Faculté des sciences économiques et sociales

On the minimum and maximum selective graph coloring problems in some graph classes

Ries, Bernard

In: Discrete Applied Mathematics, 2016, vol. 204, p. 77-89

Given a graph together with a partition of its vertex set, the minimum selective coloring problem consists of selecting one vertex per partition set such that the chromatic number of the subgraph induced by the selected vertices is minimum. The contribution of this paper is twofold. First, we investigate the complexity status of the minimum selective coloring problem in some specific graph... More

Add to personal list
    Summary
    Given a graph together with a partition of its vertex set, the minimum selective coloring problem consists of selecting one vertex per partition set such that the chromatic number of the subgraph induced by the selected vertices is minimum. The contribution of this paper is twofold. First, we investigate the complexity status of the minimum selective coloring problem in some specific graph classes motivated by some models described in Demange et al. (2015). Second, we introduce a new problem that corresponds to the worst situation in the minimum selective coloring; the maximum selective coloring problem aims to select one vertex per partition set such that the chromatic number of the subgraph induced by the selected vertices is maximum. We motivate this problem by different models and give some first results concerning its complexity.