Discrete Applied Mathematics 158 (2010) 592-596

Contents lists available at ScienceDirect

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

Note

Complexity of two coloring problems in cubic planar bipartite
mixed graphs

B. Ries*

DIMAP - University of Warwick, Coventry CV4 7AL, United Kingdom

ARTICLE INFO ABSTRACT

Article history: In this note we consider two coloring problems in mixed graphs, i.e., graphs containing

Recqved 16 January 2009 edges and arcs, which arise from scheduling problems where disjunctive and precedence

/‘:ece“’te?j lzngr(e)wtself fozr(r)r(l);3 October 2009 constraints have to be taken into account. We show that they are both & #-complete in
ccepte ctober . R . . . ?

Available online 17 November 2009 (C;l(l;)(l)cg l)allzrlmr bipartite mixed graphs, which strengthens some results of Ries and de Werra

© 2009 Elsevier B.V. All rights reserved.
Keywords:

Mixed graph coloring
Computational complexity
List coloring

Bipartite graph
Scheduling

1. Introduction

Coloring problems in undirected graphs are often used to handle scheduling problems involving incompatibility
constraints. Suppose for example we are given a set of jobs with unit processing time (without preemptions) that must be
processed, and for some pairs of jobs we know that they cannot be processed simultaneously; we then want to determine a
schedule for these jobs respecting the incompatibility constraints. This problem can be modeled by an undirected graph: we
associate a vertex with each job, and we join two vertices if the corresponding jobs cannot be processed at the same time.
A vertex coloring of the resulting graph then gives a feasible schedule of the jobs.

However, in more general scheduling problems, incompatibility constraints are not the only constraints that have to be
taken into account and thus the classical graph coloring model is too limited to handle this kind of problem. Consider for
example a scheduling problem where in addition to the incompatibility constraints we are also given some precedence
constraints, i.e., some jobs must be processed in a given partial order. In scheduling problems, precedence constraints
occur frequently and have been studied in several papers (see for instance [6,7]). In order to deal with scheduling problems
containing both types of constraint, we will use mixed graphs. Notice that if only precedence constraints occur (i.e., there
are no incompatibility constraints), the problem corresponds to a vertex coloring problem in a directed graph, which can be
solved in polynomial time by using longest path methods.

A mixed graph Gy, = (V, A, E) is a graph containing undirected edges (set E) and directed edges (set A) which we will
refer to as arcs. Our scheduling problem which involves incompatibility and precedence constraints can be solved using
the following definition of a k-coloring in such a mixed graph: a strong mixed coloring of a mixed graph Gy is a mapping
c:V — C ={0,1,...}, such that for each edge [v;, vj] € E, c(v;) # c(vj), and for each arc (v}, vq) € A, c(v;) < c(vy). If
IC| = k,ie,C ={0,1,...,k— 1}, we call the coloring a strong mixed k-coloring. Thus, by associating a vertex with each
job, joining two vertices by an edge if the corresponding jobs cannot be processed simultaneously, and finally joining two
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vertices v;, vq by an arc (vy, vq) (i.e., the arc is directed from v to v,) if the job corresponding to v; must be processed before
the job corresponding to vg, we get a mixed graph. A strong mixed coloring of this graph corresponds to a schedule of the
jobs with respect to both types of constraint. So mixed graphs are a helpful tool for modeling scheduling problems involving
incompatibility and precedence constraints at the same time. Notice that if the mixed graph Gy, contains a circuit (i.e., a
closed path (v, v2), (v2, v3), ..., (Un—1, Un), (Vn, v1)), NO strong mixed coloring exists. Thus throughout the paper, when
working on strong mixed colorings in mixed graphs G;;, we assume that G, contains no circuit.

In this paper we consider, besides the strong mixed coloring, another type of coloring in mixed graphs. We define a weak
mixed coloring of a mixed graph Gy as a mapping c: V — C = {0, 1, ...}, such that for each edge [v;, vj] € E, c(vi) # c(v))
and for each arc (v, vq) € A, c(v)) < c(vg). As before, if |C| = k,ie,C = {0,1,..., k — 1}, we call the coloring a weak
mixed k-coloring. This type of coloring may be used if we want to model precedence constraints which impose that some
jobs must not be processed after some other jobs (but possibly at the same time). Notice that a strong mixed k-coloring is a
special case of a weak mixed k-coloring. In fact a strong mixed k-coloring in Gy, corresponds to a weak mixed k-coloring in
G}, where G, is obtained from Gy by adding an edge [v;, v;] for each arc (v;, vj) (and thus obtaining multiple edges/arcs).
In this paper we will only consider simple mixed graphs.

For both types of coloring we can state the following decision problems.

Strong mixed graph coloring problem S(Gy, k):

Instance: A mixed graph G, = (V, A, E) and a positive integer k.

Question: Can the vertices of Gy be colored using at most k colors so that, for each edge [v;, vj] € E, c(v;) # c(v;), and for
each arc (v, vg) € A, c(v) < c(vg)?

Weak mixed graph coloring problem W (Gy, k):

Instance: A mixed graph Gy, = (V, A, E) and a positive integer k.

Question: Can the vertices of Gy be colored using at most k colors so that, for each edge [v;, vj] € E, c(v;) # c(vj), and for
each arc (v, vg) € A, c(vp) < c(vg)?

Both problems have been studied by several authors (see for instance [3-5,8,9]). In [3,4], S(Gy, k) is considered in mixed
trees as well as in mixed series—parallel graphs, and the authors provide polynomial-time algorithms. In [5], lower and
upper bounds are given on the minimum number of colors necessary for a general mixed graph Gy, to admit a strong mixed
coloring. In [8] and [9], S(Gy, k) and W (Gy, k) are considered in special classes of mixed graphs, and their complexity status
is determined. More precisely, in [9], it is shown that both S(Gy, k = 3) and W (Gy, k = 3) are N P-complete if Gy, is a
bipartite mixed graph of maximum degree 3 or if Gy, is a planar bipartite mixed graph with maximum degree 4. In this paper,
we strengthen these results by showing that S(Gy, k = 3) and W(Gy, k = 3) are N #-complete in cubic planar bipartite
mixed graphs.

For all graph theoretical terms not defined here, the reader is referred to [1].

2. Complexity results

2.1. Strong mixed graph coloring problem

In order to show the N P-completeness of S(Gy,, 3), we will use a transformation from the List Coloring Problem (LiCol)

which is defined as follows.

LiCol(G)

Instance: An undirected graph G = (V, E) together with sets of feasible colors L(v) for all vertices v € V.

Question: Does there exist a proper vertex coloring of G (i.e., adjacent vertices get different colors) such that every vertex is
colored with a feasible color from L(v)?

In [2], this problem has been shown to be .V #-complete if the total number of available colors is three (i.e., |L| = 3) and
if G € g, where § is a special class of cubic planar bipartite graphs which we will describe hereafter. In order to show the
N P-completeness, the authors use a transformation from the . $#-complete problem Cubic Planar Monotone 1-in-3SAT
(CPM1in3SAT). The transformation is the following. They associate with each vertex v of the cubic planar bipartite graph
G' = (V’, E) (built on an instance of CPM 1in3SAT ), which represents a variable, a list L(v) = {0, 1}. Next, they replace each
vertex C in G’ representing a clause C = u Vv v Vv w as well as its incident edges [u, C], [v, C], [w, C] by the gadget shown
in Fig. 1 and associate with each vertex in the gadget a list of feasible colors. Thus they obtain another cubic planar bipartite
graph G = (V, E). The set § is exactly the family of these graphs G obtained by applying the transformation mentioned
above.

Theorem 1. S(Gy, 3) is N P-complete if Gy, is a mixed cubic planar bipartite graph.

Proof. Consider an instance of LiCol(G) with G = (V,E) € 4 and with the lists of feasible colors as shown in Fig. 1. First
notice that we can replace the parallel edges by the gadgets shown in Fig. 2 (all vertices for which no list is indicated in the
gadgets will get the list {0, 1, 2}). Indeed, in any list-coloring [ of the new graph G’ = (V’, E’) (i.e., the graph obtained from
G by replacing the parallel edges by the gadgets), we must have I(x') = 1and I(y") = 0, thus [(x) € {0, 2} and I(y) € {1, 2}
in a gadget Gy, and I(x') = 2 and I(y') = 0, thus I(x) € {0, 1} and [(y) € {1, 2} in a gadget G,. So clearly G is list-colorable if
and only if G is list-colorable, since one can color properly the vertices in the gadgets G;, i = 1, 2, which are different from
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Fig. 1. The gadget replacing a vertex C corresponding to a clause C = u Vv v V w (see [2]).

X y X y

C {0.1,2} (0,1,2}. C {0.1,2} (0,1,2}.
. .(1} {0} yoox .{2} © y

(2 PEES U U@,

Y Wi {2}
X y X y
(a) Gadget G;. (b) Gadget G,.

Fig. 2. The gadget replacing parallel edges between x and y (a) if L(x) = {0, 2} and L(y) = {1, 2}; (b)if L(x) = {0, 1} and L(y) = {1, 2}.

x,y,x and y/, using at most colors 0, 1 and 2. Furthermore, notice that G’ is still cubic planar bipartite, and let us denote
by ¢’ the class of graphs obtained from a graph G € § by replacing parallel edges by the gadgets shown in Fig. 2. Thus we
conclude that the LiCol problem remains & #-complete if the considered graph G’ is in §’ and the total number of available
colors is three.

We will explain now how to replace each vertex in G’ in order to get a cubic planar bipartite mixed graph Gy = (V, A, E)
with the property that Gy, admits a strong mixed 3-coloring if and only if G’ is list-colorable:

(i) Each vertex x with list |[L(x)| = 3 remains unchanged.
(ii) Each vertex x with list L(x) = {0, 1} is replaced by the gadget shown in Fig. 3, which we shall call the {0, 1}-gadget.
(iii) Each vertex x with list L(x) = {1, 2} is replaced by the gadget obtained from the {0, 1}-gadget by inverting the arcs; we
shall call it the {1, 2}-gadget.
(iv) In each gadget G;, we transform the edges [x', y'] and [x’, "] into arcs (¥', X') and (x’, X”). Furthermore, in each gadget
G,, we transform the edges [x, x"], [x", "], [y, ¥'1and [y”, y”'] into arcs (X", X)), (x”,x”), ', ¥") and (y", y").

We denote by Gy, = (V, A, E) the resulting mixed graph. Notice that Gy, is cubic planar bipartite (the bipartition is
represented by the black and white vertices in the figures). Now let us fix k = 3; thus we get an instance of S(Gy, 3). We
will show now that Gy, admits a strong mixed 3-coloring if and only if G’ is list-colorable.

Suppose that S(Gy, 3) has a positive answer and denote by c the corresponding strong mixed 3-coloring using colors
0, 1 and 2. Consider any {0, 1}-gadget in Gy, corresponding to a vertex x in G'. First notice that c(x;), c(x), c(x3) € {0, 1}
since all three vertices are incident to an outgoing arc ((xq, a;) for x1, (x2, az) for x, and (x3, ay) for x3). Thus if c(x;) = 2
(resp. c(x;) = 2 or c(x3) = 2), there would be no feasible color for a; (resp. a,) since we must have c(x;) < c(a;)
(resp. c(x2) < c(ay) and c(x3) < c(ay)). Next we will show that c(x;) = c(x,) = c(x3). Suppose that c(x;) = 0. Then
c(d) = 1(d cannot get color 2 otherwise there is no feasible color for b) and thus c(x,) = 0. Furthermore c(b) = 2 (since
c(d) = 1), which implies that c(a;) = c(a;) = 1 and hence c(x3) = 0. Similarly, if c(x;) = 1, then c(d) = 0 and thus
c(x2) = 1. We have c(a;) = 2, implying c(g) = 1 and c(f) = 0, which forces c(x3) = 1. We conclude that, in any strong
mixed 3-coloring of Gy, the vertices X1, X2, X3 of a {0, 1}-gadget get the same color c¢* € {0, 1}. Notice that necessarily we
must have c(y), c(z), c(t) # c*.

Now, using similar arguments, one can show that, in any strong mixed 3-coloring of Gy, the vertices x1, x,, x3 of a {1, 2}-
gadget get the same color c** € {1, 2}. Again we necessarily have c(y), c(z), c(t) # c**.
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Fig. 3. The {0, 1}-gadget replacing a vertex x with L(x) = {0, 1}.

In any gadget G;, we necessarily have c(x”) = 2, c(x') = 1, c(y/) = 0 since there is a path (y/, ¥, X”). Furthermore, in
any gadget G, c(y’) = 0,c(y”) = 1and c(y”) = 2 since thereisapath (y',y”,y”),and c(x') = 2,c(x") = Tand c(X"") = 2
since there is a path (x"”/, x”, x').

We are now able to provide a positive answer for the LiCol problem in G'. In fact, in the graph G’, we color:

(i) each vertex x with list L(x) = {0, 1} with the color c* of the vertices x4, x,, x3 in the {0, 1}-gadget replacing x in Gy;
(ii) each vertex x with list L(x) = {1, 2} with the color ¢** of the vertices x1, X, X3 in the {1, 2}-gadget replacing x in Gy;;
(iii) each vertex x with |[L(x)| = 1 or |L(x)| = 3 with the color c(x) of x in Gy.

By the discussion above we conclude that this will give a feasible list-coloring of G'.
Conversely, let us suppose now that the LiCol problem in G’ has a positive answer and let us denote by I, the corresponding
list-coloring. We will get a positive answer for S(Gy, 3) by doing the following operations.

(i) For each vertex x in G’ with L(x) = {0, 1}, we color the vertices x1, X,, X3 in the corresponding {0, 1}-gadget in G, with
I.(x). If I.(x) = 0, then vertices a1, a,, d and f will get color 1, and vertices b and g will get color 2. The remaining yet
uncolored vertices of the gadget can be colored properly by giving color 2 to the white vertices and color 1 to the black
vertices. Similarly, if [. (x) = 1, then vertices a; and a, will get color 2, vertices d and f will get color 0, and vertices b
and g will get color 1. Again the remaining yet uncolored vertices of the gadget can be colored properly by giving color
1 to the white vertices and color 2 to the black vertices.

(ii) For each vertex x in G’ with L(x) = {1, 2}, we color the vertices x1, X,, X3 in the corresponding {1, 2}-gadget in Gy, with
I (x). Using similar arguments as in the previous case, we can show that all vertices of the {1, 2}-gadget can be properly
colored using colors 0, 1 and 2.

(iii) Each vertex x with |L(x)| = 1 or |L(x)| = 3 will keep its color in Gy.

Clearly, these operations give us a feasible strong mixed 3-coloring of Gy, and thus we have a positive answer for S(Gy, 3).
Since Gy can be obtained from G’ in polynomial time, we conclude that S(Gy, 3) is & #-complete. O

Notice that this W #-completeness result is best possible in the sense that, if we consider S(Gy, 3) with Gy having
maximum degree 2 or S(Gy, 2), the problem becomes polynomially solvable. Indeed it has been shown in [9] that S(Gy, 2)
can be solved in polynomial time. Furthermore, the problem can be solved in polynomial time for graphs of maximum degree
2 (and in fact also more generally for all series—parallel graphs (see [4])).

2.2. Weak mixed graph coloring problem
Now let us consider W (Gy,, 3). We have the following result.

Theorem 2. W (Gy, 3) is N #-complete if Gy, is a cubic planar bipartite mixed graph.

Proof. We use a reduction from S(G},, 3), which we just showed to be & #-complete if G}, is a cubic planar bipartite mixed
graph (see Theorem 1).

Consider a cubic planar bipartite mixed graph G;, = (V’, A, E"). We replace each arc (x, y) € A’ by the gadget shown in
Fig. 4 (the graph D is the same as in Fig. 3). The resulting mixed graph G, is clearly cubic planar bipartite. We will now show
that Gy admits a weak mixed 3-coloring if and only if G, admits a strong mixed 3-coloring.
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Fig. 4. The gadget replacing an arc (x, y). The graph D is shown in Fig. 3.

Suppose that S(G),, 3) has a positive answer and denote by ¢’ the corresponding strong mixed 3-coloring. We get a
feasible weak mixed 3-coloring ¢ of Gy by proceeding as follows. In Gy; we color each vertex x which does also belong to
G), with color c(x) = ¢’(x). In each gadget (which replaces an arc of G,,) we color the vertices a, b, d and e as follows:
c(a) = c(b) = c(x) and c(d) = c(e) = c(¥).So we will have c(u) < c(v) for each arc (u, v) in Gy;. Notice that the remaining
yet uncolored vertices in the gadget can be properly colored using colors 0, 1 and 2 by giving color c(b) to all white vertices
and color c(d) to all black vertices. Thus we obtain a feasible weak mixed graph 3-coloring of Gy;.

Conversely, suppose that W (Gy, 3) has a positive answer and denote by c the corresponding weak mixed 3-coloring.
Then we get a feasible strong mixed 3-coloring ¢’ of G}, by proceeding as follows: in G, we color each vertex x with color
c¢’(x) = c(x). This necessarily gives us a feasible strong mixed 3-coloring of Gj,. In fact in each gadget of Gy which replaces
an arc (x, y) of G}, vertices x and y are colored such that ¢/(x) < ¢’(y). Indeed vertices a and e have different colors since
they are linked by an edge. Furthermore, since there is a path (a, b), (b, d), (d, e) from a to e, we must have c(a) < c(e). We
conclude that c(a) < c(e) and so we necessarily have c(x) < c(y). Thus we get a feasible strong mixed 3-coloring of G;,. O

Again we can claim that this & #-completeness result is best possible. Indeed, in [9] it has been shown that W (Gy, 2) is
polynomially solvable. Furthermore, a mixed graph having maximum degree 2 consists of a family of disjoint mixed chains
and mixed cycles. Mixed cycles can be colored optimally (see [9]), and the case of mixed chains is trivial.

3. Conclusion

In this note, we have shown that both the strong mixed graph coloring problem and the weak mixed graph coloring
problem are & #-complete in planar cubic bipartite mixed graphs, which strengthens some results of [9]. In order to detect
some more polynomially solvable cases for the strong mixed graph coloring problem, it would be interesting to analyze for
instance mixed bipartite graphs containing directed subgraphs with a special structure. For the weak mixed graph coloring
problem, it would be interesting to analyze for instance mixed bipartite graphs containing undirected subgraphs with a
special structure.
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