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Abstract. Spreading phenomena in complex networks have attracted much 
attention in recent years. However, most of the previous works only concern the 
critical thresholds and final states of the spread. In this paper, we investigate the 
empirical spreading paths in real location-based networks and find an abnormal 
phenomenon that the transferring probability of an epidemic between users 
varies with time, which violates the classical spreading models with a constant 
transferring probability. Besides, we observe an interesting delay gap between 
the maximal spreading velocity and the maximal transferring probability, 
where the spreading velocity refers to the fraction of newly infected nodes, and 
transferring probability represents the probability that a susceptible individual 
gets infected by one of its infected neighbors. Then we propose an advanced SI 
(susceptible-infected) model to analyze the problem, which could analytically
explain the delay gap between the spreading velocity and the transferring 
probability. Experiments in BA and ER model networks demonstrate the 
effectiveness of our model. Thus, our work provides a deep understanding of 
the dynamics of the spreading problems.
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1. Introduction

Spreading phenomena are ubiquitous in natural systems, e.g. epidemics in biological 
networks and computer viruses in internet networks [1, 2], where the systems could be 
represented by complex networks consisting of nodes and edges [3, 4] and information 
spreads along the edges of the networks [5, 6]. This issue has particular relevance in the 
analysis of complex network topologies and epidemic threshold on the dynamical infor-
mation spreading [7, 8]. For example, classical spreading theory showed the presence of 
a critical threshold in the epidemic spreading rate below which the disease would van-
ish at an exponential rate, while it pervades the whole networks if the spreading rate 
was greater than the threshold [9, 10]. Consequently, the spreading threshold is one of 
the most important factors of spreading problems.

Previous works mainly focus on the relationship between spreading threshold  
[11, 12] and complex network topologies [13]. Karsai et al [14] found that the bursty 
and activity patterns of individuals and weight-topology correlations would slow down 
the spread in communication networks. Lerman et al [15] explored the empirical char-
acteristics of information contagion on Twitter and found that network structure 
affected dynamics of information flow. Newman et al [16] investigated empirically 
the network structure and studied some control strategies for the immunization of 
computer viruses in email networks. Pastor and Vespignani [17] found that BA net-
works were more fragile than ER networks against epidemics. Moreover, the threshold 
for susceptible-infected-susceptible (SIS) model always vanishes in the thermodynamic 
limit [18]. Kuperman and Abramson [19] explored that the epidemic infection propor-
tion would have a wide amplitude oscillations at a large rewiring probability on SIRS 
epidemiological model. However, we still lack an in-depth investigation of the dynami-
cal empirical path to the spread of information in networks
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Unlike previous works that mostly focus on the critical threshold of networks or 
the identification of influential nodes [20, 21], we aim to track the spreading paths 
and analyze the evolving patterns of epidemics. We find the spreading probability of 
information changes with time, where the spreading probability refers to the transfer-
ring probability. For example, a new product initially draws great attention and people 
are more likely to buy it, there the purchase probability could be characterized by 
spreading probability. However, people will lose interest in the product as time goes 
by. Intuitively, the sales volume of the product decreases with the diminished interest. 
However, we find a counterintuitive phenomenon in real location-based networks where 
a delay gap exists between the maximal transferring probability and the maximal 
velocity. Then we propose an improved SI spreading model and thoroughly analyze the 
delay gap. Our method gives the analytical relationship among the spreading velocity, 
dynamical transferring probability and the network structures. Finally, experiments in 
BA and ER networks illustrate the validity of our method.

The rest of the paper is organized as follows: in section 2, we introduce dataset 
description, classical SI model and our proposed method. In section 3, we apply the 
proposed method to BA and ER model networks and compare their differences. Finally, 
the conclusion is given in section 4.

2. Materials and methods

2.1. Dataset description

We utilize two different datasets to explore the empirical spreading paths, named 
Gowalla and Brightkite [22]. In the two datasets, users travel to a place, check in and 
share the location with their friends on the Gowalla (or Brightkite) websites. Based on 
the check-in information, their friends are likely to travel the same place, check in and 
follow the sharing process. We consider checking into the different locations as inde-
pendent spreading events. Different spreading events share the same underlying social 
networks. The total number of check-ins for Gowalla is 6.4 million over the period of 
February 2009–October 2010 and 4.5 million between April 2008 to October 2010 for 
Brightkite. Table 1 displays an example of the checking-in information of Gowalla, 
which lists user-id, time and location information. The social network for Gowalla is 
undirected and unweighted, and for Brightkite is directed and unweighted. But we 
treat Brightkite as undirected for simplicity. Structural properties of the Gowalla and 
Brightkite friendship network are shown in table 2. We are interested in understanding 
the pattern of how users travel to the same place at a certain time, and how likely a 
person is going to a place under the conditions that they have a friend who has been 
there.

2.2. The standard SI model

We use a SI spreading model [23] to describe the check-in phenomenon. Supposing 
that the information spreads only along the friendships in the social networks. If their 
friends check in the same place, we treat that the information has successfully spread 
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from the user to their friends. The spreading probability in the SI model characterizes 
the likelihood whether the information could be passed through an edge.

Based on the above explanation between the dataset and spreading model, we focus 
on the SI spreading model in which each individual is in one of two states, either sus-
ceptible (S) or infected (I). We consider a network composed of N nodes tied with E 
links. In the spreading process, a susceptible node will become infected with a certain 
probability if its infected neighbors transmit the epidemic information to it. In hetero-
geneous random networks [17], let ik(t) be the probability that nodes with degree k are 
infected. The classical SI model can be written as [24, 25],

dik(t)

dt
= βk(1− ik(t))Θ(ik(t)) (1)

where β is the spreading rate, 1  −  ik(t) is the density that nodes with degree k are not 
infected, and Θ(ik(t)) is the probability that any given edge is pointing to an infected 
node with degree k. Then we can obtain

Θ(t) =
∑
k′

k′P (k′ ← k)ik′(t)

=
∑
k′

k′P (k′)ik′(t)∑
k P (k)

=
1

〈k〉
∑
k′

k′P (k′)ik′(t),

 

(2)

where 〈k〉 = ∑
k′ k

′P (k′) and P (k′ ← k) are the probability that nodes with degree k are 
pointing to nodes with degree k′, 〈k〉 and P (k) represent the average degree and degree 
distribution of the network, respectively. Based on equations (1) and (2), we can obtain

dik(t)

dt
= βkΘ(t) (3)

dΘ(t)

dt
= β

〈k2〉
〈k〉 Θ(t). (4)

So we can get the probability of infected nodes with degree k is,

ik(t) =
〈k〉k
〈k2〉 e

〈k2〉β
〈k〉 t+C , (5)

Table 1. Checking-in information of network Gowalla.

User-id Check-in time Latitude Longtitude Location-id

196514 2010-07-24T13:45:06Z 53.364 8119 −2.272 346 5833 145064
196514 2010-07-24T13:44:58Z 53.360 511 233 −2.276 369 017 1275991
196514 2010-07-24T13:44:46Z 53.365 389 5945 −2.275 408 7046 376497
196514 2010-07-24T13:44:38Z 53.366 370 9833 −2.270 076 4333 98503
196514 2010-07-24T13:44:26Z 53.367 408 7524 −2.278 381 3477 1043431
196514 2010-07-24T13:44:08Z 53.367 566 3377 −2.278 631 763 881734
196514 2010-07-24T13:43:18Z 53.367 964 0626 −2.279 294 3689 207763
196514 2010-07-24T13:41:10Z 53.364 905 −2.270 824 1042822
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where C is a constant. The infection proportion of the whole network is i(t) =
∑

k P (k)ik(t), 
then

i(t) =
〈k〉2
〈k2〉e

〈k2〉β
〈k〉 t+C

 (6)

where 〈kn〉 = ∑
k knP (k). This readily implies that the spread velocity is determined by 

the heterogeneity H = 〈k2〉/〈k〉2 [26].

2.3. Our proposed method

To simulate the dynamics of the spreading probability and spreading velocity, figure 1 
gives a vivid explanation in a small artificial network to show the calculation of the 
spreading probability and spreading velocity at different periods. We mark infected 
nodes as ‘I’ and susceptible nodes as ‘S’ in each period. Initially, only one node is 
infected and others are susceptible, while four links exist between infected nodes and 
susceptible nodes. At time t1, two nodes are newly infected. Thus the current spread-

ing probability is calculated by β(t1) = 1
2
. The spreading velocity refers to the fraction 

of newly infected proportion in the new period. The total infected nodes of the whole 

networks is 22, then the current spreading velocity is δ(t1) = 1
11

. Suppose that informa-
tion spreads as figure 1, we can easily obtain the spreading probability and spreading 
velocity at each period. Here we introduce the spreading probability and spreading 
velocity in a real location-based network Gowalla. As shown in table 1, there are many 
different independent spreading events. By taking the interference effect of information 
into consideration, we only concern the events that more than 1000 people participate 
in. Moreover, for the spread of each event, we divide the spreading time span into 
12 intervals. In different periods, we consider users who have ever checked-in to the 
location as infected users st and who have not checked-in the location as susceptible 
users. Then we compute the spreading probability β(t) and spreading velocity (δ(t)) in 
different periods as the following,

β(t) = i/b (7)

δ(t) = st/s (8)
where i is the number of newly infected users at time t who are neighbors of infected 
users before time t, while b is the number of susceptible users who are neighbors of 

Table 2. Structural properties of different real location-based networks and two 
artificial networks. Properties include network size (N ), total edge number (E), 
degree heterogeneity (H = 〈k2〉/〈k〉2), degree assortativity (r), average clustering 
coefficient (〈CC〉), and average shortest path length (〈d〉).
Network N E H r 〈CC〉 〈d〉
Gowalla 196 591 950 327 31.7105 −0.0293 0.0235 4.43
Brightkite 58 228 214 078 8.6635 0.0108 0.111 4.86
BA 10 000 19 997 2.1187 0.0022 0.000 01 5.5006
ER 10 000 50 090 1.0992 −0.000 03 0.000 58 4.2572
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infected users before time t, and s refers to the total number of infection users at the 
final state.

Figure 2 displays the dynamics of spreading probability and spreading velocity of 
network Gowalla in different periods. Remarkably, the spreading probability varies as 
time and violates the classical SI spreading model that possesses a constant spreading 
probability. Meanwhile, both of the spreading probability and velocity have a peak 
value. Comparing figures 2(a) and (b), we find a delay gap Δt between the maximal 
spreading velocity and the maximal spreading velocity. Besides, the delay gap exists in 
different time spans. The spreading paths of other events in other networks also reveal 
the delay phenomenon.

Note that based on equation (6), we cannot observe the delay gap. Because equa-
tion (6) considers the spreading rate as a constant, while the spreading rate varies in 
real scenarios. Thus we need a better model to describe the phenomenon. Here we pres-
ent an improved SI spreading method:

dik(t)

dt
= β(t)k(1− ik(t))Θ(ik(t)). (9)

Comparing with equation (1), the β(t) varies as time. Other parameters are the same 
to equation (1). Based on equations (2) and (9),

ik(t) =
〈k〉k
〈k2〉 e

〈k2〉
〈k〉

∫
β(t)dt+C , (10)

where C is a constant. The infection proportion of the whole network i(t) =
∑

k P (k)ik(t), 
thus

i(t) =
〈k〉2
〈k2〉e

〈k2〉
〈k〉

∫
β(t)dt+C . (11)

At the initial state of the spread, we set i(t  =  0)  =  i0, where i0 refers to a small number 
of infected proportion.

i(t) = i0e
〈k2〉
〈k〉

∫
β(t)dt. (12)

The spreading velocity follows,

di(t)

dt
=
〈k2〉
〈k〉 i0β(t)e

〈k2〉
〈k〉

∫
β(t)dt. (13)

To simplify the rate of change in spreading velocity, we denote γ(t) = 〈k2〉
〈k〉 i0e

〈k2〉
〈k〉

∫
β(t)dt, 

then

di(t)2

d2t
= (〈k〉dβ(t)

dt
+ 〈k2〉β2(t))γ(t). (14)

In practical scenarios, β(t) may follow Gaussian similar distribution, which can be writ-
ten as,

β(t) = ae−
(t−μ)2

2δ2 . (15)
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The time corresponding to the maximal spreading probability and the maximal spread-
ing velocity can be obtained by,{

dβ(t)
dt

= 0
di(t)2

d2t
= 0.

 (16)

Clearly, there is no solution to equation (16). Therefore, we can say that the spread-

ing probability β(t) and velocity dI
dt

 cannot reach the maximum at the same time. Denote 
the optimal time t1 and t2 corresponding to the maximal spreading probability and the 
maximal spreading velocity. Then the delay gap can be obtained by Δt = t2 − t1.

We now consider the reduced β(t) = C0 that means the cases in equation (6), thus 
the spreading velocity follows

di(t)

dt
=
〈k2〉
〈k〉 i0C0e

〈k2〉
〈k〉 C0t. (17)

Obviously, the spreading velocity increases with time t at an exponential rate. There is 
no solution to equation (16) and no delay gap exists between the spreading probability 
and velocity in classical SI spreading model.

Apart from the two cases introduced above, the delay gap is also applicable for 
other β(t), such as poisson distribution.

To verify the delay gap between the maximal spreading probability and velocity, 
figure 3 plots the rate of change in spreading velocity when the spreading probability 
follows different distributions in BA network. The average degree is 〈k〉 = 4 in BA net-
work and we give the initial infected proportion i0 = 10−3. Figure 3(a) shows the rate 

Figure 1. A schematic illustration of spreading probability and spreading velocity 
of an artificial network. Nodes in red marked as ‘I’ stand for the infected nodes. 
While nodes in blue marked as ‘S’ represent the susceptible nodes. We can easily 
obtain the spreading probability and spreading velocity at each period.
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of change in spreading velocity increases with time t at an exponential speed when the 

spreading probability is given as a constant. With the increase of β, d
2I

dt2
 varies more 

significantly. Figure 3(b) displays the rate of change in spreading velocity when the 
spreading probability follows Gaussian distribution. We consider the peak value of 
Gaussian distribution as a  =  0.1 and the mean value as μ = 4. It shows that the bigger 

δ is, the later the spreading velocity reaches the maximum (dI2
d2t

= 0). Obviously, there 
is a delay gap between the maximal spreading velocity and the maximal spreading 
probability (t = μ = 4) (see the red dashed line in figure 3(b)). Figure 3(c) shows the 
rate of change in spreading velocity as a function of a. The spreading probability fol-
lows Gaussian distribution, and the standard degree deviation δ = 2 and μ = 4. When 

the spreading velocity reaches the maximum (dI2
d2t

= 0), t ≈ 7. While the spreading 
probability reaches the maximum at t = μ = 4 (see the red dashed line in figure 3(c)). 
Figure 3(d) indicates the delay gap between the maximal spreading velocity and the 
maximal spreading probability as a function of δ and a, where μ = 4. The delay gap is 
positively correlated with both a and δ. Other settings are also applicable in the simula-
tion and would influence the results little.

01−01 01−16 02−01 02−17 03−05 03−21 04−05 04−21 05−07 05−23 06−08 06−24
0

0.2

0.4

0.6

0.8

1

time

β

(a)

 

 

01−01 01−16 02−01 02−17 03−05 03−21 04−05 04−21 05−07 05−23 06−08 06−24
0

0.03

0.06

0.09

0.12

time

δ

(b)

 

 

probability

proportion

Δt

Figure 2. The spreading probability and spreading velocity as a function of time t. 
(a) and (b) Represent the spreading probability and spreading velocity of the event 
labeled 10 677 in Gowalla respectively. Δt is the delay gap between the maximal 
spreading probability and the maximal spreading velocity.
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3. Results

In this section, to verify the underlying factor of network structure on the delay gap, we 
test the performance of our proposed method both in Barabási–Albert (BA) and Erdö
s–Rényi (ER) model networks [27, 28]. BA networks follow power-law degree distribu-
tion [29, 30] P (k) = k−γ where 2 < γ < 3. The degree distributions of real location-
based networks Gowalla and Brightkite are similar to BA network. ER network follows 
Poisson distribution. The statistical characteristics of BA and ER networks have been 
shown in table 2.
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a=0.25
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a = 0.1
μ = 4

a = 0.1
μ = 4

Figure 3. The rate of change in spreading velocity when the spreading rate follows 
different distributions in BA network. (a) The rate of change in spreading velocity 
as a function of time for different β. The spreading probability β is given as a 
constant, 0.2, 0.3, 0.4, respectively. (b) The rate of change in spreading velocity as a 
function of time for different δ. The spreading rate β follows Gaussian distribution, 
where a  =  0.1, μ = 4. (c) The rate of change in spreading velocity as a function 
of time for different a. The spreading rate β follows Gaussian distribution, where 
δ = 2, μ = 4. The dashed line in (b) and (c) represent the time when the spreading 
probability reaches the maximum (t = μ = 4). (d) The delay gap between the 
maximal spreading velocity and the maximal spreading probability as a function 
of different δ and different a when the spreading probability follows Gaussian 
distribution, where μ = 4. The color depth indicates the delay gap.
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Figure 4. The spreading probability, spreading velocity and the total infected 
nodes as a function of time t respectively in BA network. Figures (a)–(c) are the 
spreading probability (blue circle), spreading velocity and total infected nodes at 
time t as a function of different periods respectively when the original spreading 
probability (red triangle) is set to be a constant 0.3 in figure (a). Because if the 
constant is too small, information will be difficult to spread throughout the 
whole system, if too big, information will spread throughout the whole system 
quickly with fewer steps. There is no sense to do research in the above two cases. 
As a consequence, we give the spreading probability as a moderate value 0.3. 
Figures (d)–(f) have the same meaning with figures (a)–(c) respectively when the 
original spreading probability is represented by a Gaussian function. The peak of 
the Gaussian function (red triangle) is set to be 0.7 in figure (d). Δt is the delay gap 
between the maximal spreading probability and the maximal spreading velocity. 
Spreading simulations will be introduced in the following: initially, 1% nodes are 
randomly chosen to be initial spreaders. At each step, every infected node infects 
all its neighbors with a given spreading probability until the number of susceptible 
nodes is less than 0.5%, which indicates the spreading process will be terminated. 
The results are obtained by averaging 100 independent simulations.

10

ht
tp
://
do
c.
re
ro
.c
h



In the experiments, the BA network size is N = 10 000 and the average degree is 
〈k〉 = 4. We consider the spreading probability as a constant (β = 0.3) or Gaussian 
distribution (see equation (15)) respectively to simulate the spreading path. We set 
a  =  0.7, μ = 4, and δ = 2. At the beginning of the spreading process, 1% nodes are ran-
domly chosen to be initial spreaders and other nodes are susceptible. Figure 4 shows the 
dynamics of simulated spreading probability (blue circle) and spreading velocity with 
different original spreading probabilities (red triangle). In figure 4(a), the simulated 

0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

(a)

time

β

 

 
simulated
original

0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

(b)

time

δ

 

 
proportion

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

(c)

time

s

 

 

infected nodes

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

time

δ

(e)

 

 
proportion

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

(f)

time

s

 

 

infected nodes

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

(d)

time

β

 

 
simulated
original

Δt

Figure 5. The spreading probability, spreading velocity and the total infected 
nodes as a function of time t respectively in ER network. Figures (a)–(c) are the 
spreading probability (blue circle), spreading velocity and total infected nodes at 
time t as a function of different periods respectively when the original spreading 
probability is given as a constant 0.1. Figures (d)–(f) are the results with a Gaussian 
function, which explains the delay gap in figure 2. Δt is the delay gap between 
the maximal spreading probability and the maximal spreading velocity. Spreading 
simulations are the same as figure 4. The results are obtained by averaging 100 
independent simulations.
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spreading probability ranges from 0.2 to 0.3, approximating to the original spreading 
probability. It is due to this that we only count the newly infected nodes, but ignore 
whether the susceptible node is infected by one or more infected nodes. That is why 
the simulated probability has a little fluctuation. While in figure 4(d) the simulated 
spreading probability has similar performance to the original spreading probability. 
For the spreading velocity in figures 4(b) and (e), they both first increase and then 
decrease, but the latter has a greater fluctuation than the former. The proportion 
increases by 0.05 from t  =  1 to t  =  7 in figure 4(b), while it increases by 0.3 from t  =  1 
to t  =  6 in figure 4(e). Figures 4(c) and (f) show the total infected nodes as a function 
of time t, which means the accumulation of the infection proportion in figures 2(b) and 
(e) respectively. Thus, the infected nodes reach the stable state in figure 4(f) earlier 
than figure 4(c). Moreover, the spreading velocity and spreading probability reaches the 
maximum at t  =  6 and t  =  4 respectively, which indicates the delay gap between them 
in figures 4(d) and (e). A similar phenomenon occurs in real location-based networks in 
figure 2.

To further investigate whether the delay gap is relevant to the network struc-
ture, figure 5 plots the dynamical spreading paths in ER network, where the size is 
N = 10 000 and 〈k〉 = 10. We consider the spreading probability as a constant (β = 0.1) 
or a Gaussian distribution, where a  =  0.4, μ = 4 and δ = 2. In figure 5(a), the simulated 
spreading probability approximates to 0.1, almost equal to the original spreading prob-
ability. In figure 5(b), the simulated spreading probability has a similar trend with the 
original spreading probability. Comparing figures 5(d) with (e), there is a delay gap Δt. 
As a consequence, the delay gap is determined by both the spreading probability and 
the underlying network structures.

4. Conclusion

In conclusion, we first investigate the empirical spreading path in real location-based 
networks and show that the spreading probability varies with time, which is different 
from the constant spreading probability in classical SI model. Additionally, we show a 
delay gap exists between the maximal spreading probability and the maximal spread-
ing velocity. By taking into account the dynamics of the spreading probability, we put 
forward an advanced SI spreading model to thoroughly analyze the delay gap. Finally, 
our method reproduces and characterizes the delay gap in random networks, especially 
in BA and ER networks, which illustrates the effectiveness of our method.

The exploration of empirical paths to the spread of information has great significance 
in improving information diffusion efficiency. When designing an advertising strategy 
for some activities (e.g. musical concert, film debut), we usually raise some advertising 
on TV and internet ahead of the time. Based on the delay gap in the paper, we can bet-
ter determine when to put the advertising in the market to achieve maximal influence. 
Moreover, the proposed method can also help predict the trend and the coverage of 
the spread in a network. Thus, our paper has a deep understanding on the spreading 
problem and may help design better advertising strategies.
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