J Nanopart Res (2014) 16:2417
DOI 10.1007/s11051-014-2417-z

RESEARCH PAPER

Toward standardized test methods to determine
the effectiveness of filtration media against airborne

nanoparticles

Jing Wang - Paolo Tronville

Received: 12 February 2014/ Accepted: 11 April 2014 /Published online: 7 May 2014

© Springer Science+Business Media Dordrecht 2014

Abstract The filtration of airborne nanoparticles is
an important control technique as the environmental,
health, and safety impacts of nanomaterials grow. A
review of the literature shows that significant progress
has been made on airborne nanoparticle filtration in
the academic field in the recent years. We summarize
the filtration mechanisms of fibrous and membrane
filters; the air flow resistance and filter media figure of
merit are discussed. Our review focuses on the air
filtration test methods and instrumentation necessary
to implement them; recent experimental studies are
summarized accordingly. Two methods using mono-
disperse and polydisperse challenging aerosols,
respectively, are discussed in detail. Our survey shows
that the commercial instruments are already available
for generating a large amount of nanoparticles, sizing,
and quantifying them accurately. The commercial
self-contained filter test systems provide the possibil-
ity of measurement for particles down to 15 nm.
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Current international standards dealing with efficiency
test for filters and filter media focus on measurement
of the minimum efficiency at the most penetrating
particle size. The available knowledge and instru-
ments provide a solid base for development of test
methods to determine the effectiveness of filtration
media against airborne nanoparticles down to single-
digit nanometer range.
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Introduction

Aerosol filtration is used in diverse applications, such
as air pollution control, emission reduction, respira-
tory protection for human, and processing of hazard-
ous materials (Hinds 1999). The rising awareness of
environmental agencies and the general public for a
cleaner environment is forcing many industries to
consider a filtration process in their plants. Another
driving force is the growing necessity of a clean air
environment in many advanced industries, such as
electronics, medical, pharmaceuticals, biological
research, gas turbine and nuclear energy installations,
automotive applications (Tronville and Rivers 2005a,
b), and others.
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The filtration of airborne nanoparticles is becoming
an important issue as they are produced in large
quantities from material synthesis and combustion
emission. Nanoparticles, i.e., particles with at least one
dimension under 100 nm, have high mobility in
airborne form. They may pose a serious health risk
because of the high mobility and the increased toxicity
due to the large specific surface area. Emitted into the
environment, they may potentially lead to new hazards
or increased risks to the environment (Oberdorster
et al. 2005; Maynard and Pui 2007; Wang et al. 2011a).

Filtration has been extensively studied experimen-
tally and theoretically; models for clean fibrous filter
media are well developed and systematically docu-
mented by Brown (1993), Hinds (1999), and Lee and
Mukund (2001). Filtration of nanoparticles, due to its
emerging importance and impact on environment and
health protection, has attracted voluminous research in
recent years. Shaffer and Rengasamy (2009) reviewed
respiratory protection against airborne nanoparticles
and concluded that industrial hygienists and safety
professionals should continue to use traditional respi-
rator selection guidance for workers exposed to
nanoparticles. Mostofi et al. (2010) reviewed the
literature on the filtration performance of mechanical
filters and respirators against nanoparticles. The
review of Wang and Otani (2013) focused on fibrous
filters and their performance against nanoparticles.

The process of air filtration is complicated, and
although the general principles are well known there is
still a gap between theory and experiments (Wang
2013). Questions exist regarding the filtration of
nanoparticles down to single-digit nanometers
because of possible thermal rebound; the electrostatic
mechanism plays an important role for nanoparticle
filtration and its modeling and quantification still need
to be improved; the development of new filter media
such as nanofiber filters deserves further studies and
modeling efforts. Filtration testing for nanoparticles,
especially those down to single-digit nanometers, is a
challenging task which necessitates generation of a
large amount of exceedingly small particles, and
accurate sizing and quantification of such particles.
Thus, state-of-the-art aerosol instruments are usually
required and meticulous protocols are implemented to
avoid artifacts and errors. Current international stan-
dards dealing with efficiency test for filters and filter
media focus on measurement of the minimum effi-
ciency at the most penetrating particle size (MPPS).
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Further work is needed toward standardization of
nanoparticle filtration.

We review the literature on filtration of airborne
nanoparticles with a focus on the filtration test
methods and instruments. First the filtration mecha-
nisms are introduced. The pressure drop and figure of
merit for filters are considered. Experimental studies
are summarized with respect to the test methods and
instruments, particle size range, and material and filter
characteristics. The commercial available instruments
which can be used in nanoparticle filtration systems
are reviewed. Current standards relevant to nanopar-
ticle filtration are summarized.

Filtration mechanisms

The aerosols carried by the air stream are removed in
the filter due to different mechanisms. The fractional
penetration P represents the fraction of aerosols
passing through the filter, defined as

P = Cdown/Cup7 (1)

where Cyown and Cy, are the aerosol concentrations
downstream and upstream of the filter, respectively.
The filter efficiency E is the fraction of aerosols
removed by the filter,

E=1-P. (2)

The parameters for the filtration conditions, including
the face velocity, air viscosity, and temperature, have
impact on the filtration efficiency. We consider the
filtration mechanisms for both fibrous filters and
membrane filters.

Filtration mechanisms for fibrous filters

Fibrous filter media are mats composed of fibers. In
non-woven fibrous filters, the fibers are bonded
together by entangling structures mechanically, ther-
mally, or chemically. They are not made by weaving
or knitting. The fiber orientations can be rather
random, even though the fibers are oriented mainly
perpendicular to the aerosol flow. The fiber sizes are
often not uniform. Woven fabrics and mesh screens
can also be modeled as fibrous filters. The single-fiber
efficiency Ey, defined as the ratio of the number of
particles collected by a fiber to the number of particles
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in the volume of air geometrically swept out by the
fiber (Hinds 1999), is related to the filter penetration
through

—4aEst )’ 3)

P = —_—
(g

where ¢ is the filter media thickness, d; is the fiber
diameter, and « is the filter solidity or the fraction of
the solid material in a filter. The total single-fiber
efficiency Ey has contributions from different collec-
tion mechanisms and can be written as

Es ~ Ep + Eg + Epr + Ei + Eg + E, (4)

where Ep, ER, Ey, Eg, and Eg represent the collection
efficiencies due to diffusion, interception, inertial
impaction, gravity, and electrostatic effect, respec-
tively; Epgr accounts for the enhanced collection due to
interception of the diffusing particles.

The diffusion mechanism accounts for the particles
undergoing Brownian motion which then hit the fibers
and are captured. Diffusion can be the dominating
mechanism for nanoparticle filtration. The dimension-
less parameter, Peclet number Pe, represents the relative
importance of convection and diffusion and is defined as

d

Pe = fTUO, and (5)
kTC,

D= : (6)
3nud,

where Uy is the filtration face velocity, u is the air
dynamic viscosity, D is the diffusion coefficient, k is
the Boltzmann constant, T'is the absolute temperature,
d, is the particle diameter, and C. is the slip correction
factor. The single-fiber efficiency due to diffusion is a
function of Pe and different researchers gave some-
what different expressions based on theoretical deri-
vation or empirical data (Stechkina 1966; Kirsch and
Fuchs 1968; Cheng and Yeh 1980; Lee and Liu 1982;
Wang et al. 2007). The analysis of Lee and Liu (1982)
led to

1—o\'?
ED =2.58 <IQ{) P€72/3, (7)

which is valid for 0.05 < o < 0.2, 107> < Uy < 2 m/
s, and 0.1 < dy < 50 pm. Ku is the Kuwabara hydro-
dynamic factor which accounts for the effect by
neighboring fibers on the flow around a fiber:

Ku = —0.5Ino —0.75 — 0.250> + .. (8)

The interception effect is due to the finite size of the
particles under the assumption that the particles follow
the air flow streamlines. Interception occurs when the
particle center comes within one particle radius of the
fiber surface. The single-fiber efficiency due to
interception can be determined from the air flow
around the fiber and the particle size. With the
Kuwabara flow field, the interception efficiency can
be expressed as (Lee and Liu 1982)

1+R 1 \? %
Er = 21n(1+R)—1+oc+<1+—R> (1—5)
2 +R?|, 9)
2
and
R =d,/d;. (10)

Interception may play an important role for nanopar-
ticle filtration, especially when the fiber size is small.

Inertial impaction occurs when the particle inertia
keeps it from following the abruptly changing stream-
lines near the fiber, thus the particle hits the fiber. The
Stokes’ number Stk characterizes the inertia of the
particle and is defined as

_ ppddyCeUs

Stk = 11
18ud; (1)

where p, is the particle density. When the Stokes’
number is high, the particle is moving almost in a
straight line with its initial velocity. The drag force on
the particle can be approximated by that acting on the
particle moving in a straight line, and then the
movement of the particle can be obtained. Brown
(1993) used this perturbation approach and obtained
the following expression for the efficiency due to
inertial impaction Ej at high Stokes’ numbers

Er=1— 1/Stk, (12)

where y is a constant depending on the flow field. It
appears that Brown’s equation was obtained by consid-
ering the particle as a point mass (Wang and Pui 2009).

When the interception efficiency is finite and the
Stokes’ number is small, the single-fiber efficiency can
be computed based on the assumption that the particle
trajectory deviates slightly from the gas streamline.
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Stechkina et al. (1969) gave the following expression
for particles with low Stokes’ numbers

% [(29.6 — 284"6%)R* — 27.5R*¥
(2Ku) (13)

Stk forR<0.4.

E =

Brown (1993) summarized results for inertial impac-
tion from calculations and experiments. The values of
the efficiency due to inertial impaction spread out in
rather wide ranges at small Stokes’ numbers
(Figs. 4.5-4.10 in Brown 1993). It appears that
accurate determination of the inertial impaction effi-
ciency at small Stokes’ numbers is still difficult,
possibly due to the difficulty in indentifying contribu-
tions from different filtration mechanisms in this
range. Hinds (1999) stated that in estimating the
overall single-fiber collection efficiency near the size
of minimum efficiency, it is necessary to include an
interaction term to account for enhanced collection
due to interception of the diffusing particles:

1.24R%/3

W. (14)

DR =

At the normal filtration velocities (on the order of cm/
s and tens of cm/s), inertial impaction is not expected to
be an important mechanism for nanoparticles. However,
inertial fibrous filters have been developed for sampling
and collecting nanoparticles at face velocities up to
50 m/s (Otani et al. 2007; Furuuchi et al. 2010). The
results showed that inertial impaction was the dominant
capture mechanism at higher velocities.

Gravitational settling may lead particles to deviate
from the streamlines and to be collected in the filter,
which is typically only important for particles above a
few micrometers and at low face velocities. Usually it
is negligible for nanoparticles.

The mechanisms due to diffusion, interception,
inertial impaction, and gravity are known as mechan-
ical capture mechanisms. When the aerosols or the
filter possess electrostatic charges, or when the filter is
subject to an external electrical field, the electrostatic
capture mechanism is at play. Coulombic forces
attract charged particles to oppositely charged fibers.
A charged fiber can induce a dipole, or charge
separation in a neutral particle. The particle is subject
to the non-uniform electrical field generated by the
fiber, thus the attractive force due to the separated
charge on the near side of the particle is greater than
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the repulsive force on the far side. The result is a
dielectrophoretic force which attracts the particle to
the fiber. Similarly, a charged particle can induce an
equal and opposite charge near the surface of a neutral
fiber at close range. The resultant image force causes
attraction between the particle and fiber; though the
image forces are weaker than coulombic forces.

The charge level on the filter media fibers may
change with time and usage, and application of
external electrical field may overcome the decaying
charge level problem. The external field can polarize a
fiber and the resultant uniform field around the fiber
can move a charged particle toward the fiber. Polar-
ization of particles by the externally field also can
produce dielectrophoretic forces on them.

The electret filters, with intentionally electrically
charged fibers, take advantage of the electrostatic
attraction to improve the filtration efficiency, without
affecting the flow resistance. Brown (1993) discussed the
effect of charge amount and configuration on filtration.
The greater the amount of charge on the filter media
fibers, the greater will be the electrical field, and the
higher the filtration efficiency by electrostatic attraction.
Charge configuration is also important. Uniform charge
distribution is not of great value in filtration, because the
field between two fibers carrying the same charge may be
low, and the field outside of the filter may cause
dielectric breakdown of air, thus limiting the charge that
the filter could hold. To be effective in air filtration, the
electrical field must extend a significant distance beyond
the surface of a charged fiber. Hence, the electrical
charge must have a spatial variation not much smaller
than fiber or inter-fiber dimensions.

Brown (1993) analyzed the single-fiber efficiency
for fibers with uniform charge distributions and two-
dimensional charge distributions. In the case of a fiber
carrying a uniform charge Q per unit length, the non-
dimensional parameter governing the capture due to
coulombic force is

N, — 0qC.
% 37‘[28(),udpde() ’

(15)

where ¢ is the electrical charge on the particle and ¢ is
the vacuum permittivity. Ny, represents the ratio
between the drift velocity of the particle due to
coulombic force and the face velocity. Brown (1993)
derived the following expression for single-fiber
efficiency due to coulombic force by a uniformly
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charged fiber
Egq = nNgq. (16)

Capture of neutral particles due to dielectrophoretic
force by a uniformly charged fiber is governed by the
parameter

)
N(): decc Sp—l (17)
Q 3n2eoudiUo \&p +2)°

where ¢, is the dielectric constant of the particle. When
the dielectric force field is approximated by a
solenoidal field with the same value at the fiber
surface, the single-fiber efficiency for neutral particles
due to dielectrophoretic force is approximately (Nat-
anson 1957; Brown 1993)

EQ() = 7'CNQQ. (18)

Brown (1993) pointed out that Eq. 18 is applicable
when E is small; when Eyy is large, the efficiency
can be approximated as (Kraemer and Johnstone 1955)

3 N 1/3
Ego = (%) . (19)

Stenhouse (1974) gave power law relationships
between Eg, and Ny by fitting numerical calculation
results.

For fiber carrying non-uniform charges, the elec-
trical field can be determined by the Poisson’s
equation. Brown (1981, 1993) gave solutions for the
electrical field of a fiber carrying a line multipole
charge. The dimensionless parameters for the capture
due to coulombic force and dielectrophoretic force by
the multipole charged fiber are, respectively,

N aqC.
o4 371780(1 + Ef),ude()7

26%d*C —1
No’O = ch (SP )7 (21)
3eo(1 + &) pudeUp \&p + 2

(20)

where o represents the surface charge density and & is
the dielectric constant of the fiber. The surface density
is equal to ¢ multiplying the cosine of an integral
product of the angular coordinate of the fiber surface.
The dielectric constant of the fiber ¢ appears due to the
internal electrical field in the fiber caused by the non-
uniform charge distribution, which is not the case for a
fiber carrying a uniform charge.

Brown (1981, 1993) and Pich et al. (1987) calcu-
lated capture of charged and neutral particles by
multipole charged fibers. The efficiency depends on
the orientation of the fiber, i.e., whether the particles
approach the attractive or repulsive face of the fiber. If
the distribution of the orientations is assumed to be
random, an average may be taken. Power law
relationships between the dimensionless parameters
Nyy and N,y and the corresponding single-fiber
efficiencies were given. Lathrache and Fissan (1989)
also calculated the single-fiber efficiencies due to
electrostatic attraction in the Kuwabara flow field and
fitted them to formulas.

Brown (1981) analyzed the combined effect of
electrostatic forces with interception and found that
there exists a critical value of interception parameter,
R., below which interception does not affect the
particle capture. Pich et al. (1987) calculated the
combined single-fiber efficiency due to coulombic
forces and interception; however, their expression did
not take into consideration the existence of R.. Otani
et al. (1993) compared the results of the above two
studies and proposed expressions for the efficiency
due to the combined effect of electrostatic forces with
interception for a fiber with randomly distributed
orientations of line dipole. Their expressions took
different forms depending on the ranges of N,, and
Nyo and whether the interception parameter is below
the critical value.

Filtration mechanisms for membrane filters

The membrane filters generally possess higher solid
fractions than fibrous filters and rely more on the surface
filtration than on the depth filtration for particles larger
than the rated pore sizes in the membrane (Rubow and
Liu 1986; Liu et al. 2011). The filtration mechanisms for
conventional solvent-cast membranes are similar to
fibrous filters and the fibrous filter model was found to
work well (Rubow 1981; Rubow and Liu 1986). Good
agreement was found between the effective fiber
diameter used in the model and the diameter of the
fiber-like structures in solvent-cast membranes (Rubow
and Liu 1986; Liu et al. 2011).

Nuclepore filters represent another type of mem-
brane filters, which possess microscopic holes of
uniform diameter, approximately perpendicular to the
filter surface. The capillary tube model has been
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shown to accurately predict the particle collection
characteristics of Nuclepore filters (Spurny et al.
1969; Manton 1978, 1979; Marre and Palmeri 2001;
Cyrs et al. 2010; Chen et al. 2013a, b). Four filtration
mechanisms have been considered for the Nuclepore
membrane filters: impaction on the filter surface,
interception on the pore opening, diffusion on the
walls of the filter pore, and diffusion on the filter
front surface. The four mechanisms are illustrated in
Fig. 1.

The theoretical efficiency of impaction ¢; is calcu-
lated as (Pich 1964)

2¢ &2
g = L — —  with
1+& (149
! = 2Stk\/¢ + 2Stk? {_} — 2Stk%¢,
o = 25k /E 4 2503 expl | - 250
(22)
d2p Ce
stk = DPCto g e VO (23)
18ury 1—Vo

where ¢: filter porosity, and ry: pore radius. The
interception efficiency on pore opening &g (Spurny
et al. 1969) can be expressed as

ER = NR(2 — NR) with Nr = dp/(ZrO). (24)

The diffusion efficiency in pore walls ep (Spurny
et al. 1969; Twomey 1962) can be calculated as

Fluid streamlines

Interception

Inertial
: impaction

Fig. 1 Illustration of the four filtration mechanisms of a
Nuclepore filter

@ Springer

ép = 256N — 1.2Np — 0.177N5*  forNp <0.01 or

ep = 1 — 0.819 exp(—3.657Np)
— 0.098 exp(—22.305Np) — 0.032 exp(—56.95Np)
—0.016exp(—107.6Np) for Np > 0.01
(25)

D
rUo
the diffusion displacement and the pore size. The
efficiency of diffusion deposition on the front
surface of the filter epg may be expressed as (Manton
1979)

where Np = represents the ratio between

_allp2/3
eps = 1 — ex , 26
> p{[l + (o /o) W7/ 26)
where o) = 4.57 — 6.46¢ + 4.58¢%, 0, = 4.5, and
_ Dg'”
N

The total filtration efficiency et due to the above
four mechanisms is then

e = 1—(1—81)(1—81{)(1—8]))(1—8]33). (27)

Most penetrating particle size and minimum
efficiency

Different capture mechanisms have different depen-
dences on the particle size. Interception and inertial
impaction become more effective when the size
increases, diffusion becomes more effective when
the size decreases, and electrostatic mechanism
depends on particle size through mobility and charge
distribution. As a consequence, there exists an inter-
mediate particle size range where the particle pene-
tration is maximum and the filtration efficiency is
minimum. The corresponding particle size is termed
the MPPS. The most penetrating size depends on the
filtration parameters such as the face velocity, air
viscosity, and temperature; filter parameters such as
thickness, solidity, and fiber diameter; particle den-
sity; and electrical charge.

The MPPS is often in the range from 100 to 300 nm
when only the mechanical capture mechanisms are at
play, the fiber size is in micrometer to tens of
micrometer range, the face velocity is on the order
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Fig. 2 The effect of fiber size (dy) on filter efficiency as a
function of particle size; oo = 0.05 and U, = 0.2 m/s. Filter
thickness has been adjusted so that all three filters have the same
pressure drop, as calculated by Eq. 36

of a few cm/s or tens of cm/s, and the air is at normal
temperature and pressure. This is the basis for using a
dioctyl phthalate (DOP) synthetic aerosol having a
mass size distribution with the mean size at 0.3 um for
testing high-efficiency particulate air (HEPA) filters
(Lee and Mukund 2001). It should be noted that the
mean of the same size distribution if expressed in
terms of number of particles would be shifted to a
smaller size. Lee and Liu (1980) derived Eqs. 28 and
29 to predict the MPPS d;, in, and the minimum
single-fiber efficiency Ep,

2/9
Ku VKT ([ d?
dy min = 0.885 kil | s 28
o (5 () (]
1/9
5 - 4
B — 144 1 — o\ (VikT 41lO 7
Ku u Uy d;
(29)

where /1 is the mean free path of air molecules. The
derivation was based on the assumption that the only
important mechanisms near the minimum efficiency
are interception and diffusion. As the fiber size
decreases, the MPPS decreases and the minimum
efficiency becomes greater. These trends are illus-
trated in Fig. 2, in which the filter media efficiency is
plotted as a function of the particle size for three fiber
sizes.

Pressure drop and filter figure of merit

The pressure drop across the filter is an important
consideration in filtration applications. For Nuclepore
filters, the pressure drop Ap can be computed using
different expressions dependent on the pore Knudsen
number

Kn, = A/ro. (30)

When Knj, < <1, the flow is in the viscous regime
and the pressure drop may be calculated by the
Hagen—Poiseuille equation in the form (Spurny et al.
1969)

/ uly
Ap =p| — 1 —5.093 31
D P1 P1 p1rng’ ( )

where p, is the gas pressure upstream of the filter and
N, is the number of pores per unit surface area.
When Kny, is larger but still Kn, < 1, the slip effect
should be considered because the air velocity at the
pore wall is at finite values instead of zero. Then the
pressure drop can be expressed as (Zaviska 1951;
Spurny et al. 1969)

mUp
AN, (1 + 5504/ o)

(32)

Ap = p, —pl\/1—5.093
4

When Kn,, is near unity or >1, the following equation
can be used (Adzumi 1937; Spurny et al. 1969)

Qu 2nR'T

Ap=py + 34070 [0

p p1+ ro M
2

Qu [2rR'T U

pr+342- K TR0 s 093 EPLZ0

40 M rONp

(33)

where R’ is the universal gas constant, M is the
molecular weight of gas, and Q is the Adzumi’s
constant. Spurny et al. (1969) used 0.75 for Q.

For fibrous filters, the pressure drop Ap is related to
the drag force per unit length F4 on individual fibers in
fibrous filters by the following expression

4o
Ap = Fqg—t. 34
D dndfz ( )

@ Springer
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The drag force in the Kuwabara flow is Fy = 4nuUy/
Ku. If we assume that all the fibers have the same size
and are distributed perpendicular to the flow and
evenly, the pressure drop becomes

Ap = % uUt. (35)
The linear relationship between the pressure drop and
the media face velocity is in accordance with the
Darcy’s law when the flow is in laminar regime. For
actual fibrous filter, the polydisperse fiber sizes,
random orientations, and inhomogeneity make the
pressure drop deviate from the above theoretical
derivation. Davies (1973) gave an empirical expres-
sion for the pressure drop Ap

Ap = pUptf (2)/d?  with  f(o) = 64a'(1 + 560)
for 0.006 <a<0.3.

(36)

It can be seen that the dependence of Ap on u, U,
and ¢ is the same in (35) and (36). They also show that
Ap is inversely proportional to df. If ¢, Uy, and o are
kept constant, then Ap increases greatly when the fiber
diameter changes from micrometers to nanometers.
However, the pressure drop increase is lessened by the
slip effect when the fiber size decreases, which can be
characterized by the fiber Knudsen number

Kn = 2)/d. (37)

The larger the Knudsen number, the bigger the slip
effects. The pressure drop based on the Kuwabara flow
with slip effect can be computed as (Brown 1993,
Eq. 3.65)

3 160(1 + 1.996Kn)
~ d?[Ku+ 1.996Kn(—0.5Ino — 0.25 + o2 /4)]

Ap
(38)

To evaluate the overall performance considering
both the penetration P and pressure drop Ap, a useful
criterion is the figure of merit Q; (also known as the
quality factor) which can be defined as

Or = —In(P)/Ap. (39)

Since —In(P) provides a measure of the filter media
efficiency, the figure of merit represents the ratio
between the efficiency and the pressure drop Ap. Good
filter media provide high efficiency and low pressure
drop, thus larger values of Q; indicate better filter

@ Springer
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media. In different applications, the relevant impor-
tance of the filter efficiency and pressure drop may be
weighed differently. Thus there exist different ways to
evaluate the overall filter performance.

Nano-filtration experimental studies

In the recent years, significant amount of experimental
studies of filtration for nanoparticles has appeared in
the literature. Otani et al. (1995) investigated removal
of nanoparticles from air by stainless steel wire
meshes, and observed thermal rebound for particles
<1 nm. Ichitsubo et al. (1996) measured penetration
of nanoparticles and ion clusters through stainless
steel wire screens, and observed rebound for particles
and ion clusters <2 nm. Alonso et al. (1997) ques-
tioned the sizing accuracy in the above two studies,
and argued that a single differential mobility analyzer
(DMA) may not provide accurate enough size mea-
surement around 2 nm and below. Heim et al. (2006)
also challenged Ichitsubo et al., attributing their
findings to inaccurate particle size measurement of
particles below 2-3 nm caused by an artifact of DMA
diffusional broadening. Kim et al. (2006) measured
the efficiency of a glass fiber filter media against
particles down to 1 nm with the help of a particle size
magnifier (PSM) for detection; rebound was observed
for particles <2 nm.

In contrast, a number of studies of nanoparticles
down to 2-3 nm reported no thermal rebound. Alonso
et al. (1997) measured penetration of nanoparticles
through wire screens and laminar flow tubes. To
improve the sizing accuracy, they use a tandem DMA
to determine the challenging particle size and no
rebound effect was observed for particles down to
2nm and for 1.36-nm ions. Heim et al. (2005)
measured the filtration efficiency for particles below
20 nm through nickel screens and Heim et al. (2010)
obtained the filtration efficiency for particles down to
1.2 nm; no rebound was observed. Japuntich et al.
(2007) compared two filter test methodologies for
nanoparticles. Kim et al. (2007) and Wang et al.
(2007) investigated penetration down to 3 nm through
a variety of filter media, including screen filters,
standard fiberglass filters, and a selection of personal
protective equipment filters, and reported no rebound
effect. Shin et al. (2008) measured filtration efficiency
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for silver nanoparticles and did not detect rebound for
3 nm particles at temperatures up to 500 K. Mouret
etal. (2011) tested penetration of copper nanoparticles
in grids, and found no rebound effect for particles
down to 4 nm. Thomas et al. (2013) investigated
penetration of charged and neutral aerosols through
stainless steel and dielectric meshes. They found that
the penetration for stainless steel mesh obeyed diffu-
sion theory in the range 4-80 nm. Thermal rebound is
dependent on the material properties and more infor-
mation than the particle size is needed to better
understand it.

Protection against nanoparticles by respirators has
been widely studied. Martin and Moyer (2000)
studied the filtration efficiency of electrostatic
respirator filter media for particles down to nano-
meter range. Balazy et al. (2006a, b) investigated
the efficiency of respirators and masks against
nanoparticles and viruses. They observed MPPS in
diameter range of ~30-70 nm, due to the electro-
static effect. Some respirators may not provide the
certified efficiency at the MPPS because they were
certified at larger particle sizes. Rengasamy et al.
(2007, 2008, 2009) studied performance of different
types of respirators with focus on whether the filters
provided expected levels of filtration protection
against nanoparticles. They observed MPPS in the
range of 30-60 nm and found that the tested filters
provided expected level of protection. Eninger et al.
(2008a, b) evaluated performance of respirators
against viruses and ultrafine particles. Lee et al.
(2008) obtained the protection factors for respirators
and masks from human subject evaluation. Eshb-
augh et al. (2009) measured respirator filter effi-
ciency under high constant and cyclic flows.
Golanski et al. (2009) studied protection against
nanoparticles by fibrous filter media, masks, protec-
tive clothing, and gloves.

Boskovic et al. (2005, 2007, 2008) measured the
filtration efficiency for different nanoparticles and
evaluated the particle shape effect. They found that
the filtration efficiency was lower for cubic particles
because of higher bouncing probability. Kim et al.
(2009) investigated the structural effect of nanopar-
ticle agglomerates on filtration. They showed that at
the same mobility size, agglomerates had lower
penetration due to larger interception length. Buha

et al. (2013) studied agglomerate filtration and
analyzed effect of the agglomerate correction on
filtration efficiency. Seto et al. (2010) and Wang et al.
(2011a, b) investigated filtration of carbon nanotubes
(CNTs). These studies showed that CNT penetration
was lower than that of spheres of the same mobility
size due to the longer geometric length. Bahk et al.
(2013) used the filtration method to determine the
length of CNTs. Vo and Zhuang (2013) measured the
CNT penetration for facepiece respirators and also
reported lower penetration than spheres.

In addition to screen filters, standard fibrous
filters, and respirator filters, nanoparticle penetration
has been tested on other types of filters. Wang et al.
(2008a, b) tested filtration efficiency of nanofiber
filter media against nanoparticles and analyzed the
figure of merit for different particle sizes. Cyrs et al.
(2010) and Chen et al. (2013a) measured nanopar-
ticle collection efficiency by capillary pore mem-
brane filters. These studies demonstrated collection
of nanoparticles for electron microscopic and expo-
sure assessment. Chen et al. (2013b) extended the
study to nanoparticle agglomerates. They found that
the agglomerate length needs to be considered for
interception and alignment of agglomerates with the
flow was observed at high velocities. Liu et al.
(2011) obtained filtration efficiency of membrane-
coated filters against nanoparticles. Brochot et al.
(2011) measured nanoparticle penetration in two
fibrous media.

Yang and Lee (2005) studied filtration of a fibrous
filter pretreated with anionic surfactants. Huang et al.
(2007) studied penetration of 4.5 nm to 10 pm aerosol
particles through fibrous filters. Both the above studies
manipulated the filter charge and demonstrated impor-
tance of electrostatic effect. Steffens and Coury
(2007a, b) measured filtration efficiency against
particles generated by an electrospray. Otani et al.
(2007) and Furuuchi et al. (2010) used fibrous filters
for inertial classification and sampling of nanoparti-
cles. They showed that at high face velocity (~ 50 m/
s), the inertial effect should be considered for
nanoparticles.

Table 1 provides an overview of the experimental
studies for nanoparticle filtration, including brief
information of the particle material and size, filter
media, face velocity, and testing methods.
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Table 3 The calculated size of solid particles based on the
droplet size and solid volume fraction

Solid volume
fraction (%)

Dried solid particle size (nm)

Droplet  Droplet  Droplet Droplet

300nm 500 nm 1000 nm 3000 nm
5 110.5 184.2 368.4 1105.2
1 64.6 107.7 2154 646.3
0.5 51.3 85.5 171.0 513.0
0.1 30.0 50.0 100.0 300.0
0.05 23.8 39.7 79.4 238.1
0.01 13.9 232 46.4 139.2

to test fiberglass filters. When solution of dissolved
solid is used, the size of dried solid particles depends
on both the droplet size and solid concentration. The
size of the solid particle d,, can be calculated from the
droplet size dy and the volume fraction of the solid
material F, (Hinds 1999),

dy = dy(F,)">. (40)

Table 3 gives the calculated size of solid particles
based on the droplet size and solid volume fraction. It
is clear that the solid particle size can be adjusted by
changing the solid concentration in the solution, so
that the particles of desired size can be produced for
filtration tests. The TSI 3160 automated filter tested
uses this strategy to generate salt particles of different
sizes. Many of the studies listed in Table 1 used salt
particles generated from atomizers for filtration tests.
The size range of these particles is usually above
15 nm, because the particle concentration below
15 nm is low which causes difficulty for tests of
high-efficiency filters.

The evaporation and condensation method with a
furnace has been used to generate metal nanoparticles
for filtration studies, especially in the range below
30 nm (Kim et al. 2007, Shin et al. 2008, Rengasamy
etal. 2008, 2009). Silver is often used in such a method
due to its stability in air and relatively low melting
point. For example, silver slugs (99.99 % metal based)
with suitable dimensions can be placed in a ceramic
boat and positioned in the middle of an electrical tube
furnace, where the silver is heated to 850-1,400 °C
(dependent on the furnace). A carrier gas flow, e.g.,
nitrogen, can be passed through the tube furnace and
carry the silver vapor out. As the temperature
decreases, condensation of the silver vapor leads to

2.5E+08
------- 1000 °C
— 1100 °C N
. 2.0E+08 — - 1200 °C :I '\
L) o,
£ -- 1300 °C /?“ \
® 15E+08  —1400°C .
o
2 1.0E+08
ol
2
T 5.0E+07
0.0E+00
1

Particle size dj, (nm)

Fig. 3 Size distribution of the silver nanoparticles generated by
a tube furnace at different temperatures

Table 4 Information of some commercial tube furnaces

Furnace model Temperature Power

range (kW)

Lindberg/BlueM model:
STF55433C-1

Lindberg/BlueM model:
CC58114A

Carbolite model: STF 16/180

Max. 1500 °C 6.0

Max. 1200 °C 3.6

Max. 1600 °C 2.5

nanoparticles. The particle size distribution depends
on the temperature and carrier flow rate. An example
of the size distributions of silver particles generated by
this method is shown in Fig. 3. It shows that the
particle concentration and mode size increases with
the furnace temperature, due to the higher evaporation
rate. The total aerosol concentration ranges from 10°
#/cm’ to over 10° #/cm”. Relatively low temperatures
(<1,150 °C) may be better suited for generation of
particles below 30 nm. Buha et al. (2013) reported that
the particle generation system was stable during their
filtration experiments. Particle concentration at the
peak and the standard deviation of the size distribution
varied within 20 %. The peak location varied by a few
nanometers. Information of some commercial tube
furnaces is given in Table 4.

The mode of the particle size distribution generated
by the atomization method is generally larger than that
by the furnace method; both methods can generate
enough particles in the range from 15 to 30 nm for
filtration tests. The overlapping range can be used to
check consistency of the two methods. Since diffusion
is the dominant filtration mechanism for particles well

@ Springer
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Table 5 Information for two models of the Palas spark generators

Model Carrier gas Carrier gas Volume Output concentration Primary Agglomerate GSD
flow rate flow rate particle size (nm)
(L/min) (L/min) size (nm)
GFG-1000 Argon 4-6 0-40 >107 #/cm® 3-5 0-150 ~1.6
DNP-2000 Nitrogen 4-6 0-40 >107 #/cm? 3-5 20-150 -

Data except GSD are from the Palas website http://www.palas.de/, retrieved on Aug, 16, 2013. The GSD is from Liu et al. (2012)

below 100 nm, the particle material almost does not
affect the efficiency. The filtration efficiencies for
silver and salt particles are expected to be almost the
same in the overlapping range.

Nanoparticles generated by spark discharge have
been used in a number of filtration studies (Golanski
et al. 2009; Brochot et al. 2011; Mouret et al. 2011;
Thomas et al. 2013), including carbon and copper
particles. This technique employs periodic spark
discharge to vaporize electrode materials and subse-
quent nucleation/condensation to form nanoparticles
(Schwyn et al. 1988). Liu et al. (2012) pointed out that
the temperature generated at the instant of spark
discharge is much higher than the typical upper limit
of a tube furnace. Thus, even materials with very high
melting point can be used in a spark generator if they
are conductive. Liu et al. (2012) showed that the spark
generator was capable of generating nanoparticles at
high mass output with stable characteristics over many
hours. Commercial spark generators are available in
the market and information is provided in Table 5.
The primary particles from the spark generate are very
small, in the 3-5 nm range for carbon, and 6-12 nm
range for metals including silver, gold, and nickel (Liu
etal. 2012). The larger particles from 20 to 150 nm are
agglomerates.

Aerosol detection instruments

To quantify the particle concentrations upstream and
downstream of the filter, instruments for aerosol
detection are needed. The particle concentration may
be based on mass, surface area, or number.

TSI 8130 Automated Filter Tester uses polydis-
perse NaCl or oil particles and two photometers to
measure total mass concentrations up- and down-
stream of the filter. The photometers rely on light
scattering from multiple particles to obtain a relative
concentration measurement. The signal voltage is

@ Springer

proportional to the mass of aerosol sampled by the
photometer. The dynamic range of the TSI photom-
eters is 1.0 pg/m® to >200 mg/m> (TSI 2008). It
should be noted that light scattering is heavily
dependent on the particle size. In the Rayleigh regime
(particles much smaller than the wavelength of light),
the scattered intensity is proportional to the sixth
power of the particle diameter. Therefore, the pho-
tometer favors detection of large particles, and is not
sensitive for exceedingly small nanoparticles.

Stanley et al. (2010) used the nanoparticle surface
area monitor (NSAM, TSI 3550, USA) to measure up-
and down-stream surface area concentrations to eval-
uate filters. Compared to the mass or volume, surface
area is more sensitive for nanoparticles. In addition,
some toxicological studies suggested the total surface
area of airborne nanoparticles as a more relevant
measure of health-relevant effects (Oberdorster et al.
1995; Donaldson et al. 1998). NSAM measures the
nanoparticle surface area deposited in two regions,
trancheobronchial and alveolar of the human lung. The
applicable size range is about 20-400 nm.

The number concentration is the most sensitive
parameter for nanoparticles and is commonly used in
filtration tests of nanoparticles. The condensation
particle counters (CPCs), sometimes called conden-
sation nuclei counters (CNCs), are by far the most used
instruments for measurement of the number concen-
tration of nanoparticles (see Table 1). CPCs saturate
an aerosol by vapor of certain working liquids, then
create supersaturation by adiabatic expansion or flow
through a cold tube, and thus condense the vapor on
the aerosol. Therefore, the aerosol particles grow to a
size which can be readily detected by optical counters.
The number concentration of the aerosol is then
determined by single-particle counting or by cali-
brated light-scattering measurement (photometric
mode). Commonly used working liquids include n-
butyl alcohol, isopropyl alcohol, and water (see
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Table 6). Compared to water, alcohol working liquids
provide better detection of hydrophobic particles near
the detection limit, such as oily or combustion-
generated particles covered by organics. However,
alcohol vapors can be emitted from the CPC, causing
concerns for human exposure, or problems for nearby
gas analyzers, or airborne contaminants, e.g., in
semiconductor industry. Water is more environmen-
tally friendly and easier to acquire and dispose. High-
purity water is usually required in the CPCs. A CPC
can be combined with a particle size classifier, so that
particles of different sizes can be counted separately,
which leads to the particle size distribution. The DMA
usually serves as the particle classifier, and the
combination of DMA and CPC with controlling
software gives rise to the scanning mobility particle
sizer (SMPS). More discussion on DMA and SMPS
follows in the next section. Some CPCs are equipped
with built-in SMPS compatibility, which is indicated
in Table 6.

The information in Table 6 shows that state-of-the-
art commercial CPCs can detect particles down to
2.5 nm. Detection of particles below 2 nm has been
achieved (Sgro and Fernandez de la Mora 2004; lida
et al. 2009; Vanhanen et al. 2011). However, the
instruments and working liquids in these studies are
for specific research purposes. Kim et al. (2006) used a
system composed of a PSM and a condensation nuclei
counter to measure the filtration efficiency of NaCl
particles down to 1 nm. The PSM is similar to a CPC
but without the optical counter. In the PSM, particles
can grow in a supersaturated atmosphere created by
the mixing of a hot saturated stream with a cold
aerosol flow. The particles grow to a certain size and
then are sent to a regular CPC to be detected.

Some researchers used an electrometer to measure
the current carried by the aerosols and obtained the
number concentration indirectly (Otani et al. 1995,
Ichitsubo et al. 1996, Furuuchi et al. 2010, Heim et al.
2010). The particles classified by the DMA mostly
carry a single electrical charge, thus the number
concentration can be computed based on the current
carried by the aerosol and the flow rate. This method
can be applied to very small particles below 2 nm.
Detection by the electrometer dictates that the chal-
lenging particles in the filtration experiments must be
charged. Therefore, the electrostatic effect plays a role
in the filtration experiments. The charging status in
practical filters is usually complicated and difficult to
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determine accurately; therefore, modeling the data
obtained by this method is challenging.

Particle size measurement instruments

The particle size plays an essential role in filtration.
Therefore, accurate measurement of the particles size
is critical for reliable filtration data. For airborne
nanoparticles, electrical mobility measurement repre-
sents the most accurate and widely used method to
determine the particle size. Other methods, such as the
laser optical sizer and electrical low-pressure impac-
tor, have also been used in filtration studies.

The electrical mobility characterizes the readiness
of a particle moving in an electrical field. The
electrical mobility is higher if the particle has more
charges or if the particle size is smaller. When the
particle charge is known, measurement of the electri-
cal mobility gives the particle size. The DMA
separates particles according to their mobility, and
can be used to select monodisperse particles from a
polydisperse aerosol population. Thus it can measure
the particle size or provide monodisperse aerosols as
the challenging particles for a filtration test. Many
types of DMAs have been developed (Liu and Pui
1974; Winkelmayr et al. 1991; Pourprix and Daval
1990; Zhang et al. 1995; Chen et al. 1998; Rosser and
Fernandez de la Mora 2003, among others). Informa-
tion of some commercial DMAs is listed in Table 7.

The DMA resolution, or the degree of monodis-
persity of the exiting particles, is critical for accurate
measurement. The DMA resolution depends on the
DMA geometry and the flow rates. At the same time,
high transmission efficiency is desired for the DMA so
that excessive particle loss can be avoided. The strong
diffusion of nanoparticles poses difficulties for the
DMA to achieve these goals. Chen et al. (1998)
pointed out that the diffusion broadening effect in the
transfer function becomes very pronounced below
10 nm, resulting in the deterioration of sizing resolu-
tion. In addition, the diffusion loss in the aerosol
transport passages is significant for particle size below
10 nm, resulting in the deterioration of detection
sensitivity. To alleviate these problems, the aerosol
passage is shortened to a minimum while maintaining
alaminar and steady flow at the entrance slit of the TSI
nano-DMA (Chen et al. 1998). It can be seen from
Table 7 that the DMAs designed for the nanoparticle
range have shorter height. This feature reduces the
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Table 7 Information of some commercial DMAs

Model Particle size Aerosol flow rate  Sheath air flow rate Max input Voltage Dimension
range (nm) (L/min) (L/min) concentration (mm)

L-DMA 55-900 4.2-1,110 0.3 3-20 108 #/cm’® 5-10,000 V492 (H)
(Grimm, DE)

M-DMA 55-340 2.1-358 0.3 230 (H)
(Grimm, DE)

S-DMA 55-100 0.9-112 1-5 157 (H)
(Grimm, DE)

DMA-20 (HCT, KR) 7-830 0.1-1.5 1-15 107 #/cm?® at 10-10,000 420 x 76

DMA-40 (HCT, KR)  10-700 10 nm vDC 650 x 44

DMA-05 (HCT, KR) 2-160 210 x 36

DEMC 2000 (Palas, 8-1,200 0-4 0-10 570 x 150
DE)

DEMC 1000 (Palas, 4-600 04 0-10
DE)

Long-DMA 3081 10-1,000 0.2-2 2-15 10® #/cm’ at 10-10,000 610 x 76
(TSI USA) 10 nm vDC

nano-DMA 3085 2-150 0.3-3 3-20 203 x 79
(TSI USA)

The dimension represents the height x the outer diameter. The data for the TSI instruments are from the TSI website, www.tsi.com/,
retrieved on Aug 23, 2013. The data for the Palas instruments are from the Palas website http://www.palas.de/, retrieved on Aug 23,
2013. The data for the Grimm instruments are from the Grimm website http://www.grimm-aerosol.com/, retrieved on Aug 23, 2013.
The data for the HCT instruments are from the website http://www.ioner.eu/, retrieved on Aug 23, 2013

residence time of the particles in the DMA column,
thus lowers the diffusion loss and lessens the deviation
of the particles from the designed trajectory due to
diffusion, improving the transfer function. Increasing
both the sheath flow and aerosol flow rates can also
reduce the residence time and achieve similar effects.
High flow DMAs have been developed (Rosser and
Fernandez de la Mora 2003; Fernandez de la Mora
et al. 2004) and used in filtration test (Heim et al.
2010). The flow rates in practical filtration tests may
be limited by the available air supplies and aerosol
generators. The monodispersity of the particles can be
improved by increasing the sheath flow to aerosol flow
ratio. However, the higher this ratio, the more diluted
the aerosol flow exiting the DMA, which cause
problem for testing of high-efficiency filters. The
sheath flow to aerosol flow ratio 10:1 leads to a good
sizing resolution and is the most commonly used flow
ratio operated by DMA users (Chen et al. 1998). The
recommended TSI nano-DMA normal flow rates are
1.5 L/min aerosol flow and 15 L/min sheath flow. The
resolution deteriorates when the particle size is
exceedingly small. The TSI nano-DMA at its maxi-
mum recommended sheath air flow rate of 20 L/min is

affected by broadening to more than twice its ideal
resolution for particles with an electrical mobility of
1 cm?/V s (approx. 1.44 nm equivalent electrical
mobility diameter). Usage of two DMAs in series,
i.e., a tandem DMA system, can improve the sizing
accuracy (Alonso et al. 1997; Yook et al. 2008).
However, this approach aggravates the problem of low
concentration of challenging aerosols.

The DMA and CPC can be combined to measure
particle size distribution. Measuring the size distribu-
tion can be done by scanning through the DMA
voltage in discrete steps. This method is slow. The
particles can alternatively be classified in a time-
varying electrical field, but for an exponential ramp in
the field strength, there remains a one-to-one corre-
spondence between the time a particle enters the DMA
column and the time it leaves. Thus, a relation between
the time-varying CPC counts and the changing DMA
voltage can be established, and the correspondence
between the CPC counts and the particle size can be
established (Wang and Flagan 1990). This method is
fast and is implemented in commercial SMPS. Infor-
mation of some commercial SMPS systems is given in
Table 8. Most of the systems are composed of DMA
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Table 8 Information of some commercial SMPS systems

Model Components

Possible scanning time Aerosol pressure

Classifier Detector

SMPS+C (Grimm, DE)

SMPS+E (Grimm, DE)  L-DMA/M- Faraday cup
DMA/S-DMA electrometer

SNPS 05W (HCT, KR) DMA-05 WCPC

SNPS 20N (HCT, KR) DMA-20 CPC

SMPS 40NW (HCT, KR) DMA-40 WCPC

U-SMPS 1050/1100/1200 DEMC 1000

L-DMA/M-DMA  CPC5.414/CPC5.403

UF-CPC 50/100/200

A “fast scan” from 5 to 350 nm can be 1 atm £ 50 mbar
made in <110 s 400-1,100 mbar

75 s 1 £ 0.1 atm

A scan can be performed in as few as
30s

CPC 3775/3776/3787/ Fast scans can be performed in as few 1 4 0.2 atm

as 16 s

(Palas, DE)
U-SMPS 2050/2100/2200 DEMC 2000 UF-CPC 50/100/200
(Palas, DE)
3936L (TSI, USA) DMA 3081
3788/3772
3936N (TSI, USA) DMA 3085 CPC 3775/3776/3787/

3788/3772

The data for the TSI instruments are from the TSI website, www.tsi.com/, retrieved on Aug 23, 2013. The data for the Palas
instruments are from the Palas website http://www.palas.de/, retrieved on Aug 23, 2013. The data for the Grimm instruments are from
the Grimm website http://www.grimm-aerosol.com/, retrieved on Aug 23, 2013. The data for the HCT instruments are from the

website http://www.ioner.eu/, retrieved on Aug 23, 2013

and CPC, and the information of the individual
components can be found in Tables 6 and 7. The
SMPS+E system by Grimm consists of a DMA and an
electrometer, thus the particle count is determined
indirectly from the current instead of directly by CPC.
Usage of CPC with internal pump in the SMPS limits
the pressure of the measured aerosol, since the CPC
pump needs to overcome the aerosol pressure to draw
in the sample. Too much overpressure may damage
the internal valves. The scan time plays a role in data
inversion to map particle counts to a corresponding
size. The detector response time poses limitation for
how fast the scan can be performed, which is known as
the smearing effect (Russell et al. 1995; Flagan 2008).
The residence time of the particles in the plumbing
between the DMA and the CPC should be much
shorter than the counting time interval to avoid the
smearing effect. With the development of CPC
technology, the detector response time is getting
shorter, which allows faster scans. The TSI 3936
SMPS systems have default scan time of 120-s up scan
and 15-s down scan. However, recent update by TSI
shows that fast scans by 3936 SMPS can be performed
in 16 s. A number of studies used SMPS to measure
the particle number size distributions up- and down-
stream of the filter, and used the ratio to determine the
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penetration values (Japuntich et al. 2007; Otani et al.
2007; Golanski et al. 2009; Cyrs et al. 2010; Lore et al.
2011; Brochot et al. 2011; Buha et al. 2013).

In addition to SMPS, other instruments have been
used by researchers to obtain particle size distributions
up- and down-stream of the filter in filtration tests.
Balazy et al. (20064, b) and Eninger et al. (2008a, b)
used the wide-range particle spectrometer (WPS,
model M1000XP, MSP, USA). The WPS includes a
scanning mobility spectrometer composed of a DMA
and a CPC for particle measurement from 0.01 to
0.5 um and a laser particle spectrometer (LPS) for
measurement in the ~0.4 to 10 um range (Liu et al.
2010). Huang et al. (2007) combined two TSI 3936
SMPS systems with the long-DMA and nano-DMA
with a CPC detector and a TSI 3321 aerodynamic
particle sizer (APS) to measure the penetration of
4.5 nm to 10 pm aerosol particles through fibrous
filters. The APS, which uses the time-of-flight particle
sizing technology, can count and size particles ranging
from 0.5 to 20 pm. It should be noted that the LPS and
APS measure the optical equivalent particle size and
aerodynamic particle size, respectively. They are
different from the electrical mobility size measured
by the SMPS, thus proper conversion is needed to
piece together the size distribution from the nanometer


http://www.tsi.com/
http://www.palas.de/
http://www.grimm-aerosol.com/
http://www.ioner.eu/

J Nanopart Res (2014) 16:2417

Page 25 of 33 2417

ﬁ?l
|

Po-210 |

I

Excess
Po-210 °
Sheath Nano-DMA
Furnace
=
i

Y,

Silver

Fig. 4 Experimental setup for test using monodisperse silver nanoparticles (adapted from Kim et al. 2007)

range to the micrometer range. Lee et al. (2008) used
an electrical low-pressure impactor (ELPI 3935,
Dekati, Finland) to measure the particle distributions
of the ambient and in-facepiece respirator worn by a
human. The ELPI size selectively measures the
number concentration of particles in an aerodynamic
size, ranging from 0.03 to 10 um, in 12 classes. The
sizing resolution of ELPI is lower compared to SMPS.

Filtration experimental setup

We discuss possible filtration experimental setups.
The setups in the literature can be classified in two
general types: test with monodisperse aerosols and test
with polydisperse aerosols.

An example of the test setup using monodisperse
silver nanoparticles is shown in Fig. 4 (adapted from
Kim et al. 2007). The setup consists of the particle
generation part, size classification part, and filter
testing part. The filtered air is used as the carrier gas,
flowing through the tube furnace, and carrying the
silver particles generated by the evaporation—conden-
sation method. The test aerosol from the generator
may need to be conditioned, for example by going
through a diffusion dryer for evaporation of solvent
when the particles are from an atomizer. The test
aerosol is then neutralized in a Po-210 bi-polar
charger, which gives the particles the Boltzmann

equilibrium charge distribution. The bi-polar charger
may be based on a radioactive source (Kr-85, Po-210
or Am-241), soft X-ray or corona discharge. A
commercial DMA is usually equipped with a bi-polar
charger, thus the particle charge distribution is known,
and the particle size can be calculated from the
electrical mobility. The flow rate of the aerosol
entering the DMA can be adjusted using the valve
on the excess flow route, and is measured by a laminar
flow meter. The laminar flow meter measures the flow
rate by the pressure drop caused by the flow through a
tube with known length and diameter. The test aerosol
is then classified by the DMA with a certain sheath
flow rate. Knowing the aerosol flow rate into the DMA
and the sheath flow rate allows monitoring of the ratio,
which is indicative of the DMA sizing resolution.
The monodisperse particles exiting the DMA
mostly carry one electrical charge and could be
neutralized again by a Po-210 bi-polar charger. This
approach reduces the electrostatic effect in filtration
and the associated uncertainties. If it is desirable to
completely remove charged particles, an electrical
static precipitator can be added following the bi-polar
charger. Before the filter, another flow path is provided
for by-pass flow when the aerosol flow rate is higher
than that needed through the filter holder, or for
makeup air when the aerosol flow rate is lower. The
flow rate through the filter holder can be calculated by
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the filtration surface area and the face velocity. In the
case when makeup air is needed, good mixture should
be obtained so that the particles are uniformly
distributed in the air entering the filter holder. This is
usually readily achieved for nanoparticles due to their
low inertia and high diffusivity. Specimens of the
sheet filter medium are fixed in the test filter holder
and subjected to the test air flow corresponding to the
prescribed filtration face velocity. The filter holder
normally has a top part and a bottom part, and may be
designed to hold standard 47 mm filter disks (Milli-
pore Aerosol Filter Holder), filter media with a
filtration surface area of 100 cm? (TSI 8130 default
holder), or filters of other sizes. The filter holder could
be closed by pneumatic chucks or by screws through
the top and bottom parts. Partial flows of the test
aerosol are sampled up- and down-stream of the filter
into a CPC, and the fractional penetration is deter-
mined from the up- and down-stream number con-
centrations. Furthermore the measurement of the
pressure drop across the filter medium is made at the
prescribed face velocity. Additional equipment is
required to measure and control the test volume flow
rate. Finally, the air stream goes through a final filter
and into the vacuum pump.

The particle concentrations can be measured by one
CPC, which takes the samples up- and down-stream of
the filter sequentially. However, the line losses for the
up- and down-stream sampling may be different. The
difference can be significant when the particle size is
very small and diffusion loss is important. In addition,
some particles may be deposited at the inlet, outlet, or
walls of the filter holder. Therefore, it is important to
establish correction factors by performing the mea-
surement without any filter medium in the filter holder.
In this configuration, the penetration P, is obtained. If
the measured penetration when a filter is tested is Py,
the corrected penetration P takes the following form:

P =Py/P.. (41)

The correction factor is dependent on the particle size,
and should be obtained at the same particle sizes as
those in the measurement for the test filter. The aerosol
sample needs some time to travel through the tubing
and reach the CPC. When the CPC sampling is
switched from upstream to downstream, enough time
intervals should be allowed to ensure that the CPC is
counting the intended sample. Usually the CPC
reading changes dramatically when the sampling
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position is changed, and stabilization of the CPC
reading at a new value is an indication that the CPC is
ready to record the new concentration.

It is also possible to utilize a dummy filter holder,
which holds no filter and is placed in parallel as the
filter holder with the test filter. The penetration is then
obtained as ratio between the concentration down-
stream of the real filter holder and the concentration
downstream of the dummy filter holder. The config-
uration requires that the two filter holders and
connection lines are identical. In addition, the testing
aerosol needs to be split into two streams, which may
cause problem in tests of high-efficiency filters
because large numbers of challenging particles are
needed.

Two CPCs can be used to measure the up- and
down-stream concentrations simultaneously. This
method avoids switching the sampling location and
the associated disturbance of the flow. The measure-
ment time can be significantly reduced when many
particle sizes are to be tested. However, different CPC
units usually give somewhat different readings when
sampling the same aerosol. Therefore, correction
factors similar to that in Eq. 41 between the two
CPCs should be obtained and used to correct the
results.

A number of the CPC models listed in Table 6 have
both single-particle counting mode and photometric
mode. The single-particle counting mode features
lower concentration range and smaller counting error
compared to the photometric model. Therefore, to
obtain the most accurate results, it is advisable to keep
the particle concentrations both upstream and down-
stream of the filter in the range of the single-particle
counting mode. This may be difficult to achieve when
high-efficiency filters are tested. The up- and down-
stream concentrations may be different by more than
five or six decades. A possible solution is to dilute the
upstream sample which is taken into the CPC. In the
TSI filter tester 3160, the upstream sample is diluted
by a factor of 100 for measurement.

The CPC reading for particle concentration is based
on the total particle counts over regular preset time
intervals and the flow rate. When the particle concen-
tration is low, the CPC reading oscillates with time due
to its statistical nature even with a stable aerosol
sample. Using a long sampling time and taking the
average value improve the accuracy of the measure-
ment. For testing of high-efficiency filters, the
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Fig. 5 Experimental setup for
test using polydisperse silver
nanoparticles

Furnace

downstream concentration can be very low and the
CPC concentration reading fluctuates close to zero. In
this case, it is beneficial to operate the CPC in the
mode counting the total particles for a user-defined
time interval (e.g., the Totalizer mode in TSI 3775,
3776). The particle count upstream of the filter in the
same time interval can be obtained. Then the penetra-
tion is the ratio between the downstream count and
upstream count. To obtain statistically reliable results,
reasonably large particle counts should be obtained.
For example, Kim et al. (2009) sampled long enough
to detect at least 100 counts downstream of the test
filter.

An example of the test setup using polydisperse
silver nanoparticles is shown in Fig. 5 (Buha et al.
2013). The nitrogen gas carrying silver nanoparticles
from the tube furnace is mixed with the makeup air.
Then the particles go through a Kr-85 bi-polar charger,
which reduces the electrostatic effects in filtration.
The flow then goes through the filter holder, with the
flow rate corresponding to the prescribed face veloc-
ity. Partial flows of the test aerosol are sampled
upstream and downstream of the filter into two SMPS
systems, which measures the particle number size
distributions. The penetration and filter efficiency as
functions of particle size are then calculated. It is also
possible to use one SMPS to sample up- and down-
stream flows alternatively. After the filter holder, the
flow goes through a final filter and into the vacuum
pump. The flow rate is controlled by a valve and
measured by a flow meter.

Japuntich et al. (2007) used polydisperse aerosols
and SMPS method to test fibrous filters. The authors
noted that the SMPS sampled aerosol volume takes
time to travel through the inlet, the impactor, the bi-
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polar charger, the DMA, and finally through the CPC.
For consecutive samplings of aerosol, if there is no
“purge-time” pause or time interval between samples,
the large classified particles left over in the system
from the last sample may be erroneously counted as
the smallest particles in the next sample. This error is
especially serious for filter penetration if a down-
stream sample is taken quickly after an upstream
sample. In that case, the large particles from the
upstream sample are counted as small particles which
may not exist at all in the penetrating downstream
sample distribution, giving penetration results as much
as two decades greater than reality. To avoid this error,
Japuntich et al. (2007) developed a purging procedure
using 16 L/min clean air to purge the SMPS between
consecutive samplings, which can be performed in less
than 90 s.

The accuracy of commercial SMPS systems, espe-
cially when the scan time is short, may be questionable
(Flagan 2008). Buha et al. (2013) used 300-s scans to
improve the SMPS accuracy. Japuntich et al. (2007)
developed correction factor similar to those in the
monodisperse test (Eq. 41) for each particle diameter
channel or bin to compensate for sampling line loss
and for possible SMPS software particle distribution
calculation variability due to factors such as a loss in
resolution at the upper and lower limits of the
measured particle size ranges or low raw score counts
at the upper or lower limits of the challenge particle
size distribution. The variability of the correction
factor increased greatly as the lower or higher range of
the SMPS system was reached.

Both the monodisperse and polydisperse test par-
ticle methods can be used for nanoparticle filtration
tests. With adequate calibration, the two testing
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Table 9 Information of some commercial filter test systems

Manufacturer  Particle Particle size Particle generation Flow Filtration Particle detector
and model material rate (m*/  efficiency
h) (%)

Grimm NaCl Particles from 1 % NaCl Up to One or two
7.1000 solution 99.9995 photometers
Palas MFP NaCl, KCl, and Detector size range Particles from atomizers 0.54-16 Light-scattering

1000 HEPA DEHS down to 60 nm spectrometers
Palas MFP NaCl, KCl, and Efficiency size range U-SMPS
Nano plus DEHS 20-1000 nm
TSI 3160 NaCl and DOP  Single sizes in Particles from atomizers 0.3-6 Up to Two CPCs
(8160) 15-800 nm, and classified by DMA 99.999999
GSD < 1.3
TSI 8127 and DOP, DEHS, CMD: 0.2 pum, Particles from atomizer 0.9-6 Up t0 99.999 Two
8130 and other oils GSD < 1.6* photometers
NaCl CMD: 0.075 pm,
GSD < 1.86*

The data for the TSI instruments are from the TSI website, www.tsi.com/, retrieved on Aug 29, 2013. The data for the Palas
instruments are from the Palas website http://www.palas.de/, retrieved on Aug 29, 2013. The data for the Grimm instruments are from
the Grimm website http://www.grimm-aerosol.com/, retrieved on Aug 29, 2013. CMD: count mean diameter; GSD: geometric

standard deviation
# The European version has different CMD and GSD

methods gave almost identical filtration efficiencies in
the range of 20-200 nm for several commercial filter
media (Japuntich et al. 2007). The two methods have
different features. The advantages of the monodis-
perse test particle method include better accuracy and
the ability to test high-efficiency filters using long
sampling time. In contrast, the polydisperse test
particle method is limited by the SMPS scan accuracy,
especially at the upper or lower limits of the challenge
particle size distribution. When the downstream
concentration is too low, SMPS scan may not give
any meaningful size distribution, thus the capability to
test high-efficiency filter is limited. The disadvantages
of the monodisperse test particle method include more
complex flow control and longer measurement time
when many particle sizes are tested. In contrast, the
polydisperse test particle method has less complex
setup and can deliver the filtration efficiencies for
many particle sizes in shorter time.

Commercial filter testing systems
Self-contained commercial filter testing systems
which could measure nanoparticles are available in

the market. An overview of the systems is shown in
Table 9. Grimm 7.100 Respirator Filter Testing
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System is a full-fledged mass testing installation for
the testing of respirator filters in accordance with
European Standard EN 143. The internal generator
creates aerosols from a 1 % NaCl solution. One or two
flame photometers are used to measure the aerosol
mass concentrations upstream and downstream from a
filter. The connectors for filter tester and/or mask
holder are standardized. The detection sensitivity is
better than 10 ng/m>. The system measures efficien-
cies up t0 99.9995 % (penetration as low as 0.0005 %)
with a test aerosol of 13 mg/m”>.

The Palas MFP test rig is a modularly built filter test
system for flat filter media and small filter elements. It
can measure the fractional filtration efficiency for
testing aerosols including NaCl, KCI1, DEHS, etc. The
filter test surface area is 100 cm”. In the model MFP
1000 HEPA, the particle measurement instrument is a
light-scattering spectrometer, which can be Welas
1000 (Palas, DE) with the size range 120-2,000 nm, or
model 3340 (TSI, USA) with the size range
90-7,500 nm, or HSLAS II (PMS, USA) with the size
range 60—1,000 nm. In the model MFP Nano plus, the
particle measurement instrument is U-SMPS 2050
(Table 8) with the size range 5—1,000 nm. However,
determination of the fractional filtration efficiency for
filter media is in the range of approximately
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Table 10 Summary of selected air filtration standards

Designation Title Test particle Remark

ANSI/ASHRAE  Method of testing general ventilation air- KClI particles in the range of Wind tunnel test using
Standard 52.2 cleaning devices for removal efficiency by ~ 0.3-10 um optical or aerodynamic
(2012) particle size particle sizers

EN 779 (2012) Particulate air filters for general
ventilation—determination of the

filtration performance
ISO 29463 series
(2011a, b, c, d,
e)
NIOSH 42 CFR
84.181 (1995)

High-efficiency filter and filter media for
removing particles in air

Non-powered air-purifying particulate filter
efficiency level determination

EN 1822 series High-efficiency air filters (EPA, HEPA and

(2009a, b, c, d,  ULPA)
e)
EN 143:2000 Respiratory protective devices—Particle
filters—requirements, testing, marking
ISO Air intake filter systems for rotary

29461-1:2013 machinery—test methods—part 1: static

filter elements

DEHS particles in the range of
0.2-3.0 pm

DEHS, PAO, and Paraffin Oil in the
range 0.04 um to 1.0 um
(0.1-2.0 um with OPS)

A mass median aerodynamic
diameter of ~0.3 pm, NaCl or
DOP polydisperse particles

DEHS, PAO, and Paraffin Oil in the
range 0.05 pm to 0.8 pm (0.1-2.0
with OPS)

Various aerosol allowed including
sodium chloride and paraffin oil

DEHS patrticles in the range of
0.3-3.0 pm

Wind tunnel test using
optical particle sizers

Focus on the minimum
efficiency at the MPPS
and local efficiencies

For respirator certification

Focus on the minimum
efficiency at the MPPS
and local efficiencies

For respirator air filter
certification

Wind tunnel test using
optical particle sizers

EPA efficient particulate air filters, HEPA high-efficiency particulate air filter, OPS optical particle sizer, ULPA ultra low penetration

air filter, PAO polyalphaolefin oil

20-1,000 nm. The instrument measures the particle
concentration range 0-2,000 #/cm’ in the single-
particle mode, and the concentration range 2,000-10°
#/cm? in the photometric model. The dilution cascades
enable dilution of the test aerosols by the factors 10,
100, 1,000, and 10,000.

The filter tester models 8127 and 8130 by TSI offer
testing capability for facepiece respirators and other
types of filters. They are compliant with USA
commercial respirator regulation 42 CFR part 84
(NIOSH 1995), European EN 143 and related respi-
rator standards, and Japanese respirator standard. TSI
8130 uses polydisperse NaCl or oil particles and two
photometers to measure total mass concentrations up-
and down-stream of the filter. The Model 8130
measures efficiencies up to 99.999 % (penetrations
as low as 0.001 %). The efficiency is based on total
mass concentration and is heavily affected by the large
ones in the challenge particle distribution.

The TSI 3160 Automated Filter Tester is a fully
self-contained testing apparatus for conducting initial
filter penetration tests with up to 20 different mono-
disperse particle sizes within a range between 15 and
800 nm diameter. It can be used to test both low- and
high-efficiency filters and filter media, with

efficiencies up to 99.999999 %, or penetrations down
to 0.000001 %. The 3160 uses a bank of atomizers
with solutions of different concentrations and a DMA
to generate challenge DOP and NaCl aerosols with
known sizes. Two CPCs simultaneously count the
upstream and downstream particles, and computer
software calculates the penetration value. The output
is a curve of penetration versus particle size and
produces a summary of test results, including the
MPPS. TSI 3160 complies with EN 1822 parts 3 and 5.
Japuntich et al. (2007) evaluated the TSI 8160 (an
earlier version of the 3160 model) and noted that the
manufacturer dictated a 2:1 ratio of the DMA sheath
air flow rate to the aerosol flow rate, in order to give
greater DMA output concentrations for the testing of
very high-efficiency filters. As a result the DMA
resolution is not high. The specification of the TSI
3160 states that challenge aerosols have GSD values
less than 1.3. As discussed in the DMA section, higher
sizing resolution is advisable for testing with particles
below 10 nm.

The commercial filter test systems provide the
possibility of measurement for particles down to
15 nm range using polydisperse or monodisperse test
particles. At the lower limit of size range, there is room
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for improvement of the techniques and development
for particles below 10 nm is needed.

Existing standardized test methods of interest
to nanoparticle filtration

A large number of standards for testing air filters exist
(Table 10), covering applications in the fields of
building ventilation (Tronville and Rivers 2006), gas
turbine air intake, automotive cabin air, automotive
engine intake, vacuum cleaner, HEPA-ULPA filter
testing, respirators, etc. ISO 29463:2011 series deals
with high-efficiency filters and filter media for
removing particles from air. The test particle range
in ISO 29463 is between 0.04 and 1.0 pm, and the
focus is on measurement of the minimum efficiency at
the MPPS. The standard focusing on filtration effi-
ciency of airborne nanoparticles, especially for parti-
cle size down to single-digit nanometers, is still not
available.

Conclusion

The applications of nanoparticle filtration increase
with the development of nanotechnology and growing
concerns of the environmental and health impact of
nanoparticles. A review of the literature shows that
significant progress has been made in nanoparticle
filtration in the academic field in the recent years.
Commercial instruments are already available for
generation of a large amount of nanoparticles, and
accurate sizing and quantification of such particles.
The commercial self-contained filter test systems
provide the possibility of measurement for particles
down to 15 nm range. If state-of-the-art instruments
are used as components in a filtration system, the
technique can be improved at the lower limit of the
size range, and filtration efficiency for particles of
single-digit nanometers can be reliably tested. Current
international standards dealing with efficiency test for
filters and filter media focus on measurement of the
minimum efficiency at the most penetrating particle
size. The available knowledge and instruments pro-
vide a solid base for development of standardized test
methods to determine effectiveness of filtration media
against airborne nanoparticles down to single-digit
nanometer range.
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