Faculté des sciences et de médecine

Species delimitation in the East Asian species of the relict tree genus Zelkova (Ulmaceae): A complex history of diversification and admixture among species

Naciri, Yamama ; Christe, Camille ; Bétrisey, Sébastien ; Song, Yi-Gang ; Deng, Min ; Garfì, Giuseppe ; Kozlowski, Gregor

In: Molecular Phylogenetics and Evolution, 2019, vol. 134, p. 172–185

Zelkova species, trees of the elm family (Ulmaceae), are part of the Cenozoic relict flora. In western Eurasia, the genus comprises three species that are restricted to disjunct areas (Z. sicula on Sicily, Z. abelicea on Crete and Z. carpinifolia in Transcaucasia). The situation is different in East Asia, where three species (Z. serrata, Z. schneideriana and Z. sinica) have at least partly... More

Add to personal list
    Summary
    Zelkova species, trees of the elm family (Ulmaceae), are part of the Cenozoic relict flora. In western Eurasia, the genus comprises three species that are restricted to disjunct areas (Z. sicula on Sicily, Z. abelicea on Crete and Z. carpinifolia in Transcaucasia). The situation is different in East Asia, where three species (Z. serrata, Z. schneideriana and Z. sinica) have at least partly overlapping distributions. The phylogenetic and phylogeographic status of these East Asian species is still not well understood, mainly since all previous studies used almost exclusively plant material collected in botanical gardens and were based on very small numbers of individuals. Our study is the first based on 33 natural populations covering all important areas with Zelkova species in the Sino-Japanese Floristic Region. Chloroplast and microsatellite markers were used, and Bayesian analyses were run for both types of markers. East Asian Zelkova species cluster into two groups that partially overlap when comparing the two types of markers. For chloroplast markers, the two groups coincide with all Japanese, some Korean and northern Chinese Z. serrata in one group and all other individuals in the other group, regardless of whether they are attributed to Z. serrata, Z. sinica or Z. schneideriana from Korea, mainland China and Taiwan. At the nuclear level, however, the clustering clearly groups all the Z. serrata individuals together, regardless of whether they are from Japan, Korea or China, and the two other species in a second group. This complex genetic pattern in East Asian Zelkova species is most likely due to a combination of ancient diversification and speciation events and more recent hybridization during the last glacial/interglacial retractions and recolonizations. One of the surprising results of our study concerns the populations from Taiwan, which are genetically similar to Z. schneideriana. Thus, their assignation to a separate taxon (Z. tarokoensis) or to a variety of Z. serrata (Z. serrata var. tarokoensis), as currently reported in all local and national floras, might be in need of revision. Furthermore, our results indicate that the East Asian species are more closely related to Z. carpinifolia than to any other Western European species. Haplotypes of Z. sicula and Z. abelicea (Mediterranean region) as well as those of Z. sinica and Z. schneideriana (East Asia) seem to have diversified more recently. The most ancient haplotypes are found among the western Eurasian Z. carpinifolia and the East Asian Z. serrata. This result is in agreement with the carpinifolia and serrata-like morphotypes commonly found in the fossil record.