Faculté des sciences et de médecine

Comparison of conventional and individualized 1-MET values for expressing maximum aerobic metabolic rate and habitual activity related energy expenditure

Heydenreich, Juliane ; Schutz, Yves ; Melzer, Katarina ; Kayser, Bengt

In: Nutrients, 2019, vol. 11, no. 2, p. 458

The maximum aerobic metabolic rate can be expressed in multiple metabolically equivalent tasks (MET), i.e., METmax. The purpose was to quantify the error when the conventional (3.5 mL∙kg−1∙min−1) compared to an individualized 1-MET-value is used for calculating METmax and estimating activity energy expenditure (AEE) in endurance-trained athletes (END) and active healthy controls... More

Add to personal list
    Summary
    The maximum aerobic metabolic rate can be expressed in multiple metabolically equivalent tasks (MET), i.e., METmax. The purpose was to quantify the error when the conventional (3.5 mL∙kg−1∙min−1) compared to an individualized 1-MET-value is used for calculating METmax and estimating activity energy expenditure (AEE) in endurance-trained athletes (END) and active healthy controls (CON). The resting metabolic rate (RMR, indirect calorimetry) and aerobic metabolic capacity (spiroergometry) were assessed in 52 END (46% male, 27.9 ± 5.7 years) and 53 CON (45% male, 27.3 ± 4.6 years). METmax was calculated as the ratio of VO2max over VO2 during RMR (METmax_ind), and VO2max over the conventional 1-MET-value (METmax_fix). AEE was estimated by multiplying published MET values with the individual and conventional 1-MET-values. Dependent t-tests were used to compare the different modes for calculating METmax and AEE (α = 0.05). In women and men CON, men END METmax_fix was significantly higher than METmax_ind (p < 0.01), whereas, in women END, no difference was found (p > 0.05). The conventional 1- MET-value significantly underestimated AEE in men and women CON, and men END (p < 0.05), but not in women END (p > 0.05). The conventional 1-MET-value appears inappropriate for determining the aerobic metabolic capacity and AEE in active and endurance-trained persons.