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A B S T R A C T

Delta-like 1 homolog (DLK1) is a member of the epidermal growth factor (EGF)-like family and an atypical notch
ligand that is widely expressed during early mammalian development with putative functions in the regulation
of cell differentiation and proliferation. During later stages of development, DLK1 is downregulated and becomes
increasingly restricted to specific cell types, including several types of endocrine cells. DLK1 has been linked to
various tumors and associated with tumor stem cell features. Sympathoadrenal precursors are neural crest de-
rived cells that give rise to either sympathetic neurons of the autonomic nervous system or the endocrine
chromaffin cells located in the adrenal medulla or extraadrenal positions. As these cells are the putative cellular
origin of neuroblastoma, one of the most common malignant tumors in early childhood, their molecular char-
acterization is of high clinical importance. In this study we have examined the precise spatiotemporal expression
of DLK1 in developing sympathoadrenal cells. We show that DLK1 mRNA is highly expressed in early sympa-
thetic neuron progenitors and that its expression depends on the presence of Phox2B. DLK1 expression becomes
quickly restricted to a small subpopulation of cells in sympathetic ganglia, while virtually all chromaffin cells in
the adrenal medulla and the Organ of Zuckerkandl still express high levels of DLK1 at late gestational stages.

1. Introduction

Sympathetic neurons of the autonomic nervous system and the en-
docrine chromaffin cells are neural crest derived cells that share many
characteristics, including the expression of the catecholaminergic
pathway enzymes tyrosine-hydroxylase (TH) and dopamin-β-hydro-
xylase (DBH). The later constitute the adrenal medulla and release ca-
techolamines into the blood stream in response to stimulation by
preganglionic sympathetic nerve fibers. During development chro-
maffin cells are also located in extra-adrenal positions, such as the
organ of Zuckerkandl (OZ), which is believed to be the major source of
catecholamines during fetal life (West et al., 1953). In mouse embryos it
is located on the anterior surface of the aorta at the level of the renal
pelvis and can be identified by the presence of TH-immunofluorescence
and the absence of neurofilament (NF) expression (Schober et al.,
2013). Originally, it was postulated that sympathetic neurons and
chromaffin cells originate from a common bipotential sympathoadrenal
precursor (Anderson and Axel, 1986), but Furlan and colleagues re-
ported recently that at least a major subpopulation of chromaffin cells
develops indirectly from neural crest cells via Schwann cell precursors

(Furlan et al., 2017). However, due to the strong similarities between
the precursors of sympathetic neurons and chromaffin cells with regard
to their molecular profile and developmental transcription factor de-
pendence (Huber, 2006, 2015) the term “sympathoadrenal (SA)” is still
used here. The development of SA cells is governed by a transregulatory
transcription factor network (Chan et al., 2018; Huber, 2006), which
among others comprises the homeodomain transcription factor Phox2B
(Huber et al., 2005; Pattyn et al., 1999) and the basic helix loop helix
transcription factors Mash1 (Huber et al., 2002; Pattyn et al., 2006). A
precise knowledge of the molecular players and pathways that operate
during SA development is of high significance in a clinical context, as
these precursor cells are the cellular origin of neuroblastoma, a ma-
lignant early childhood tumor derived from embryonic tissue (for a
recent review see Tsubota and Kadomatsu, 2018).

Delta Like-1 homolog (DLK1), also known as preadipocyte factor 1
(Pref-1) and pG2 (Lee et al., 1995), is a paternally imprinted gene lo-
cated on human chromosome 14q32 (Gubina et al., 1999) and mouse
chromosome 12 (Gubina et al., 2000). It encodes a transmembrane
epidermal growth factor (EGF)-like protein containing six tandem EGF-
like repeats (Smas and Sul, 1993; Smas et al., 1994). DLK1 is a non-
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canonical notch ligand interacting with the Delta-Notch signaling
pathway, which is involved in cell fate decisions, progenitor main-
tenance and cell differentiation (Bray, 2006; Fiúza and Arias, 2007;
D'Souza et al., 2010). DLK1 is widely expressed during embryonic de-
velopment of mammals (Falix et al., 2013), but in the adult its ex-
pression is downregulated and highly restricted to certain organs, in-
cluding adrenal chromaffin cells (Jensen et al., 1993; Larsen et al.,
1996; Hedlund et al., 2003). Despite its widespread expression during
embryonic development, mice carrying deletions of DLK1 display re-
latively mild deficits, including a partially penetrant neonatal lethality,
growth retardation, skeletal deficits and accelerated adiposity (Moon
et al., 2002; Appelbe et al., 2013). Yet, the functions of DLK1 are only
partially understood (Appelbe et al., 2013).

DLK1 has also been linked to tumor biology and associated with
cancer stem-cell features (Yin et al., 2006; Kim et al., 2009; Xu et al.,
2012; Cai et al., 2016). Its expression has been detected in a variety of
tumor cells, including certain types of neuroblastoma cells (van Limpt
et al., 2003; Kim et al., 2009; Begum et al., 2012). Here we report the
spatiotemporal expression pattern of DLK1 in sympathoadrenal cells in
the course of their development to link the normal molecular properties
of these cells to their tumor biology.

2. Materials and methods

2.1. Experimental animals

Phox2BLacz mice (Pattyn et al., 1999) were described previously.
Pregnant C57BL/6J or Phox2BLacz mice were sacrificed by cervical
dislocation and embryos were removed at embryonic day (E)10.5,
E11.5, E13.5 or E18.5. The day of vaginal plug identification was de-
signated E0.5. The study was carried out in strict accordance with the
German Federal Animal Welfare Law and care of animals was in ac-
cordance with institutional guidelines.

2.2. Histology

Embryos were fixed in 4% paraformaldehyde (PFA) overnight.
Tissues were then rinsed 3 times with PBS and transferred into 30%
sucrose in PBS for cryoprotection. After immersion in sucrose overnight
the tissue was coated with OCT™ compound (Tissue Tek), frozen on dry
ice, and stored at−80 °C until further processing. Tissues were then cut

into 10 μm serial sections, mounted on Superfrost™ slides, and air dried
for 30min, before performing in situ hybridization or im-
munocytochemistry as indicated below.

2.3. Immunohistochemistry

For immunohistochemistry, slides were pretreated with 3% hy-
drogen peroxide in PBS for 15min. After incubation with sheep poly-
clonal anti-TH (1:500; AB1542, Merck-Millipore, Darmstadt, Germany)
or rabbit anti-Phox2B (1:400; kindly provided by Dr. Christio Goridis,
'École Normale Supérieure, Inserm, Paris, France) diluted in PBS, sec-
tions were incubated with the appropriate biotinylated secondary an-
tibody, rinsed with PBS and incubated for 1 h with avidin and bioti-
nylated horseradish-peroxidase-macromolecular complex (Vector: Elite
ABC reagent) according to the manufacturer's instructions. Sections
were then rinsed with PBS and stained with 3-amino-9-ethylcarbazol
(Sigma; red staining) according to the manufacturer's instructions. After
being rinsed with PBS, sections were mounted with Kaiser's glycerol
gelatine (Merck).

2.4. In situ hybridization

In situ hybridization (ISH) on cryosections and preparation of di-
goxigenin-labelled riboprobes for mouse Phox2B (Pattyn et al., 1997),
SF-1 (Gut et al., 2005), neurofilament (NF) 68 (Huber et al., 2002), and
LacZ (Huber et al., 2005) were carried out by using a modification of
the protocol of D. Henrique (IRFDBU, Oxford, UK) as previously de-
scribed (Ernsberger et al., 1997). Mouse DLK1 (gene bank accession
number: NM_010052 number; 236bp −741 bp) was cloned by RT-PCR
using a pGEM-T vector system (Promega) following the manufacturer's
instructions. The plasmids were linearized with SacII and transcribed
with SP6. The specificity of the probes was tested using appropriate
sense controls. If required, immunohistochemistry was carried out fol-
lowing in situ hybridization.

3. Results

We investigated the expression of DLK1 by in-situ-hybridization in
the area of sympathetic ganglia, the adrenal gland, and the OZ in mouse
embryos of different developmental stages starting at E10.5. At this age
DLK1 is expressed in a variety of tissues and particular strong signals

Fig. 1. (A) DLK1 is expressed at high levels in pri-
mary sympathetic ganglia (arrows) of E10.5 control
mouse embryos. (C) In Phox2BLacZ/LacZ mice the
strong signal at the sites of primary sympathetic
ganglia is lacking. Photomicrographs show cross
sections through thoracic sympathetic ganglia (ar-
rows) of E10.5 (A,B) control and (C,D) Phox2BLacZ/
LacZ mouse embryos. In-situ-hybridizations for (A,C)
DLK1, (B) Phox2B and (D) LacZ were performed in
near adjacent sections. (da) dorsal aorta. Bar: 50 μm.
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were observed in the developing liver and at the sites of the primary
sympathetic ganglia adjacent to the dorsal aorta (Fig. 1A). To identify
the position of the primary sympathetic ganglia, a near adjacent section
was labelled using a probe for Phox2B (Fig. 1B). DLK1-ISH combined
with TH-immunostaining revealed that virtually all TH-positive cells in
the thoracic primary ganglia express DLK1 (Fig. 4A) at this develop-
mental stage.

The differentiation of sympathoadrenal cells from neural crest cells
is controlled by a complex transregulatory transcription factor network,
whose activation essentially depends on the homeodomain transcrip-
tion factor Phox2B (Huber et al., 2005; Pattyn et al., 1999). To in-
vestigate, whether DLK1 expression in the SA cells is downstream of
Phox2B, we analyzed DLK1 expression in Phox2B deficient (Phox2BLacz/
Lacz) mouse embryos. As shown in Fig. 1C the strong DLK1 signal that
was detected in control mice was not observed at the site of LacZ po-
sitive cells accumulating adjacent to the dorsal aorta in E10.5 Phox2-
BLacZ/LacZ embryos (Fig. 1D), indicating that Phox2B is directly or in-
directly implicated in the upregulation of DLK1 in SA cells.

At more caudal regions, in the area of the developing adrenal cortex,
identified by the expression of steroidogenic factor 1 (SF-1), a strong
DLK1 signal matching the area of SF-1 expression was observed (Fig. 2
A,D). A stream of cells expressing Phox2B and Sox10, a marker for
neural crest cells, glial cells, and early SA precursors, was identified in
close proximity to the developing adrenal cortex (Fig. 2B and C). These
cells most likely represent chromaffin cell precursors migrating to the
adrenal Anlage. Interestingly, in the area of Phox2B/Sox10 expression
only few cells were positive for DLK1. At this developmental stage and
axial level not all SA precursors have undergone catecholaminergic
differentiation as indicated by the greater number of Phox2B than TH-
immunoreactive cells in this region (Fig. 2E and F). DLK1-ISH in
combination with either TH or Phox2B immunostaining revealed that
TH-immunoreactive cell co-express DLK1, while only a subpopulation
of Phox2B positive cells are positive for DLK1. This finding suggests that
at least some of the more immature Phox2B positive/TH negative
precursors lack DLK1 expression, indicating that DLK1 is upregulated
during early SA cell differentiation most likely between the onset of
Phox2B and TH expression.

At E11.5 TH-positive cells have invaded the adrenal gland. At this
age DLK1-expression in the adrenal gland appears diffuse and only
partially overlaps with TH-immunoreactivity (Fig. 3A–C). The OZ at
E11.5 was identified by the presence of TH-immmunoreactivity and
Phox2B-expression and the absence of neurofilament-68 expression,
which distinguishes it from prevertebral ganglia (Schober et al., 2013).
A strong signal for DLK1 was detected in the area of the OZ (Fig. 3D–E).

In sympathetic ganglia from E11.5 onwards throughout embryonic
development the expression of DLK1 is restricted to a small sub-
population of cells, while the majority of TH positive cells are negative
for DLK1. In Fig. 4 DLK1 expression and TH-immunoreactivity in

Fig. 2. DLK1 is expressed at the site of the developing adrenal cortex. Cross
sections through E10.5 mouse embryos at the level of the developing adrenal
gland. In-situ-hybridizations for (A) DLK1, (B) Phox2B, (C) Sox10 and (D) SF-1,
a marker for the developing adrenal cortex, were performed in near adjacent
sections. Note that in the area of Phox2B and Sox10 expression only few cells
appear positive for DLK1 (arrows). (E,F) In-situ-Hybridizations for DLK1 (blue)
followed by immunostainings for TH (E: red cytoplasmatic stain) and Phox2B
(F: red nuclear stain). Note that all TH immunoreactive cells (arrowheads) are
positive for DLK1, while only some of Phox2B immunoreactive cells co-express
DLK1. (ag) adrenal gland; (da) dorsal aorta; (go) gonad. Bars: A–D: 100 μm; E,F:
50 μm.

Fig. 3. Expression of DLK1 in (A) the adrenal gland
and (D) the organ of Zuckerkandl at E11.5.
Photomicrographs show cross sections of E11.5
mouse embryos at the level of the (A–C) adrenal
gland and (D–F) the OZ. (A, D) In-situ-Hybridizations
for DLK1 (blue) followed by immunostainings for TH
(red) were carried out. Near adjacent sections were
labelled with (B,E) Phox2B, (C) SF-1, a marker for the
adrenal cortex, or (F) neurofilament-68. (da) dorsal
aorta; (OZ) organ of Zuckerkandl; (sg) sympathetic
ganglion; (srg) suprarenal ganglion; bar: 100 μm.
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thoracic sympathetic ganglia of E10.5, E11.5, E13.5 and E18.5 mouse
embryos are shown. A Similar staining pattern was observed in para-
vertebral sympathetic ganglia of other axial levels and in prevertebral
ganglia like the suprarenal ganglion (Figs. 3A, Fig. 5A–C) and the ce-
liac-superior mesenteric ganglion complex (not shown), with a slight
temporal shift depending on the axial level. In contrast to this, in the
adrenal gland the expression of DLK1 becomes progressively confined
to chromaffin cells, with all TH-immunoreactive cells exhibiting a
strong signal for DLK1 at E18.5 (Fig. 5). Moderate expression of DLK1
was also observed in the periphery of the adrenal cortex. Similarly, the
TH-positive cells in the organ of Zuckerkandl maintain DLK1 expression

throughout embryonic development (Fig. 6).

4. Discussion

We show that DLK1 is transiently expressed in early sympathetic
neuron progenitors at E10.5. and that its expression is downstream of
Phox2B. This suggests that DLK1 is upregulated in the course of early
SA differentiation, which is essentially controlled by Phox2B. However,
as Phox2B is required for all aspects of SA differentiation and initiates a
large set of other transcription factors (Huber, 2006), the requirement
of Phox2B may well be indirect. It has been reported that hypoxia

Fig. 4. Expression of DLK1 in thoracic sympathetic
ganglia at E10.5, E11.5 E13.5 and E18.5. In-situ-hy-
bridizations for DLK1 (blue) followed by im-
munostainings for TH (red cytoplasmatic stain) were
carried out. Note that DLK1 expression is restricted to
a subpopulation of TH-immunoreactive cells (arrows)
from E11.5 onwards. Bar: 50 μm.

Fig. 5. Expression of DLK1 in the developing adrenal gland at (A) E11.5, (B) E13.5, and (C) E18.5. (D) higher magnification of inset in (C). In-situ-hybridizations for
DLK1 (blue) followed by immunostainings for TH (red cytoplasmatic stain) were carried out. (srg) suprarenal ganglion; Bars: (A–C) 100 μm, (D) 50 μm.
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upregulates DLK1 expression in neuroblastoma cells, mediated by hy-
poxia-inducible factors (HIFs) 1 and 2 (Kim et al., 2009). Interestingly,
HIF-2a shows a similar spatiotemporal expression pattern in developing
sympathetic ganglia as DLK1 and it is also absent in primary sympa-
thetic ganglia of mice lacking Phox2B (El Faitwri, unpublished data).

From E11.5 onwards the expression of DLK1 mRNA is restricted to a
small subpopulation of TH-positive cells in sympathetic ganglia, which
may represent immature progenitor-like cells. This is conceivable, as
neurogenesis from neural crest derived progenitors is going on for
several days in sympathetic ganglia (Tsarovina et al., 2008). Alter-
natively, DLK1-expressing cells in sympathetic ganglia may represent
small-intensively fluorescent cells, which resemble chromaffin cells
(Eränkö, 1978). As shown here and by others, chromaffin cells, as well
as some other endocrine cells, maintain DLK1 throughout prenatal and
postnatal life (Jensen et al., 1993; Larsen et al., 1996). Together, this
expression pattern suggests a role of DLK1 in early SA differentiation as
well as in endocrine differentiation and/or function.

DLK1 is believed to exert its functions primarily during develop-
ment and regeneration of various cells and tissues such as preadipocytes
(Smas and Sul, 1993), the hematopoietic system (Li et al., 2005;
Mirshekar-Syahkal et al., 2013) and the liver (Zhu et al., 2012). Fur-
thermore, it plays an important role in tumor biology. In neuroblastoma
high DLK1 expression was attributed to poorly differentiated cells and
linked to increased tumor growth and tumorigenicity (Kim et al., 2009;
Begum et al., 2012). Interestingly, another report associated high DLK1
expression in neuroblastoma with a cell type exhibiting traits of dif-
ferentiated chromaffin cells (van Limpt et al., 2003). These contra-
dictory findings, however, correlate well with the normal spatio-
temporal expression pattern of DLK1, with high DLK1 expression in
immature sympathetic neuron progenitors and chromaffin cells of later
developmental stages.

The narrow time frame of DLK1 expression in sympathetic ganglia
suggests a function during the early development of sympathetic
neuron progenitors. Studies in neuroblastoma have suggested that
DLK1 suppresses neuronal differentiation, inhibits neurite outgrowth,
and promotes progenitor maintenance (Kim et al., 2009; Kim, 2010;
Begum et al., 2012). Thus, possible roles of DLK1 in developing sym-
pathetic ganglia may include the regulation of progenitor maintenance
and the timing of differentiation.
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