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Summary. The paper discusses the non-parametric identification of causal direct and indirect
effects of a binary treatment based on instrumental variables. We identify the indirect effect,
which operates through a mediator (i.e. intermediate variable) that is situated on the causal path
between the treatment and the outcome, as well as the unmediated direct effect of the treatment
by using distinct instruments for the endogenous treatment and the endogenous mediator. We
examine various settings to obtain non-parametric identification of (natural) direct and indirect
as well as controlled direct effects for continuous and discrete mediators and continuous and
discrete instruments. We also provide a simulation study and two empirical illustrations.
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1. Introduction

A range of empirical studies focus on assessing the total effect of a treatment on an outcome of
interest, such as the average treatment effect. However, in many applications, not only the average
treatment effect appears relevant, but also the causal mechanisms through which it operates. In
this case, one would like to disentangle the direct effect of the treatment on the outcome and
the indirect effect that runs through an intermediate variable or so-called mediator. Early work
on the evaluation of causal mechanisms or mediation analysis (see for instance Cochran (1957),
Judd and Kenny (1981) and Baron and Kenny (1986)) typically relied on linear models. More
recent research has focused on non-parametric and semiparametric identification, e.g. Pearl
(2001), Robins (2003), Hong (2010), Imai et al. (2010), Tchetgen Tchetgen and Shpitser (2012)
and Huber (2014). Most studies assume that the treatment and the mediator are exogenous
given observed covariates.

In this paper, we analyse the non-parametric identification of causal mechanisms via instru-
mental variables (IVs) and permit both treatment and mediator endogeneity to be related to
unobserved confounders. (This is an abridged version of Frölich and Huber (2014a).) We make
use of two distinct IVs to control for either endogeneity problem. In our heterogeneous treat-
ment effect model with a binary treatment, identification relies on particular monotonicity and
exogeneity assumptions of the instruments, which might hold only conditionally given a set
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of observed covariates. The methods proposed enable disentangling the so-called local average
treatment effect (LATE) on the compliers into direct and indirect effects. As special cases, our
results also cover the scenarios of a random treatment, which corresponds to a situation with
perfect compliance, and of unconditional instrument validity, implying that one need not control
for covariates. Our identification strategies consider various settings with either a continuous or
a discrete mediator and a continuous or a discrete instrument for the mediator.

The data that are analysed in the paper and the programs that were used to analyse them can
be obtained from

http://wileyonlinelibrary.com/journal/rss-datasets

2. Model and parameters of interest

2.1. Direct and indirect effects in non-parametric model
We are interested in disentangling the total effect of a binary treatment D on an outcome Y into
a direct effect and an indirect effect operating through some scalar mediator M. (Extensions to
vector-valued mediators are possible but would require additional IVs.) Identification will be
based on two instruments Z1 and Z2 for the endogenous variables D and M. We consider the
following structural model consisting of a system of non-separable non-parametric equations:

Y =ϕ.D, M, X, U/,

M = ζ.D, Z2, X, V/,

D=1{χ.Z1, X, W/�0},

⎫⎪⎬
⎪⎭ .1/

where ϕ, ζ and χ are unknown functions. 1.·/ is the indicator function which is equal to 1 if its
argument is true and 0 otherwise. U, V and W comprise unobservables and may be arbitrar-
ily associated, so that the treatment and the mediator are in general endogenous. X are other
covariates. (Note that the X-variables are permitted to be correlated with the unobservables.
In principle, (some of) the X-variables may even be causally affected by the treatment (post-
treatment confounders), as long as the IV assumptions below are not violated. In principle, we
could further permit different sets of X-variables in each of the equations, which would compli-
cate the notation in the independence assumptions considerably, though.) Z1 is the instrument
for treatment D, which is henceforth denoted as the first instrument, whereas Z2 denotes the
instrument for mediator M, which is referred to as the second instrument hereafter.

In this paper, we assume that Z1 is binary, which includes the special case of a binary ran-
domization indicator in an experiment with imperfect compliance. Concerning the second in-
strument, we consider both discrete and continuous Z2. Identification of the (total) LATE has
been shown in Imbens and Angrist (1994) and Angrist et al. (1996). In this paper, we aim at
disentangling the total effect into the part which is mediated by M and a remainder which di-
rectly affects Y (but could in principle run via further mediators other than M). Two endogeneity
problems arise in this context. The first stems from the permitted association between W and
U, even after conditioning on X, and is tackled by the first instrument Z1. A second issue is that
the mediator is confounded by V , which is possibly related to U and W as well. We therefore
exploit the second instrument Z2 to induce variation in M that is independent of variation in
D.

To ease our discussion we make use of the potential outcomes framework. Let Yd and Md

denote the potential outcome and the potential mediator state under treatment d ∈ {0, 1}. We
may also express the potential outcome as a function of both the treatment and the potential
mediator: Yd,Md′

. In terms of our model, these parameters are defined for d, d′ ∈{0, 1} as
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Md
i ≡ ζ.d, Z2i, Xi, Vi/,

Y
d,Md′
i ≡ϕ.d, Md′

i , Xi, Ui/=ϕ{d, ζ.d′, Z2i, Xi, Vi/, Xi, Ui}:

Similarly, we define potential treatment states for z1 ∈{0, 1}:

Di.z1/=1{χ.z1, Xi, Wi/�0}:

As discussed in Angrist et al. (1996), the population can be categorized into four subpopula-
tions or types (denoted by T ), according to the treatment behaviour as a function of the first
instrument: the always-takers (Ti =at) take treatment irrespectively of Z1, i.e. Di.0/=Di.1/=1.
The never-takers (Ti =nt) do not take treatment irrespectively of Z1, i.e. Di.0/=Di.1/=0. The
compliers (Ti = co) take treatment only if Z1 is 1, i.e. Di.0/=0 and Di.1/=1. Finally, the defiers
(Ti =de) take treatment only if Z1 is 0, i.e. Di.0/=1 and Di.1/=0. We shall assume that the last
group has probability mass 0, i.e. defiers do not exist. Note that the type Ti is a function of Xi

and Wi as it is uniquely determined by χ.1, Xi, Wi/ and χ.0, Xi, Wi/. This further implies that, in
subpopulations conditional on X, the type is a function of W only. (It would be straightforward
to extend the treatment model defined in expression (1) to D = 1{χ.Z1, Z2, X, W/ � 0}. This
model is more general as it permits the second instrument to influence D also and bears some
similarities with the idea of an ‘included instrument’ in D’Haultfoeuille et al. (2014). The main
implication of this extension is that Ti is a function of Z2i, Xi and Wi. Since all subsequent
identification approaches make use of only the type identifier but not of the structure of the
treatment equation itself, most of the later results would go through for this extended model
with few modifications of the assumptions.)

We now define the effects of interest: (natural) direct and indirect, as well as controlled direct
effects among compliers. The total average effect among compliers corresponds to the LATE,
which is also known as the complier average causal effect:

Δ=E[Y1 −Y0|T = co]=E[Y1,M1 −Y0,M0 |T = co]:

The (natural) direct effect among compliers is given by the mean outcome difference when
exogenously varying the treatment, but keeping the mediator fixed at its potential value for
D=d, which shuts down the indirect causal mechanism:

θ.d/=E[Y1,Md −Y0,Md |T = co], for d ∈{0, 1}: .2/

The indirect effect among compliers is the mean difference when exogenously shifting the
mediator to its potential values with and without treatment, but keeping the treatment fixed
at D=d:

δ.d/=E[Yd,M1 −Yd,M0 |T = co], for d ∈{0, 1}: .3/

(Because expressions (2) and (3) refer to the compliers alone, they are local versions of the
natural or pure or total direct and indirect effects that were discussed in Robins and Greenland
(1992), Robins (2003) and Pearl (2001) respectively. For convenience, we shall simply refer to
them as direct and indirect effects in the subsequent discussion.)

The controlled direct effect is the mean difference when exogenously varying the treatment,
but setting the mediator to a particular value, say m, rather than the potential mediator state:

γ.m/=E[Y1,m −Y0,m|T = co], for d ∈{0, 1},

i.e., contrary to the (natural) direct effect, which is the direct effect conditional on the mediator
state that would ‘naturally’ occur as a reaction to a particular treatment, the controlled direct
effect is obtained by forcing the mediator to take a particular value.
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2.2. Relationship to the literature
Most IV approaches in the mediation literature use a single instrument and therefore cover less
general problems than those analysed in this paper. Robins and Greenland (1992) and Geneletti
(2007) considered an exogenous treatment and an endogenous mediator with a ‘perfect’ instru-
ment that forces the mediator to take a particular (and desired) value. This is equally attractive as
directly manipulating the mediator exogenously; see the discussion in Imai et al. (2013). Perfect
instruments are, however, rare in applications. Ten Have et al. (2007) also assumed treatment
exogeneity but exploited treatment–covariate interactions as instruments for the mediator while
imposing the absence of treatment–mediator, mediator–covariate and treatment–covariate in-
teractions in the outcome model, such that identification comes from structural restrictions.
(The idea of creating instruments by interacting random-treatment assignment with covari-
ates was also discussed in Gennetian et al. (2002).) See also Dunn and Bentall (2007), Albert
(2008) and Small (2012) for related approaches. In contrast, no restrictions on interactions
are imposed in our approach, where instruments reflect variables rather than functional form
assumptions.

Imai et al. (2013) discussed non-parametric identification in experiments (again with an exoge-
nous treatment) based on imperfect and discrete instruments for the mediator. One particular
design identifies the indirect effect among individuals whose mediator reacts to the instru-
ment (‘mediator compliers’). (See their Section 4.2 on crossover encouragement designs or the
corresponding discussion in Imai et al. (2011). Also Mattei and Mealli (2011) considered a
random treatment and a binary instrument for the mediator to derive bounds on direct effects
within principal strata defined on potential mediator states.) In contrast, our paper permits
both treatment and mediator endogeneity. Secondly, our assumptions are sufficiently strong
to identify the effects on all treatment compliers rather than the subgroup of mediator com-
pliers (among treatment compliers). Under specific assumptions, this is even so for a binary
mediator.

Joffe et al. (2008) assumed a single instrument that jointly affects the treatment and the
mediator and discussed identification under particular structural restrictions. However, in a
non-parametric framework, a single instrument for both endogeneity problems is generally not
sufficient for identification. An exception is Yamamoto (2013), who considered identification
based on an instrument for the treatment and a latent ignorability assumption that was similar
to Frangakis and Rubin (1999) with respect to the mediator. This requires the mediator to be
exogenous conditionally on treatment compliance (and observed covariates). The present work
does not rely on this restriction, but on distinct instruments for the treatment and the mediator.

Powdthavee et al. (2013), Burgess et al. (2015) and Jhun (2015) are among the few studies
using two instruments, but they considered parametric models that do not permit treatment–
mediator interaction effects and thus heterogeneity in direct and indirect effects. In contrast,
our non-parametric results allow for heterogeneous effects across treatment states and observed
covariates. Miquel (2002) and Blackwell (2015) considered a non-parametric framework with
two binary instruments and showed the identification of controlled direct effects for subpop-
ulations defined on compliance in either endogenous variable. (Note, however, that Blackwell
(2015) did not allow for causal effects of one endogenous variable on another, so he considered
a multiple treatment rather than a mediation framework.) In contrast, we identify both natural
and controlled effects for all treatment compliers by imposing stronger assumptions on the sec-
ond instrument than did Miquel (2002). (Our paper is also related to the literature on triangular
systems, which mostly does not consider mediators or direct and indirect effects. An important
exception is Jun et al. (2016), who assumed a model of the type (adapted to our notation and a
binary treatment)
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Y =ϕ{α.D, M, Z3/, U},

M = ζ.D, Z2, V/,

D=1{χ.Z1/�W},

where α is an unknown real-valued function of d, m and z3. They assumed a discrete M

(and imposed some further structure on ζ), a discrete D and .Z1, Z2, Z3/⊥⊥.U, V , W/ and
E[ϕ.α, U/|V = v, W = w] is strictly monotonic in α for all v and w, along with some support
conditions. A main distinction from our model is the single-index structure and the monotonic-
ity of the outcome in the index. Furthermore, a special regressor Z3 is required, which is excluded
from the mediator and treatment equations and must be sufficiently powerful (at least partly)
to offset the effects of D and M on α. In contrast, our outcome equation (1) is unrestricted.
However, we rely on monotonicity restrictions with respect to M that are not required in Jun
et al. (2016).)

3. Identifying direct and indirect effects

We shall focus on the identification of E[Y1,M0 |T = co] and E[Y1,m|T = co], whereas the fur-
ther potential outcomes can be obtained in an analogous way to identify θ.d/, δ.d/ and γ.m/.
(Furthermore, by replacing Y1,m with 1.Y1,m � a/ in all expressions we obtain the cumulative
distribution function FY1,m|T=co.a/ that is required for quantile treatment effects or other in-
equality measures such as the Gini coefficient.)

3.1. Instrumental variables assumptions common to several identification approaches
Our first assumption imposes particular independence restrictions on the instruments condi-
tionally on X and is (for ease of exposition) slightly stronger than needed for the various lemmas
and theorems to follow. Letting the symbol ‘⊥⊥’ denote statistical independence, we make the
following assumptions.

Assumption 1 (IV independence).

.Z1, Z2/⊥⊥.U, V/|T , X,

Z1⊥⊥.U, V , T/|Z2, X:

Note that assumption 1 would be implied by the following, slightly stronger assumption:

.Z1, Z2/⊥⊥.U, V , W/|X: .4/

The main difference is that assumption 1 permits some specific forms of dependence between
Z2 and W which are discussed in Appendix A by means of causal graphs, whereas assumption
(4) does not. (As W determines T , allowing for dependence between Z2 and W can be relevant
in applications where Z2 is not randomized but depends on D. Assumption 1 also allows for an
association between Z1 and W , as long as it vanishes when conditioning on Z2. Condition (4)
is not required for any results, but if it holds it implies that the probability of complying does
not depend on Z2. This is testable, as Pr.T = co|Z2, X/ is identified further below. It further
implies that Z2⊥⊥D|X, Z1. Hence, if both assumptions seem plausible, they may be used to test
identification partially.)

For some (but not all) of our identification results we additionally require that the two instru-
ments Z1 and Z2 are independent of each other conditionally on X.
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Assumption 2 (conditional independence of Z1 and Z2).

Z1⊥⊥Z2|X:

(We note that assumption 1 and assumption 2 jointly imply that Z1⊥⊥.Z2, U, V , T/|X.)
Assumption 2 holds by construction in experiments if both instruments are independently

randomized. If only Z1 is randomized, it is also satisfied if Z2 is assigned at the same time as
or shortly before Z1 because, in experiments, any prerandomization variable is independent of
the randomization indicator Z1. Even in observational studies, we may attain independence
via a transformation of Z2, even if Z1 and Z2 are not (conditionally) independent. (Suppose
that Z2 is continuously distributed with a strictly increasing cumulative distribution function.
Define Z̃2i = Φ−1{FZ2|Z1,X.Z2i, Z1i, Xi/}, where Φ is the cumulative distribution function of
the standard normal distribution and Φ−1 its quantile function. Z̃2|Z1, X is standard normal
with mean 0 and variance 1 and thus independent of Z1 (and X). We can thus use Z̃2 instead
of Z2 as second instrument throughout, which satisfies assumption 2. Hence, assumption 2 is
a normalization rather than a substantial restriction. In practice, however, FZ2|Z1,X must be
estimated, which probably makes effect estimation less reliable.)

In addition to independence, identification requires particular monotonicity assumptions.
Assumption 3 imposes monotonicity of D in Z1, which rules out defiers, and the existence of
compliers; see also Imbens and Angrist (1994) and Angrist et al. (1996).

Assumption 3 (weak monotonicity of treatment choice).

Pr.T =de/=0,

Pr.T = co/> 0:
.5/

Assumptions 1 and 3 enable us to identify the fraction of compliers. To ease notational burden,
we shall use the following symbols for the conditional instrument probabilities: Π = π.X/ =
Pr.Z1 = 1|X/ and Π̄ = π̄.Z2, X/ = Pr.Z1 = 1|Z2, X/. (In settings imposing also assumption 2,
i.e. that Z1⊥⊥Z2|X, we have that π̄.Z2, X/=π.X/ throughout.) Under assumptions 1 and 3, the
probability mass of compliers is identified as

Pr.T = co/=E

[
D

Π̄
Z1 − Π̄
1− Π̄

]
: .6/

In the following sections we examine identification for various settings. In Sections 3.2 and
3.3 we consider a continuously distributed M and Z2 and impose monotonicity of M in the
unobservable V , which leads to a control function approach. For the controlled effect in Section
3.3 we may either invoke monotonicity in V or in Z2 for identification, which even yields testable
implications. In Sections 3.4 (natural effects) and 3.5 (controlled effects) we consider a binary
M and continuous Z2, which is more demanding in terms of identification. Finally, Section 3.6
assumes a continuous M for which only a discrete Z2 is available.

3.2. Natural effects with continuous M and Z2
We first consider the case of a continuous mediator M, and we exploit a control function
approach that allows shifting D independently from movements in the mediator.

Assumption 4 (monotonicity of mediator (control function restriction)).

(a) V is a continuously distributed random variable with a cumulative distribution function
FV |X=x,T=co.v/ that is strictly increasing in the support of V , for almost all values of x.
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(b) ζ.d, z2, x, v/ is strictly monotonic in v for almost all d, z2 and x. We normalize ζ to be
increasing.

Assumption 4 is quite strong, as it requires that V is scalar (or at least that the unobservables
affecting M can be transformed into a scalar index V that satisfies the mediator equation in
expression (1)) and continuously distributed with no values with zero densities in its support
conditionally on X and T =co. This assumption is crucial for identifying effects among all (treat-
ment) compliers. Invoking strict monotonicity of M in V enables pinning down the distribution
function of V given X among compliers by means of the conditional distribution of M given
D, Z2 and X among compliers. For this, we define the control function Ci =C.Mi, Di, Z2i, Xi/,
with

C.m, d, z2, x/= E[.d +D−1/{Z1 − π̄.z2, x/}|M �m, Z2 = z2, X=x]
E[D{Z1 − π̄.z2, x/}|Z2 = z2, X=x]

FM|Z2,X.m, z2, x/: .7/

Control function C identifies Vi, as shown in the following lemma.

Lemma 1. Under assumptions 1, 3 and 4 it follows that

(a) Ci =FM|D,Z2,X,T=co.Mi, Di, Z2i, Xi/=FV |X=Xi,T=co.Vi/,
(b) Vi =F−1

V |X=Xi,T=co.Ci/ and
(c) M⊥⊥U|C, X, T = co:

Part (a) of lemma 1 shows that the control function corresponds to the distribution function
of V among compliers conditionally on X. Part (b) shows that Ci is a one-to-one mapping
of Vi, i.e., conditionally on X and T = co, V is a one-to-one function of C, and V is thus
identified. Therefore, conditioning on C or V is equivalent. Part (c) shows that by controlling
for C (in addition to X) we can separate M from U in the outcome equation within the complier
subpopulation.

Intuitively, the key idea of our identification approach is to vary Z1 to affect D, while keeping
M unchanged through a variation of Z2 that undoes the effect of Z1 on M. For this, we need to
condition on V , which is replaced by its control function C:

E[Y1,M0 |T = co]=
∫
ϕ.1, M0, X, U/dFM0,U|X,C,T=co dFX,C|T=co

=
∫
ϕ.1, M0, X, U/dFU|X,C,T=co dFM0|X,C,T=co dFX,C|T=co,

where the last equation follows as M0 is independent of U conditionally on X and C by assump-
tion 1 and lemma 1. To identify the distribution of M0, we require M0⊥⊥Z1|X, C, T = co, which
is implied by Z2⊥⊥Z1|X, V , T . It follows that FM0|X,C,T=co =FM|Z1=0,X,C,T=co and thus equals

∫
ϕ.1, M, X, U/dFU|X,C,T=co dFM|Z1=0,X,C,T=co dFX,C|T=co:

As dFM|Z1=1,X,C,T=co is identifiable (see the on-line appendix), we may multiply and divide by
it to obtain∫

{ϕ.1, M, X, U/dFU|X,C,T=co}ω.M, X, C/dFM|Z1=1,X,C,T=co dFX,C|T=co: .8/

The weighting function ω.M, X, C/ corresponds to a ratio of conditional densities of M under
Z1 =0 versus Z1 =1, i.e.
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ω.M, X, C/= dFM|Z1=0,X,C,T=co

dFM|Z1=1,X,C,T=co
,

which is equal to

1− E[Z1|M, C, X]−π.X/

E[DZ1|M, C, X]−E[D|M, C, X]π.X/
;

see the on-line appendix. Using U⊥⊥.M, Z1/|X, C, T = co by lemma 1∫ {
ϕ.1, M, X, U/dFU|M,X,C,Z1=1,T=co

}
ω.M, X, C/dFM|X,C,Z1=1,T=co dFX,C|T=co

=E

[
YDZ1

ω.M, X, C/

Pr.Z1 =1
∣∣X/

|T = co
]
: .9/

Formula (9) shows identification of the counterfactual outcome by reweighting among com-
pliers. Yet, since the compliers are unknown, we require an expression for the entire population
that is equal to 0 in the always- and never-taker populations. As shown in the on-line appendix,

E

[{
YDZ1

Pr.Z1 =1|X/
− YD.1−Z1/

Pr.Z1 =0|X/

}
ω.M, X, C/

]
.10/

satisfies this condition and equals equation (9) multiplied by Pr.T = co/, which is identified by
assumption 1. By estimating expression (10) and dividing by Pr.T = co/, we obtain equation
(9), which gives E[Y1,M0 |T = co].

From equation (8), we can see the support condition that is required for identification. It must
hold that dFM|Z1=1,X,C,T=co >0 at every m where dFM|Z1=0,X,C,T=co >0 or, in other words, that
supp.M|Z1 =0, X, C, T = co/⊆ supp.M|Z1 =1, X, C, T = co/. Noting that, given Z1, X, T = co,
variation in C comes from Z2 alone, this implies that the second instrument must be both
sufficiently rich and strong for relevant combinations of Z1 and X among compliers to ensure
common support. This may fail in many empirical applications when fully non-parametric spec-
ifications of C and ω.M, X, C/ are used. (Imbens and Newey (2009), for instance, documented
common support issues in their empirical application when using non-parametric control func-
tions, albeit in a somewhat different methodological context.) Assuming parametric functions
(permitting extrapolation) may alleviate such issues at the cost of imposing more structure. An
alternative way of expressing common support is Pr.Z1 =1|M, C, X, T = co/ > 0 almost surely.
Because of the unique mapping between C and V (see lemma 1), this is equivalent to the following
condition.

Assumption 5 (common support of M).

Pr.Z1 =1|M, V , X, T = co/> 0 almost surely: .11/

Assumption 5 is equivalent to requiring that the weights ω.M, X, C/ do not approach ∞. If
in an empirical application some (estimated) weights are extremely large, this could indicate the
violation of the support condition (at least in the sample at hand). One could then redefine the ob-
jects of interest on subsets of the support spaces of M, X and C for which common support holds.

Theorem 1. Under assumptions 1–5 the potential outcome is identified as

E[Y1,M0 |T = co]=E

[
YDΩ

Z1 −Π
Π.1−Π/

]
1

Pr.T = co/
,
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with weights

Ω=ω.M, C, X/=1− E[Z1|M, C, X]−π.X/

E[DZ1|M, C, X]−E[D|M, C, X]π.X/

and Π =π.X/ with π.x/ = Pr.Z1 = 1|X = x/ = E[Z1|X = x]. C is identified by lemma 1 and
Pr.T = co/ is identified by expression (6). The proof is provided in the on-line appendix.

In the special case that all individuals comply with their treatment assignment, Z1 =D and
Pr.T = co/=1. In this case, Z1 may be replaced with D everywhere in theorem 1, and it follows
that E[Y1,M0 |T = co]=E[Y1,M0

], as everyone is a complier if Pr.T = co/=1.
The potential outcome in theorem 1 can be estimated by replacing the expectation by a

sample mean and plugging in estimates of Ω and Π. The estimator is of an inverse probability
weighting type where the weights are products of various conditional means. One can apply the
approach of Newey (1994) to show that the estimated potential outcome is

√
n consistent and

asymptotically normal (implying the validity of the bootstrap) under certain conditions. First,
all terms in the denominator of theorem 1 must be strictly bounded away from zero and their
respective estimators uniformly consistent. Furthermore, the bias terms of any non-parametric
plug-in estimates (e.g. conditional density functions) must be sufficiently small. For kernel-
based estimation, the structure of derivations for showing

√
n-consistency is similar to Frölich

and Huber (2014b), implying that the plug-in estimates must have a rate of convergence that is
faster than n−1=4. Theorem 1 contains several conditional means where the highest dimensional
non-parametric component conditions on dim.X/+2 (possibly continuous) covariates. Using a
product kernel function that is compactly supported, bounded, Lipschitz, integrating to 1, and
of order λ, it needs to hold that nh2λ→0 and nhdim.X/+2= ln.n/→∞. These conditions jointly
require that 2λ> dim.X/+2. This implies that, if X contains a single regressor, a second-order
kernel can be used; otherwise the components in Ω must be estimated on the basis of higher
order kernels. All conditional means in Ω must be λ−1 times continuously differentiable with
the (λ− 1)th derivative Hölder continuous. An asymptotically linear expression can then be
derived similarly to Frölich and Huber (2014b).

3.3. Controlled direct effects with continuous M and Z2
We consider the identification of the controlled direct effect for the mediator fixed at m. In
contrast with the natural direct effect, knowledge of the distribution of Md is not required,
which allows assumption 2 to be dropped so that dependence between Z2 and Z1 is permitted.
We present two different approaches for identification. Theorem 2 follows a control function
approach and exploits monotonicity of the mediator in V . Alternatively, theorem 3 imposes
monotonicity in Z2 instead of V . Before presenting the formal results, we provide some intuition
for identification.

3.3.1. Control function approach
E[Y1,m|T = co] can also be expressed as E[ϕ.1, m, X, U/|T = co]. Note that

E[Y1,m|T = co]=
∫
ϕ.1, m, X, U/dFU|X,C,T=co dFX,C|T=co

=
∫
ϕ.1, m, X, U/dFU|M=m,Z1=1,X,C,T=co dFX,C|T=co

=
∫

E[Y |M =m, Z1 =1, X, C, T = co]dFX,C|T=co, .12/
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because U⊥⊥.Z1, Z2/|X, V , T = co. Finally, estimable expressions for E[Y |M, Z1, X, C, T = co]
and dFX,C|T=co based on observable variables can be obtained as outlined in the on-line ap-
pendix.

Forthesederivations,werequirethesupportconditionsupp.X, C|T =co/⊆ supp.X, C|M =m,
Z1 = 1, T = co/ or, equivalently, that the conditional mediator density fM|X,C,Z1=1,T=co.m,
x, c/ > 0 at every value x and c where fX,C|T=co.x, c/ is positive. The one-to-one relationship be-
tween C and V implies that fM|X,V ,Z1=1,T=co.m, x, v/ > 0 whenever fX,V |T=co.x, v/ is positive. In
otherwords,fM|X,V ,Z1=1,T=co.m, X, V/mustbepositivealmosteverywhere.

Assumption 6 (common support).

fM|X,V ,Z1=1,T=co.m/> 0 almost surely: .13/

In terms of M =ζ.D, Z2, X, V/, this assumption requires that, for every x and v in the support of
X and V between compliers, there is (at least) one z2 with positive density such that ζ.1, z2, x, v/=
m. As assumption 6 can be written as fM|X,C,Z1=1,T=co.m/> 0 almost surely, this is testable.

Theorem 2. Under assumptions 1, 3, 4 and 6

E[Y1,m|T = co]= 1
Pr.T = co/

∫
E

[
YD

Z1 − Π̄
1− Π̄

Ω|X, M =m

]
dFX

with weights

Ω=ω.C, X/=fM|X.m/

E

[
D

Π̄
Z1 − Π̄
1− Π̄

|C, X

]
@

@m
E

[
1.M �m/D

Z1 − Π̄
1− Π̄

|C, X

] ,

and Π=π.X/=Pr.Z1 =1|X/ and Π̄= π̄.Z2, X/=Pr.Z1 =1|Z2, X/.

3.3.2. Identification via monotonicity in Z2
Instead of imposing assumption 4, we alternatively assume monotonicity of the mediator in Z2.

Assumption 7 (monotonicity of the mediator in the instrument). ζ.d, z2, x, v/ is strictly mono-
tonic in z2 for almost all d, x and v. We normalize ζ to be increasing.

With ζ strictly monotonic in z2, the equation M = ζ.D, Z2, X, V/ may be inverted to obtain
Z2 =ζ−1.D, M, X, V/, where ζ−1 is now the inverse function with respect to the second argument.
(This is a different inverse function from that in the previous section, where it referred to the
fourth argument. To minimize the number of symbols, we, however, use the same notation
here.) To see how assumption 7 (along with several previous assumptions) entails identification,
define the random variable Q≡ζ−1.1, m, X, V/, which is a stochastic function of the two random
variables X and V . Hence, Q is governed by the distributions of X and V so, conditionally on
X, the only stochastic component in Q is V . We use this fact in the expression

E[Y1,m|T = co]=
∫ ∫

ϕ.1, m, X, U/dFU|Q,X,T=co dFQ|X,T=co dFX|T=co: .14/

As .U, V/⊥⊥.Z1, Z2/|X, T = co we obtain dFU|Q,X,T=co = dFU|Q,Z1,Z2,X,T=co and dFQ|X,T=co =
dFQ|Z1,Z2,X,T=co. The functions on the right-hand side are equivalent to FU|Q,Z1,Z2,X,T=co.u, q,
1, q, x/=FU|M=m,Z1=1,Z2=q,X=x,T=co.u/andFQ|X,T=co.q, x/=1−FM|Z1=1,Z2,X,T=co.m, q, x/; see
the on-line appendix. Therefore, we obtain fQ|X,T=co.q, x/=−@FM|Z1=1,Z2,X,T=co.m, q, x/=@q.

Identification of the density functions requires that supp.Z2|X, T =co/⊇ supp.Q|X, T =co/,
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i.e., whenever Q has positive density, Z2 also must have positive density such that Q is observable
in that area of the support. Put differently, for every x and v in the support of X and V , there is
a value z2 in the support of Z2 such that ζ−1.1, m, x, v/= z2, which corresponds to assumption
6. Plugging the previous results into equation (14) yields

E[Y1,m|T = co]=
∫ ∫

ϕ.1, m, x, u/dFU|M=m,Z1=1,Z2=q,X=x,T=co.u/

×
{

−@FM|Z1=1,Z2,X,T=co.m, q, x/

@q

}
fX|T=codqdx

=
∫

E[Y |M =m, Z1 =1, Z2 = z2, X=x, T = co]

×
{

−@FM|Z1=1,Z2,X,T=co.m, z2, x/

@z2

}
fX|T=co.x/dz2 dx:

For making equation (15) operational, we need to identify FM|Z1,Z2,X,T=co, which is derived in
the on-line appendix.

Theorem 3. Under assumptions 1, 3, 6 and 7

E[Y1,m|T = co]= 1
Pr.T = co/

∫
E

[
YD

Z1 − Π̄
1− Π̄

|Z2, X, M =m

]
ΩdFZ2,X,

with weights

Ω=ω.Z2, X/=− @

@z2

{
E[D.Z1 − Π̄/|M �m, Z2, X]

E[D.Z1 − Π̄/|Z2, X]
FM|Z2,X.m/

}

× 1
fZ2|X

E

[
D

Π̄
Z1 − Π̄
1− Π̄

|X
]

E

[
D

Z1 − Π̄
1− Π̄

|M =m, Z2, X

] : .15/

3.4. Natural effects with discrete M and continuous Z2
In the previous sections, identification was achieved by controlling for fMd |V ,X,T=co (via varia-
tion in Z2), in particular by weighting with fM0|V ,X,T=co=fM1|V ,X,T=co. With M being discrete,
observations need to be weighted by Pr.M0|V , X, T = co/=Pr.M1|V , X, T = co/. However, V is
no longer identified for a discrete M such that Pr.Md |V , X, T = co/ is not either. An alternative
is a weighting scheme that produces Pr.M0|V , X, T = co/=Pr.M1|V , X, T = co/ on average, via
integration with respect to Z2. The price to pay is stronger identifying assumptions. We focus
on the case of a binary M, which implies the model

Y =ϕ.D, M, X, U/,

M =1{ζ.D, Z2, X, V/�0},

D=1{χ.Z1, X, W/�0}:

⎫⎪⎬
⎪⎭ .16/

In addition to assumptions 1–3, identification requires strengthening the monotonicity condi-
tion.

Assumption 8 (monotonicity of mediator in the instrument and the unobservable).

(a) V is a continuously distributed random variable with a cumulative distribution function
FV |X=x,T=co.v/ that is strictly increasing in the support of V , for almost all values of x,



1656 M. Frölich and M. Huber

(b) ζ.d, z2, x, v/ is strictly monotonic in z2 and in v. We normalize ζ.d, z2, x, v/ to be mono-
tonically increasing in z2 and in v.

We thus assume monotonicity in two arguments (which is implicit in parametric models such
as probit and logit), implying that the values of z2 can be ordered such that a model of type (16)
exists. (Although monotonicity in v (which is not directly testable) is a fundamental assumption,
monotonicity in z2 (which implies testable restrictions on observed variables) is needed only for
quantifying some conditional probabilities under the non-identifiability of V . The particular
ordering of the values z2 themselves is not important, i.e. it would suffice if a transformation of
z2 existed such that the transformed values of z2 satisfied expression (16) with assumption 8.)
As we show in the on-line appendix, under assumptions 1, 2, 3 and 8, expression (16) can be
rewritten as

Y =ϕ.D, M, X, U/,

M =1[μ−1
D,X{FV |X,co.V/}�Z2],

D=1{χ.Z1, X, W/�0},

where μ−1
d,x.v/ is strictly monotonically decreasing in v and is defined as the inverse function of

μd,x.z2/= E[.1−M/.Z1 −E[Z1|X=x]/|D=d, Z2 = z2, X=x]
E[Z1 −E[Z1|X=x]|D=d, Z2 = z2, X=x]

:

Theorem 4. Under assumptions 1, 2, 3, 5 and 8

E[Y1,M0 |T = co]=E

[
YDΩ

Z1 −Π
Π.1−Π/

]
1

Pr.T = co/

with weights

Ω= fZ2|X,T=co[μ−1
0,X{μ1,X.Z2/}]

fZ2|X,T=co.Z2/

μ′
1,X.Z2/

μ′
0,X[μ−1

0,X{μ1,X.Z2/}]
,

where μ′
d,x.z2/≡dμd,x.z2/=dz2. The proof is provided in the on-line appendix.

The weights Ω are obtained by first estimating the functions μd,x.z2/ and the density of Z2.
(In a single-index model, M = 1{ζ.αD +βZ2 + γX + V/ � 0} where ζ represents an unknown
monotonic function and α, β and γ denote unknown coefficients, the weights can be shown
to simplify to Ω=fZ2|X,T=co.Z2 +α=β/=fZ2|X,T=co.Z2/.) The conditional density of Z2 in the
complier subpopulation is identified as

fZ2|X,T=co.z2/=fZ2|X.z2/
E[D.Z1 −Π/|X, Z2 = z2]

E[D.Z1 −Π/|X]
:

3.5. Controlled direct effects with discrete M and continuous Z2
The identification of the controlled direct effect appears difficult, as the control function ap-
proach fails (because of the non-identifiability of V ) and a strategy similar to that in Section
3.4 is not applicable. Identification requires that there are values of Z2 for which M attains a
particular value m with probability 1. This case is discussed in the on-line appendix.

3.6. Natural effects with continuous M and discrete Z2
In this section, we discuss identification when both Z1 and Z2 are discrete, and M is continuous.
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(The results are also applicable when Z2 is continuous but rest on stronger assumptions than
those in previous sections.) If Z2 is discrete, common support as postulated in assumption 5
generally fails such that the approach of Section 3.2, which consisted of varying Z1 to change D

while keeping M unchanged through a variation of Z2 that undoes the effect of Z1 on M, is not
applicable. However, identification is feasible if the IV validity does not hinge on conditioning
on X, such that variation in X may be used to set M to appropriate values in the Z1 = 1 and
Z1 =0 populations. This requires X to be exogenous but allows replacing assumption 5 by the
weaker assumption 9.

Assumption 9 (common support of M).

Pr.Z1 =1|M, C, T = co/> 0 almost surely:

A further requirement is that X is structurally separated from M. We assume that the outcome
equation is additively separable in X, whereas the other equations remain unrestricted:

Y =ϕ.D, M, U/+ψ.D, X/,

M = ζ.D, Z2, X, V/,

D=1{χ.Z1, X, W/�0}:

As both Z1 and Z2 are discrete, X must contain (at least) one continuous variable. Finally, our
conditional independence assumptions need to be strengthened to embrace exogeneity of X.

Assumption 10 (exogeneity assumption).

X⊥⊥Z1, X⊥⊥.U, V/|T = co:

(Assumptions 1, 2 and 10 jointly imply that Z1⊥⊥.Z2, X, U, V , T/ and .Z1, Z2, X/⊥⊥.U, V/|T =
co.)

Identification is outlined in the on-line appendix. For example, for ψ (which is required in
theorem 5), it is shown that

E[YD.Z1 −Π/|M =m, C = c, X=x]
E[D.Z1 −Π/|M =m, C = c, X=x]

=Ξ.m, c/+ψ.1, x/, .17/

where Ξ.m, c/≡E[ϕ.1, m, U/|T = co, C = c] is an unknown function of m and c. If ψ is a para-
metric function of, say, a k-dimensional parameter vector β, it generally suffices to identify
ψ.1, x/≡ψ1.x;β/ for k different values of x. One may for instance estimate the model

Ŷ i =Ξ.Mi, Ci/+ψ1.Xi;β/+ εi, .18/

using partially linear semiparametric regression, where Ŷ i is an estimate of the left-hand side of
equation (17), Ξ an unknown non-parametric function, ψ1.x;β/ a parametric function and εi
the error. (Identifying conditions are more complicated for a non-parametric ψ. See lemma 2
(in the on-line appendix) for one possibility.)

Theorem 5. Under assumptions 1, 2, 3, 4, 9 and 10 and identification of ψ.1, X/

E[Y1,M0 |T = co]= E[{Y Ω+ .1−Ω/ψ.1, X/}D{Z1 −Pr.Z1 =1/}]
Pr.T = co/Pr.Z1 =1/Pr.Z1 =0/

with weights
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Ω=ω.M, C/= E[.D−1/{Z1 −Pr.Z1 =1/}|M, C]
E[D{Z1 −Pr.Z1 =1/}|M, C]

:

4. Simulation study

The following simulation study provides some intuition for the results of theorems 1 and 5. The
data-generating process when considering theorem 1 is given by

Y =D+M +βDM +0:5X+U,

M =αZ2 +0:5D+0:5X+V ,

D=1.αZ1 +0:5X+W> 0:5α/,

Z1 =1.0:5X+P> 0/,

Z2 =0:5X+Q,

.U, V , W/∼N .μ,σ/,

where μ=0 and

σ=
( 1 0:5 0:5

0:5 1 0:5
0:5 0:5 1

)
,

and X, P and Q are standard normal, independent of each other and of U, V and W .
M and D are endogenous because of the non-zero correlation of U, V and W . β gauges the

interaction effect of D and M on Y , i.e. whether direct and indirect effects are heterogeneous
across treatments, whereas α determines IV power of the binary Z1 and continuous Z2. We run
1000 simulations and set β either to 0 (no interaction) or 1 and consider α= 1, 2, 3, entailing
complier shares of 35%, 63% and 82% respectively. The sample sizes are n=1250 and n=5000.

We investigate several estimators of natural direct and indirect effects. The first approach is
semiparametric and based on the sample analogues of theorem 1. For this, plug-in estimates
of π.X/, E[Z1|M, C, X], E[D|M, C, X] and E[DZ1|M, C, X] are obtained by probit regressions.
Estimation of the control function Ci is based on expression (7), in which π̄.Z2, X/ is, however,
replaced by π.X/, which is permitted because theorem 1 invokes assumption 2. We use ordinary
least squares (OLS) to estimate E[D{Z1 −π.X/}|Z2, X] and E[.d + D − 1/{Z1 −π.X/}|M �
m, Z2, X]. Concerning the latter, regression on .1, Z2, X/ is performed in the subset of obser-
vations satisfying M � m in the data, with m = Mi (i.e. the value of M for the ith observation
in the data) if prediction is for observation i. This implies underidentification for the lowest
value(s) of Mi. We therefore set m such that the number of observations in the linear regression
is never below 40, implying that m > Mi for the 39 observations with the lowest values of M.
Finally, FM|Z2,X.m, z2, x/, which enters expression (7), is obtained by non-parametric kernel
estimation of conditional distributions by using the np package of Hayfield and Racine (2008)
and the Silverman (1986) rule of thumb for bandwidth selection. We consider both untrimmed
and trimmed versions of the estimators. Similarly to Huber et al. (2013) and Frölich and Huber
(2014b), the trimmed versions discard observations that would obtain a relative weight that is
larger than 5% in the estimation of some mean potential outcome.

Secondly, we examine multistep parametric IV estimation similarly to Powdthavee et al.
(2013). In the first step, we run a probit regression of D on .1, Z1, X/ to predict the treatment,
which is denoted by D̃. Then, we linearly regress M on .1, Z2, D̃, X/ to predict M, which is denoted
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by M̃. As these predictions are based on variations in the instruments unrelated to (U, V , W )
given X, they are exogenous (if we impose the additional assumption that W is independent
of Z2, i.e. condition (4)). Therefore, the estimated direct effect corresponds to the coefficient
on D̃ in an OLS regression of Y on .1, D̃, M̃, X/. Finally, we linearly regress M on .1, D̃, X/

and estimate the indirect effect as the product of the coefficient on D̃ in the latter regression
and that on M̃ in the regression of Y . (If Y and M are linear in D and, thus, in its prediction,
either linear or non-linear models might be used to predict D depending on its distribution.
However, if M or Y were not linear in D (or Y not linear in M), an estimation strategy based
on predicted residuals rather than predicted endogenous variables (see for instance Terza et al.
(2008)), or a maximum likelihood approach would need to be chosen to avoid inconsistency.)
In contrast with semiparametric estimation, this estimator does not allow interaction effects
between M and D. Finally, we include a naive OLS approach neither considering confounding
due to unobservables or X, nor interaction effects. The direct effect is given by the coefficient on
D in a regression of Y on .1, D, M/; the indirect effect by that on M in the last regression times
the coefficient on D when regressing M on .1, D/.

Table 1 presents the bias, standard deviation sd and root-mean-squared error RMSE of the
various estimators of θ.d/ and δ.d/ (see expressions (2) and (3)) for β=0 (no interactions) when
varying the sample size and IV strength. Whereas OLS is severely biased, the correctly specified
parametric IV estimators parIV are almost unbiased and competitive in terms of RMSE in
any scenario. Semiparametric estimation without trimming, semIV, performs very poorly when
α= 1 and n = 1250. Trimming, semIVtr, improves the performance and entails a smaller bias
than does OLS, but yet a substantially higher RMSE than parametric IV estimation and OLS.
The competitiveness of semiparametric estimation increases in the IV strength and sample size,
whereas the importance of trimming decreases (i.e. trimming has little effect in set-ups with larger
α and n). Trimmed estimation based on theorem 1 dominates OLS when α � 2 whereas, for
α=3 and n=5000, both the trimmed and the untrimmed versions perform almost as decently
as the parametric IV estimator.

The situation changes with effect heterogeneity. Table 2 reports the results for β= 1 (effect
heterogeneity). Biases are non-negligible for OLS and the (now misspecified) parametric IV
estimator, but relatively small for the semiparametric IV methods when α � 2. For n = 5000
and α � 2, at least the trimmed estimators based on theorem 1 uniformly outperform the
parametric IV method in terms of RMSE, implying that the gains in terms of reduction in bias
outweigh the losses in efficiency.

Finally, we consider estimation based on theorem 5, when Z1 is independent of the covariates
and Z2 is discrete. For this, we change the specifications of Z1 and Z2 of the data-generating
process:

Z1 =1.P> 0/,

Z2 = round.0:5X+Q/ Q∼U.−2, 2/,

where U stands for the uniform distribution and ‘round’ rounds its argument to the next integer
such that Z2 is discrete. Whenever possible, the same first step estimators as for estimation
based on theorem 1 are used in the procedure based on theorem 5, whereas the estimate of the
numerator and denominator of the left-hand side of equation (17) as well as of equation (18) is
based on OLS.

Table 3 reports the results for β=1 and α=1, 2, which qualitatively match those in Table 2:
semiparametric methods become more competitive as the sample size and IV strength increase
(and trimming is important in scenarios with small α and n). All in all, the simulation results
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Table 3. Bias, standard deviation and RMSE for βD1†

Method θ(1) θ(0) δ(1) δ(0)

Bias SD RMSE Bias SD RMSE Bias SD RMSE Bias SD RMSE

α=1, n=1250
semIV −0:455 17.346 17.352 0.068 0.450 0.455 −0:112 0.641 0.651 0.411 17.360 17.364
semIVtr −0:153 2.181 2.186 0.064 0.446 0.451 −0:108 0.644 0.653 0.109 2.206 2.208
parIV −0:256 0.250 0.358 0.244 0.250 0.349 −0:288 0.483 0.562 0.212 0.483 0.527
OLS 0.457 0.093 0.466 0.957 0.093 0.961 1.944 0.211 1.956 2.444 0.211 2.454

α=1, n=5000
semIV −0:021 0.179 0.180 0.083 0.152 0.173 −0:090 0.293 0.306 0.014 0.222 0.223
semIVtr −0:021 0.179 0.180 0.083 0.152 0.173 −0:090 0.293 0.306 0.014 0.222 0.223
parIV −0:253 0.122 0.281 0.247 0.122 0.276 −0:257 0.241 0.352 0.243 0.241 0.343
OLS 0.454 0.048 0.457 0.954 0.048 0.956 1.945 0.100 1.948 2.445 0.100 2.447

α=2, n=1250
semIV 0.007 0.282 0.282 0.020 0.270 0.271 −0:056 0.632 0.634 −0:042 0.335 0.338
semIVtr 0.007 0.282 0.282 0.020 0.270 0.271 −0:056 0.632 0.634 −0:042 0.335 0.338
parIV −0:254 0.206 0.327 0.246 0.206 0.320 −0:280 0.471 0.548 0.220 0.471 0.520
OLS 0.353 0.131 0.377 0.853 0.131 0.863 1.636 0.346 1.673 2.136 0.346 2.164

α=2, n=5000
semIV 0.025 0.136 0.138 0.037 0.134 0.140 −0:043 0.323 0.326 −0:031 0.166 0.168
semIVtr 0.025 0.136 0.138 0.037 0.134 0.140 −0:043 0.323 0.326 −0:031 0.166 0.168
parIV −0:250 0.102 0.271 0.250 0.102 0.270 −0:256 0.239 0.350 0.244 0.239 0.341
OLS 0.352 0.066 0.358 0.852 0.066 0.855 1.647 0.171 1.656 2.147 0.171 2.154

†Results are based on 1000 simulations: semIV, semiparametric IV estimation based on theorem 5 without trim-
ming; semIVtr, semiparametric IV estimation based on theorem 5 with trimming; parIV, parametric IV estimation.
The true effects under β= 1 are θ.1/= 1:5, θ.0/= 1, δ.1/= 1 and δ.0/= 0:5. The complier share is 35% for α= 1
and 63% for α=2. Conditionally on X and Z1, Z2 explains 56% and 63% of the total variation of Y (i.e. the total
sum of squares) in a linear regression, respectively for α=1, 2.

suggest that semiparametric estimation can be preferable to fully parametric methods under
sufficiently strong instruments and in sufficiently large samples with several 1000 observations.

5. Empirical illustrations

5.1. Empirical illustration based on theorem 1
Our first application is based on theorem 1 and data from the British Household Panel Survey.
We aim at assessing the effect of education on the outcome ‘social functioning’, which reflects
the (mental and physical) ability to participate in social life. We distinguish the indirect effect via
income from the direct effect. The treatment is a binary indicator D which is 1 if an individual
has obtained more than lower secondary education according to the international standard
classification of education of the United Nations Educational, Scientific and Cultural Organi-
zation. D is instrumented by an increase in the UK minimum school leaving age in 1971 from
15 to 16 years, affecting all cohorts born in 1956 or later, Z1. The change in law induced some
to increase schooling but is arguably not directly associated with social functioning, Y , which
is measured on a scale from 0 (worst) to 9 (best). (Changes in schooling laws have also been
used in Oreopoulos (2006) and Brunello et al. (2013).) To disentangle the effect of education
into a direct and an indirect component driven by income, annual individual income (in British
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Table 4. Direct and indirect effects on social functioning, British Household Panel Survey application, cohorts
1945–1965

Parameter LATE Δ Results for semiparametric estimation Results for parametric estimation

Direct θ̂(1) Direct θ̂(0) Indirect δ̂(1) Indirect δ̂(0) Direct θ̂para Indirect δ̂para

Estimate 3.272 3.934 3.472 −0:199 −0:661 3.397 −0:029
Standard error 1.090 11.516 20.142 20.222 11.404 1.165 0.303
p-value 0.003 0.733 0.863 0.992 0.954 0.004 0.925

pounds) serves as mediator M, which is instrumented by windfall income Z2, the sum of four
arguably exogenous income sources: accident claims, redundancy payments, lottery wins and
other lump sum payments. (Similar exogenous variations in income were also exploited in Lin-
dahl (2005) and Gardner and Oswald (2007).) As covariates X we include gender and a dummy
for Scotland. (In Frölich and Huber (2014a), we applied the methods of Huber and Mellace
(2015) and Kitagawa (2015) to test the IV validity of Z1 and Z2. The p-values of all test statistics
turned out to be insignificant. The same holds for the instruments of our second application
presented below.)

Our empirical illustration is based on the four waves 5, 6, 8 and 9 of the British Household
Panel Survey (which started in 1991 with 10300 individuals), which were conducted in 1995,
1996, 1998 and 1999 respectively. The covariates X are measured in 1995 and educational attain-
ment D is measured in 1996. In wave 8 annual income M and windfall profits Z2 are measured.
Finally, in wave 9 the social functioning index Y is measured. We restrict the sample to obser-
vations born between (and including) 1944 and 1967, i.e. at most 12 years before or after the
beginning of 1956, the year of the first cohort that was affected by the 1971 schooling reform. We
refer to the on-line appendix for descriptive statistics on our evaluation sample, which contains
n=3428 observations.

Table 4 presents the (total) LATE as well as the direct and indirect effects by using semi-
parametric and parametric IV methods along with bootstrap standard errors (based on 999
bootstrap draws) and p-values (based on the t-statistic). The LATE is estimated by weighting
based on the (parametric) instrument propensity score; see Frölich (2007) and Tan (2006). The
semiparametric estimators of the direct and indirect effects θ̂.1/, θ̂.0/, δ̂.1/ and δ̂.0/ based on
theorem 1 (and theorem 5 further below) are identical to those in the simulations; see Section
4. The final two columns provide the results for the parametric IV estimators θ̂para and δ̂para
that were also considered in the simulations. The results show a positive effect of education on
social functioning: the LATE amounts to roughly 3 points and is significant at the 1% level.
Whereas the semiparametric indirect effects are close to 0, the direct effects are similar in mag-
nitude to the total effect (although rather imprecise). They are similar in size to the parametric
estimates, where the direct effect is highly significant and the indirect effect is close to 0. We
therefore conclude that education affects social functioning mostly through mechanisms other
than income.

5.2. Empirical illustration based on theorem 5
To illustrate estimation based on theorem 5, we consider a welfare policy experiment that was
conducted in the 1990s to assess the US job corps programme; see Schochet et al. (2001, 2008).
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Table 5. Effect of the job corps programmes on earnings (nD4603)

Parameter LATE Δ Results for semiparametric IV estimation Results for parametric IV estimation

Direct θ̂(1) Direct θ̂(0) Indirect δ̂(1) Indirect δ̂(0) Direct θ̂para Indirect δ̂para

Estimate 12.797 −6:855 −1:322 14.119 19.651 −0:824 13.188
Standard error 6.325 50.205 3.519 6.030 50.343 3.405 6.572
p-value 0.043 0.891 0.707 0.019 0.696 0.809 0.045

The programme targets young individuals (aged 16–24 years) from low income households,
providing them with vocational training and education, housing, board and health services.
The treatment D is enrolment in the programme in the first or second year after randomization,
which is instrumented by randomized treatment assignment, Z1. The mediator M reflects hours
worked per week in the third year after randomization; the outcome Y is weekly earnings in that
year. As is common in labour economics, the numbers of children in the household who are
younger than 6 and younger than 15 years serve as (discrete) instruments Z2 for M, and only the
female sample is considered in our analysis. Furthermore, we control for several covariates X that
potentially confound Z2: education, race, age, labour market state and school attendance before
randomization and dependence on ‘Aid to families with dependent children’ or food stamps.

The IV assumptions underlying Z1 appear plausible in our empirical context. As it is randomly
assigned, it is per design unrelated to unobservables affecting the treatment, mediator or outcome
as postulated in assumption 1 or to X as postulated in assumption 10. Furthermore, it seems
credible that mere assignment does not directly affect the wage outcome such that the exclusion
restriction holds and that D is weakly monotonic in Z1 (assumption 3). Finally, regressing
Z1 on Z2 and X yields statistically insignificant coefficients and therefore does not point to a
violation of assumption 2. The IV validity of Z2 is arguably more disputable. The presence of
small children certainly is not a purely random event, and we aim to mitigate this by controlling
for background characteristics X. Assumption 4 is satisfied if hours worked increase strictly
monotonically in an unobserved index that reflects the unobserved eagerness to work. This
residual ‘eagerness to work’ must be unrelated to the control variables X. Basically, we need to
assume that any unobservables affecting hours of work (such as ability and motivation) can be
split into a part that is related to X (such as the average ability that is associated with people with
a certain amount of education) and residual unobservables that are independent of education.
This assumption was not needed in Section 5.1 where identification was based on theorem 1.

Our sample consists of all female job corps applicants without missing values in Z1, Z2, D,
M, Y and X. The on-line appendix provides descriptive statistics about the 4603 observations.
Table 5 presents the effect estimates. The LATE amounts to roughly $13 and is significant at
the 5% level. Both δ̂para and δ̂.1/ are of a similar magnitude to that of the LATE and significant
(in contrast with δ̂.0/, which is quite imprecise), whereas the direct effects are closer to 0 and
never significantly different from 0. Our results therefore suggest that the job corps programme
mainly affects earnings indirectly through increasing hours worked, rather than hourly wages.
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Frölich, M. and Huber, M. (2014a) Direct and indirect treatment effects: causal chains and mediation analysis

with instrumental variables. Discussion Paper 8280. Institute for the Study of Labor, Bonn.
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