coincides

well to the Gor’kov potential U in the small inserted plot top left

(Fig. 8d). The cross shape in b is mostly based on the pressure field,

whereas the velocity field additionally draws the (translucent)

particles toward the 4 marked spots at the chamber border in

c. Again these results correspond well to the Gor’kov potential

minima in the plots top left (see also Fig. 8c). (The light, vertical

spots along the left chamber walls are light reflections)
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Eq. 22 is not significantly influenced by the inlet and

outlet. Their conic shape was chosen to prevent clogging of

particles.

The described chamber can easily be scaled down, both

in terms of fabrication technology and physical working

principle. The resonance frequencies correlate inversely

with the chamber side length according to Eq. 23, so the

chamber can be scaled down more than 10 times without

exceeding the typical acoustophoretic frequency range of

\10 MHz (Wiklund 2012) for the experiments in the next

section.

3.2 Experimental results

The analytical discussions (Sects. 2.2 and 2.5) are experi-

mentally verified in this section on the example of 3 dif-

ferent particle types.

The key experiment was conducted with hollow glass

particles, Kisker PBGH-18. Their image was taken with a

laser scanning microscope (Zeiss LSM 5 Pascal) in Fig. 1,

where the focal plane crosses the sphere center. These

particles have a specified outer diameter of 18 lm; how-

ever, in a measurement on 50 particles, an average diam-

eter of 2ro = 13.9 lm with a standard deviation of 4.2 lm

was found. The base material of the hollow particles is

borosilicate, whose precise material parameters are not

known. Instead, we calculated with the material parameters

of the well-defined Pyrex glass (Bruus 2012b), which is

also a borosilicate glass. The averaged density �qp, the bulk

material density q and ro given, ri was calculated with

agreement to the LSM results. The calculation of the tab-

ulated f1 [ 0 and f2 \ 0 follows Eq. 11. All the particle

parameters are listed in Table 1.

By comparing the experimental result of the (1, 1) mode in

Fig. 10a with its Gor’kov potential in Fig. 8d, a match

between theory and experiments is found. The particles could

be aligned quickly, precisely and reproducibly to the shown

square-edged particle pattern in the chamber center, revealing

high acoustic radiation forces. In the theoretical section, the

influence of secondary acoustic forces (Laurell et al. 2007)

(particle-particle interactions, e.g., Bjerknes forces) is

neglected; nevertheless, it might be subject of future work.

For the category of typical homogeneous, solid particles

with f1 [ 0 and f2 [ 0, copolymer and Ca-alginate particles

were considered. For the copolymer particles, the result in

Fig. 10b was achieved in the (1, 1) mode: The particles

accumulated in a cross-like shape, representing the p2
1

� �

field. Because of f2 \\ f1 for copolymer, the influence of

the v2
1

� �
field was found to be too weak to attract the

particles to the edges as expected from Fig. 8c. As

observed in the result of Fig. 10c, the larger Ca-alginate

particles were clearly attracted to the minima of p2
1

� �
and

the maxima of v2
1

� �
as plotted in Fig. 8a, b. The influence

of the velocity field was found to be higher than for the

copolymer particles, because f2 is relatively large compared

to f1 for Ca-alginate.

The calculated resonance frequency according to Eq. 23

for the chamber in Fig. 10a, b with l = w = 1.2 mm is

f 1; 1ð Þ ¼ 882 kHz, the one for the chamber in Fig. 10c with

l = 1.4 mm, w = 1.2 mm is f 1; 1ð Þ ¼ 822 kHz, which

compares well to the corresponding experimentally tested

values of 880, 870 and 809 kHz in these figures, respec-

tively. The small frequency deviations are believed to

be caused by compliant boundaries, temperature shifts

(Augustsson et al. 2011), manufacturing and electrical

wiring imperfections, imprecise material parameters,

interfering resonances of the piezoelectric element and

clamping influences. Regarding manufacturing imperfec-

tions, in particular the dry etching process cannot provide

perfectly vertical chamber walls. Therefore, the length and

width of the chamber at its top and bottom differ, which

influences the resonance frequency band.

Acoustophoretic systems offer great potential for the

trapping of microparticles, as reviewed by Evander and

Nilsson (2012). Acoustic trapping enables e.g., enhanced

particle-based bioassays, facilitated interaction studies of

both cells and particles, enrichment of low concentration

samples and particle washing or fractioning. More specific,

Evander et al. (2007) and Hultström et al. (2007) reported

particle traps where cells are held against a continuous flow

of cell culture medium. In order to address this biotech-

nological scope with our findings, an experiment with

exchange of trapped particles’ suspending fluid is reported

in Fig. 11. A video in the online resources further docu-

ments this experiment. At the beginning of the experiment

in Fig. 11a, the centered cluster of trapped particles is

circular, whereas the larger cluster in Fig. 11b shows a

square form, which is consistent with the form of the

potential lines in Fig. 8d. In order to visualize a fluid

exchange, then a blue dye was introduced to the liquid

flow. Whereas in Fig. 11b, the inflow of the dye can be

seen; about 35 s later in Fig. 11c, the fluid in the whole

chamber was dyed. This trapping under a constant flow of

the suspending liquid allows for the control of the outer

conditions of the particles or for a downstream analysis of

compounds released by biologically or chemically relevant

particle materials such as, e.g., coated hollow particles with

bounded analytes or cells and agglutination assays (Wikl-

und et al. 2013). Our microfluidic device is also interesting

for various biological approaches where long-term obser-

vation of trapped particles is required. The trapping effi-

ciency was found to be dependent on the size of the

aggregated particle cluster. After the cluster has grown to

the size shown in the video, incoming particles were found
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to expel trapped particles; otherwise, the trapped particles

were observed to be stable. The experiments were outlined

in the x- and y-direction of an in-plane chamber; never-

theless, they might also be of relevance for the two-

dimensional focusing of hollow glass particles in a

microfluidic channel (Manneberg et al. 2008a) in z- and x-

or y- direction.

4 Conclusions

The study at hand aimed at the advancement of acousto-

phoresis toward hollow particles and particles with liquid

or solid cores and shells.

Hollow and core-shell particles showed to be acoustoph-

oretically interesting since they allow a designed, tunable and

functionalized particle behavior, especially regarding the

strongly varying density-dependent influence of the velocity

field which is determined by the factor f2. In particular, hollow

solid particles with a negative acoustic contrast factor /\0

are promising in light of their biotechnological applications.

Such ‘‘negative acoustic contrast particles’’ have recently

received increased attention for biotechnological applica-

tions: Cushing et al. (2013) demonstrated the separation of red

blood cells with / [ 0 from functionalized negative acoustic

contrast particles with /\0 for the rapid detection of low

concentrations of biomarkers.

Similarly, hollow particles with /\0 might be sepa-

rated acoustophoretically from particles with / [ 0 as

described by Laurell et al. (2007).

As a further application example of hollow particles, in

a cell suspension, cells of a first type become separable

from cells of a second type by chemically binding the first

to a carrier particle with /[ 0 and binding the latter to a

hollow carrier particle with /\0. Afterward, these binded

complexes can be separated acoustophoretically as outlined

above. The same procedure is feasible for a wide range of

biological sample types, which enables affinity-specific

extraction and sample decomplexing (Augustsson and

Laurell 2012). Another promising application of hollow

particles in acoustophoresis is based on the fact that their

buoyancy can be adjusted. By designing hollow particles

with the same density as their suspending fluid with f2 = 0,

the frequent problem of particle sedimentation on the

microfluidic bottom might be solved.

In the course of experimental evaluations, we observed

the two-dimensional (1, 1) resonance mode to be highly

dependent on the mechanical particle characteristics. Its

particle accumulation pattern changes gradually with the

particle parameters between 4 different cases (f1, f2 [ /

\ 0), unlike one-dimensional acoustophoresis, where only

2 cases occur ð/ [ =\0Þ. As outlined in the paper, this

particle-dependent acoustophoretic behavior offers poten-

tial which might be harnessed for particle characterization

as well as particle separation.
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