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Background. We aimed to evaluate the diagnostic value of a positron emission tomography
(PET)–measured heterogeneity in longitudinal myocardial blood flow (MBF) during cold
pressor testing (CPT) and global MBF response to CPT from rest (�MBF) for identification of
coronary vasomotor dysfunction.

Methods and Results. In 35 patients CPT-induced alterations in epicardial luminal area were
determined with quantitative angiography as the reference. MBF was assessed over the whole
left ventricle as global MBF and regionally in the mid and mid-distal myocardium as MBF
difference or MBF heterogeneity with nitrogen-13 ammonia and PET. The sensitivity and
specificity of a longitudinal MBF difference during CPT in the identification of epicardial
vasomotor dysfunction were significantly higher than the global �MBF to CPT (88% vs 79%
and 82% vs 64%, respectively; P < .05). Combining both parameters resulted in an optimal
sensitivity of 100% at the expense of an intermediate specificity of 73%. The diagnostic accuracy
was higher for the combined analysis than that for the MBF difference alone and global �MBF
alone (91% vs 86% and 74%, respectively; P < .05).

Conclusions. The combined evaluation of a CPT-induced heterogeneity in longitudinal MBF
and the change in global MBF from rest may emerge as a new promising analytic approach to
further optimize the identification and characterization of coronary vasomotor dysfunction. (J
Nucl Cardiol 2007;14:688-97.)
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Positron emission tomography (PET) measurements
of global left ventricular (LV) myocardial blood flow
(MBF) at rest and during sympathetic stimulation with
cold pressor testing (CPT) are increasingly applied to

assess endothelium-related coronary vasomotor func-
tion.1-8 Such noninvasively obtained information on
endothelium-dependent coronary vasomotor function is
considered to carry important diagnostic and prognostic
information.9-12 Of particular interest are recent findings
regarding the effects of medical preventive intervention
on vasomotor dysfunction in the peripheral circulation in
patients with acute coronary syndrome and in hyperten-
sive postmenopausal women.13,14 In these patients the
institution of medical therapy led to an improvement in
endothelium-dependent vasomotor function, which was
also associated with an improved cardiovascular out-
come, but not in those individuals in whom improvement
failed to occur. Conceptually, primary or secondary
preventive medical intervention, with regard to the de-
velopment and progression of coronary artery disease
(CAD), could be successfully monitored according to the
findings of abnormal coronary vasomotor function in
response to CPT1,15,16 or to pharmacologic vasodilation
(or both).8,17-19 Global LV MBF responses to CPT in the
individual, however, may underlie some variability re-
sulting from daily temporal fluctuations of coronary
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circulatory (dys)function or interindividual differences in
hemodynamic responses to CPT.1,3-5,20-23 Thus, although
group responses of global LV MBFs to CPT in persons
with coronary risk factors are commonly reduced, a clear
identification of coronary vasomotor dysfunction in the
individual person sometimes may remain uncertain.

Emerging evidence suggests that the assessment of a
longitudinal, base-to-apex decrease in myocardial perfu-
sion or MBF during pharmacologically stimulated hy-
peremia or during CPT may identify an impairment of
flow-mediated and, thus, endothelium-dependent coro-
nary vasodilation.24-27 With this in mind, we hypothe-
sized that, apart from the conventional evaluation of
CPT-induced change in global MBF (�MBF to CPT),
the additional analysis of a heterogeneity in longitudinal
MBF during sympathetic stress27 could further improve
the noninvasive identification of coronary vasomotor
dysfunction.

Accordingly, we aimed to determine the diagnostic
value of a PET-measured heterogeneity in longitudinal
MBF during CPT and the global �MBF to CPT for the

identification of coronary vasomotor dysfunction in in-
dividuals with coronary risk factors but with normal
coronary angiograms.

METHODS

Patient population

We studied 35 patients (12 men and 23 women; mean age,
57 � 9 years) without angiographic evidence of CAD (Table
1). They were classified into 2 groups according to presence or
absence of various coronary risk factors. Twenty-five study
participants with coronary risk factors were assigned to the
“at-risk” group, whereas eleven age-matched healthy individ-
uals without traditional coronary risk factors served as the
control group. In the at-risk group, 10 patients had hypertension
(�140/90 mm Hg), 8 had hypercholesterolemia (total choles-
terol �240 mg/dL, low-density lipoprotein [LDL] cholesterol
�160 mg/dL), and 6 were chronic smokers (�10 pack-years).
Quantitative coronary angiography (QCA) at baseline and
during CPT to establish flow-mediated vasoreactivity of the
epicardial coronary artery was performed as described previ-

Table 1. Characteristics of study population

Control group At-risk group

No. of patients 11 24
Age (y) 58 � 7 57 � 10
Sex (F/M) (n) 7/4 16/8
Body mass index (kg/m2) 24 � 4 25 � 3
Hypertension (n) 0 10
Hypercholesterolemia (n) 0 8
Smoking (n) 0 6
Fasting plasma concentrations

Total cholesterol (mg/dL) 164 � 33 222 � 35*
LDL cholesterol (mg/dL) 96 � 25 152 � 25*
HDL cholesterol (mg/dL) 56 � 9 52 � 13
Triglycerides (mg/dL) 120 � 30 138 � 50*
Glucose (mg/dL) 86 � 6 98 � 14

Epicardial LA (mm2)
At rest 5.2 � 1.3 5.5 � 1.1
During CPT 6.1 � 1.0 4.5 � 0.9*
Change to CPT 0.88 � 0.36 �1.02 � 0.85*

Global MBF (mL · g�1 · min�1)
At rest 0.61 � 0.17 0.57 � 0.13
During CPT 0.90 � 0.16 0.63 � 0.25*
Change to CPT 0.29 � 0.10 0.05 � 0.21*

MBF difference (mL · g�1 · min�1)
At rest 0.001 � 0.05 0.001 � 0.07
During CPT 0.05 � 0.02 0.15 � 0.08*

Values are given as mean � SD, unless otherwise indicated.
HDL, High-density lipoprotein.L
*P � .0001 versus control group.
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ously.28 Within 20 days of coronary angiography, regional
MBF at rest and in response to CPT was measured in each
participant in milliliters per gram per minute with nitrogen-13
ammonia and PET.2,29 All study participants had normal wall
motion on angiographic evaluation. Each patient was screened
by a complete history, physical examination, and blood chem-
istry. Exclusion criteria included a history of cardiovascular,
liver, renal, endocrine, or inflammatory disease. Only individ-
uals not taking vasoactive medication, such as angiotensin-
converting enzyme inhibitors, calcium channel blockers, or
statins, were recruited. All smokers refrained from smoking for
at least 12 hours before QCA and PET studies. Routine blood
chemistry analysis included total cholesterol, high-density li-
poprotein and LDL cholesterol, very low–density lipoprotein
cholesterol, triglycerides, and glucose. The study was approved
by the local ethics committee of the University of Freiburg
(Freiburg, Germany), and written informed consent was ob-
tained from all individuals.

QCA

All patients underwent routine diagnostic coronary an-
giography for evaluation of chest pain via a biplane, isocentric
multidirectional digital angiographic system (BICOR-HICOR;
Siemens, Erlangen, Germany).28 End-diastolic images of cor-
onary arteries were evaluated quantitatively with automatic
contour detection as described previously.28 In all individuals
with normal coronary angiograms, as defined by smooth
luminal surface of the coronary vessel without diffuse diameter
reduction or stenoses, quantitative biplane measurements were
obtained in a selected, distinct 4- to 8-mm-long, relatively
straight proximal left anterior descending coronary artery
segment (n � 18) or left circumflex coronary artery segment (n
� 17). Estimation of the luminal area (LA) assumed an
elliptical shape at baseline and during CPT.28,30 Calculation of

the radiologic magnification factor of the measured segment
was used for scaling of the data from pixels to millimeters.28

Thus the epicardial LA was determined at baseline and during
CPT and the epicardial vasomotor response quantified.

Evaluation and measurement of MBF

PET. MBF was measured noninvasively by use of intra-
venous N-13 ammonia, serial image acquisition with PET
(ECAT EXACT HR�; CTI/Siemens, Knoxville, Tenn), and a
2-compartment tracer kinetic model, as described previously.29

Transmission images were recorded first for 20 minutes.
Beginning with each intravenous N-13 ammonia injection
(555-740 MBq), serial transaxial, attenuation-corrected images
were acquired for 19 minutes (16 frames, with 12 	 10
seconds, 2 	 30 seconds, 1 	 60 seconds, and 1 	 15 minutes).
MBF measurements were performed at baseline and during
CPT. For CPT, study participants immersed the left hand in ice
water for 60 seconds, and N-13 ammonia was injected again
while CPT continued for another 60 seconds. Between MBF
measurements, we allowed 45 minutes for physical decay of
N-13 ammonia. From the last 15-minute transaxial image,
reoriented short- and long-axis myocardial slices and the
corresponding polar map were submitted to visual and semi-
quantitative analysis.2 The interobserver and intraobserver
reproducibility of PET-measured MBFs at rest and during CPT
has been reported recently.31,32 Heart rate, blood pressure, and
a 12-lead electrocardiogram were recorded continuously during
each MBF measurement. From the average of heart rate and
blood pressure during the first 2 minutes of each image
acquisition, the rate-pressure product (RPP) was determined as
an index of cardiac work.

Quantitative evaluation of MBF. On the polar map of
the last 15-minute image set, regions of interest (ROIs) were
assigned to myocardial territories of the 3 coronary arteries

Figure 1. Polar maps of MBFs and assignment of ROIs. A, Three coronary artery territories. B,
Circumferential ROIs for mid (B) and mid-distal (A(( ) portion of left ventricle. LAD, Left anterior
descending artery; LCx, left circumflex artery; RCA, right coronary artery.
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(Figure 1). As shown in Figure 1, 2 circumferential ROIs were
assigned to the mid and mid-distal portion of the left ventricle.
In addition, a 25-mm2 ROI was assigned to the LV blood pool
on the most basal short-axis slice for deriving the arterial tracer
input function. The ROIs were then copied to the serial polar
maps acquired during the first 2 minutes after tracer injection.
The time-activity curves derived from these ROIs were fitted
with a 2-compartment tracer kinetic model, and regional MBF
values in milliliters per gram per minute were obtained.29

MBFs in the 3 coronary artery territories were averaged, and
mean global MBF was derived. Changes in MBF from rest to
CPT were defined in milliliters per gram per minute as global
�MBF. Furthermore, a decrease in MBF from mid to mid-
distal LV myocardium was defined as MBF difference (in
milliliters per gram per minute) or heterogeneity in longitudinal
MBF as indicative of a perfusion gradient.27

Data analysis

Data are presented as mean � SD for quantitative and
absolute frequencies for qualitative variables. For comparison
of differences, appropriate Wilcoxon rank sum tests for inde-
pendent or paired samples were used (SAS Institute, Cary, NC).
A comparison of CPT-induced change in global MBF and MBF
difference between the different groups was performed by
2-way analysis of variance (ANOVA), followed by the Scheffé
multiple comparisons test. Correlations between selected vari-
ables were estimated by Spearman correlation coefficients.
Sensitivities, specificities, and diagnostic accuracies were cal-
culated. All test procedures were 2-sided, with P � .05
indicating statistical significance.

RESULTS

Clinical characteristics

Table 1 summarizes the characteristics of the 2 study
groups. Total cholesterol, LDL cholesterol, and triglyc-
eride levels were significantly higher in the at-risk group

than in the control group, whereas high-density lipopro-
tein cholesterol tended to be lower. Glucose levels and
body mass index did not differ significantly between the
study groups.

Hemodynamic parameters

Hemodynamic parameters during angiographic as-
sessment of epicardial coronary vasomotion and during
PET measurements of MBF at baseline and during CPT
are listed in Table 2. The RPP (heart rate 	 systolic
blood pressure) was used as an index of cardiac work and
as a measure of the effectiveness of sympathetic stimu-
lation with CPT. Heart rate and blood pressure were
comparable at rest and during CPT between QCA and
PET studies. CPT induced a significant increase in heart
rate and systolic and diastolic blood pressure. Conse-
quently, the RPP increased significantly from rest to
CPT. Notably, there was no significant difference be-
tween the RPP at rest and during CPT at the time of the
QCA and of the PET study. In addition, when the change
in the RPP during CPT from rest was evaluated, no
significant difference was found between QCA and PET
evaluation of MBF, indicating comparable myocardial
workload on both study days.

Findings on quantitative angiography

Table 1 denotes the mean changes in epicardial LA
to CPT in the control group and in the at-risk group. At
baseline, the mean epicardial LA did not differ signifi-
cantly between the groups. In the at-risk group the LA
abnormally decreased from 5.5 � 1.1 mm2 to 4.5 � 0.9
mm2 by CPT (P � .0001), reflecting a mean change in
LA (�LA) of �1.02 � 0.85 mm2. Conversely, the
control group showed a significant flow-mediated in-
crease in LA from 5.2 � 1.3 mm2 to 6.1 � 1.0 mm2 (P
� .0001), which represented a mean �LA of 0.88 � 0.36
mm2. The group comparison of a CPT-induced decrease
in mean LA in the at-risk group was significant when
compared with a blood flow–mediated increase in the
mean LA in the control group (P � .0001 by ANOVA).

MBF response to CPT

Quantitative assessment of global MBF at rest was
comparable between the study groups (Table 1).
Global MBF during CPT in the at-risk group was
significantly lower than in the control group. Thus the
change in mean MBF to CPT from rest (�MBF) was
significantly impaired in the at-risk group when com-
pared with the control group (Table 1). The group
comparison of �MBF to CPT in the at-risk group was

Figure 2. MBFs at rest and during CPT for mid and mid-distal
portions of LV myocardium in both study groups.
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significant when compared with the control group (P
� .0001 by ANOVA).

The comparison of regional MBFs at rest in the mid
and mid-distal direction demonstrated similar values for
the mid and mid-distal LV sections in both groups (0.64
� 0.15 and 0.62 � 0.16 mL · g�1 · min�1 in control
group and 0.61 � 0.11 and 0.61 � 0.14
mL · g�1 · min�1 in at-risk group, respectively; P � not
significant [NS]) (Figure 2). In the control group CPT
induced a homogeneous increase in MBF with compa-
rable mid and mid-distal LV MBFs (0.89 � 0.16 and
0.92 � 0.15 mL · g�1 · min�1, respectively; P � NS)
(Figure 2). In the at-risk group, however, the MBF
response to CPT in the mid LV was significantly lower
than those in the control group (P � .001). Moreover,
sympathetic stimulation with CPT resulted in MBF
heterogeneities in the at-risk group. MBF increased to
0.77 � 0.24 mL · g�1 · min�1 in the mid LV myocar-
dium but only to 0.62 � 0.24 mL · g�1 · min�1 in the
mid-distal LV myocardium (Figure 2). This resulted in
an MBF difference of 0.15 � 0.08 mL · g�1 · min�1

during CPT between the mid and mid-distal LV myocar-
dium (Table 1). No such difference between the mid and
mid-distal LV MBF was observed in the control group
(0.05 � 0.02 mL · g�1 · min�1, P � NS) (Table 1). The
group comparison of the CPT-induced MBF difference
between the at-risk and control groups was significantly
different (P � .0001 by ANOVA). Moreover, the CPT-
induced MBF differences in the 2 coronary territories
supplied by the vessel not evaluated on quantitative
angiography in the at-risk group were similar to the MBF
differences in coronary territories subtended by coronary
vessels which were submitted to quantitative analysis.
The MBF differences during CPT were comparable (0.13
� 0.12 vs 0.15 � 0.08 mL · g�1 · min�1, P � NS),

suggesting that the MBF difference in at-risk individuals
occurs homogeneously in the entire coronary circulation.

Correlation between CPT-induced changes in
epicardial LA and MBF gradient

To evaluate a possible association between CPT-
induced alterations of the epicardial artery and the
relative decrease in MBF from the mid to mid-distal LV
myocardium, the change in epicardial LA was compared
with the MBF difference during CPT. For the entire
study group, there was a significant correlation between
the change in epicardial LA (�LA) to CPT and the MBF
difference during CPT between the mid and mid-distal
LV myocardium (r � 0.90, P � .0001). When the at-risk
group alone was examined, as shown in Figure 3, the
CPT-induced decrease in epicardial LA and the MBF
difference were also significantly correlated (r � 0.77,
P � .0001). These findings emphasize that the MBF
difference is indeed related to functional alterations of
the epicardial conduit vessels during CPT.

Table 2. Hemodynamics in QCA and PET studies at rest and during CPT

Test

QCA PET

Rest CPT

Change
from rest

to CPT Rest CPT

Change
from rest

to CPT

HR (beats/min) 62 � 7 67 � 7* 62 � 7 66 � 7*
SBP (mm Hg) 128 � 16 152 � 18* 130 � 15 149 � 16*
DBP (mm Hg) 73 � 8 77 � 8* 72 � 7 77 � 7*
RPP (mm Hg/min) 8,096 � 1,348 10,183 � 1,574* 2,086 � 778* 8,056 � 1,380 9,880 � 1,476* 1,823 � 1,012*
MAP (mm Hg) 92 � 9 102 � 9* 91 � 9 101 � 8*

Values are given as mean � SD.
HR, Heart rate;RR SBP, systolic blood pressure;P DBP, diastolic blood pressure;P MAP, mean arterial blood pressure.P
*P � .0001 for CPT versus rest for each corresponding hemodynamic parameter in QCA and PET study evaluation, respectively. P � NS for
each corresponding hemodynamic parameter between QCA and PET study evaluation.

Figure 3. Correlation between MBF difference and �LA
during CPT.
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Diagnostic accuracy of global �MBF to CPT and
CPT-related MBF difference in detection of
coronary vasomotor dysfunction

The receiver operating characteristic curve (ROC)
for the detection of epicardial vasomotor dysfunction by
the MBF difference during CPT and global �MBF to
CPT yielded an optimal cutoff point of greater than 0.071
and less than or equal to 0.216 mL · g�1 · min�1, respec-
tively. By use of this ROC-defined threshold, the sensi-
tivity, specificity, negative predictive value, positive
predictive value, and diagnostic accuracy of MBF dif-
ference during CPT, global �MBF to CPT, and the
combined analysis of both parameters for the detection
of coronary vasomotor dysfunction are given in Table 3
and Figure 4. The sensitivity of the MBF difference to
identify abnormal epicardial vasomotion was signifi-
cantly higher than with the change in global MBF from
rest to CPT (�MBF) (88% vs 79%, P � .05) (Figure 4),
whereas combining both parameters resulted in an opti-

mal sensitivity of 100%. The specificity was high for the
MBF difference and relatively low for �MBF (82% vs
64%, P � .05). Applying both parameters resulted in an
intermediate specificity of 73% that was significantly
lower than that for the MBF difference, at 82% (P �
.05), though still higher than that for �MBF, at 64%, but
not significantly. The diagnostic accuracy of the CPT-
related MBF difference for evaluation of coronary vaso-
motor dysfunction was not significantly higher as com-
pared with �MBF to CPT (86% vs 74%). The combined
analysis of both parameters, however, yielded the highest
diagnostic accuracy, which was significantly higher than
that for the MBF difference alone and �MBF alone (91%
vs 86% and 74%, respectively; P � .05).

DISCUSSION

This study is unique in that it demonstrates a close
association between CPT-induced alterations in the LA
of the epicardial artery and a heterogeneous response of
regional MBF from the mid to mid-distal LV myocar-
dium, as indicative for an MBF gradient. This finding
provides direct angiographic evidence that functional
alterations, such as a sympathetically mediated paradox-
ical vasoconstriction of the epicardial artery, may indeed
account for a heterogeneity in longitudinal MBF during
CPT, as also observed in previous investigations with
PET.24-27 In particular, the assessment of a CPT-related
heterogeneity in longitudinal MBF appears to be superior
to the change in global MBF to CPT from rest (�MBF)
in identifying coronary vasomotor dysfunction. The
combined analysis of both parameters, however, yielded
the highest diagnostic accuracy for the noninvasive
detection of coronary vasomotor dysfunction. Thus the
additional evaluation of a heterogeneity in longitudinal
MBF during CPT, apart from the conventional global
�MBF to CPT, may emerge as another reliable param-
eter to optimize the identification and characterization of
coronary vasomotor dysfunction.

Table 3. Diagnostic accuracy of PET-measured MBF alterations during CPT in detection of coronary vasomotor
function as determined by QCA

�MBF to CPT
MBF difference

during CPT Combined

Sensitivity 19/24 (79) 21/24 (88) 24/24 (100)
Specificity 7/11 (64) 9/11 (82) 8/11 (73)
PPV 19/23 (83) 21/23 (91) 24/27 (88)
NPV 7/12 (58) 9/12 (75) 8/8 (100)
Diagnostic accuracy 26/35 (74) 30/35 (86) 32/35 (91)

Values are given as n (%).
PPV, Positive predictive value;V NPV, negative predictive value.V

Figure 4. Sensitivity, specificity, and diagnostic accuracy of
PET-measured MBF alterations during CPT in identification of
epicardial vasomotor dysfunction.
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Coronary vasomotor function and heterogeneity
in longitudinal MBF

The regulation and modulation of the coronary
blood flow underlies a complex metabolic and autonomic
control to meet the nutrition and oxygen requirements of
the heart.33,34 Whereas the epicardial coronary arteries
mediate, more or less, a conductance function, the
coronary arteriolar vessels predominantly determine the
coronary vascular resistance and, thus, the increase in
MBF during times of increases in metabolic oxygen
demand.33 Notably, the integrity of the coronary arterio-
lar resistance vessels reflects an important determinant in
mediating antiatherosclerotic effects.9,10 This is because
increases in coronary flow resulting from a metabolically
induced decrease in vascular resistance of the coronary
arteriolar vessels lead to a flow-mediated vasodilation
via endothelium-dependent release of nitric oxide, which
also implicates nitric oxide–related antithrombotic and
antiatherosclerotic effects.35-37 Coronary flow increases
during pharmacologically induced hyperemia or during
sympathetic stimulation with CPT, therefore, may be
seen as a cumulative assessment of both the epicardial
coronary arteries and the coronary arteriolar resistance
vessels, rather than a reflection of the role of the coronary
microcirculation alone.38 Early CAD-related functional
or structural alterations of the arterial wall, however,
may disturb the flow-mediated coronary vasodilatory
capacity.33,38 Regarding the latter, diffuse luminal nar-
rowing or functional alterations of the epicardial coro-
nary arteries,24,26,39 associated with an impairment of
flow-mediated coronary vasodilatory function, have been
proposed to account for a previously observed longitu-
dinal, base-to-apex myocardial perfusion gradient or a
heterogeneity in LV MBF during pharmacologically
stimulated hyperemia in patients with diffuse CAD or
with coronary risk factors.19,24,26,40 The mechanism un-
derlying an MBF heterogeneity during hyperemic flow
increases may be best described by the Hagen-Poiseuille
equation.26,39,41 Accordingly, the resistance to flow de-
pends on the length of the tube and the flow velocity and,
importantly, inversely on the fourth power of the vessel
diameter.24,41 Normally, increases in intracoronary flow
velocity induce a flow-mediated vasodilation of the
coronary artery that compensates for the velocity-related
increase in coronary resistance to keep the resistance
low.42,43 Conversely, an impairment of the flow-medi-
ated vasodilation, as a result of the presence of endothe-
lial dysfunction or CAD-induced diffuse epicardial lu-
minal narrowing, may impede the dilation of the
coronary artery during higher coronary flows.30,43 As
coronary angiographic investigations have shown,39 an
impairment of a flow-mediated coronary vasodilation
leads to an increase in intravascular resistance during

hyperemic flows with a progressive decline in intracoro-
nary pressure along the coronary artery. This progressive
proximal-to-distal decline in intracoronary pressure dur-
ing hyperemic coronary flow increases39 has been put
forward as a cause for the perfusion or MBF heteroge-
neity during pharmacologic vasodilation.24,26,39 Direct
confirmation through comparative studies between PET
flow measurements and quantitative angiography is still
missing or is incomplete. A recently performed investi-
gation provides some initial evidence of an association
between the manifestation of a myocardial perfusion
heterogeneity during dipyridamole-stimulated flow in-
creases and the presence of CAD-induced diffuse arterial
narrowing.24 As our study and recent investigations
demonstrate,27 a heterogeneity in longitudinal MBF may
also occur during sympathetic stimulation with CPT in
individuals with coronary risk factors. Importantly, the
current observations indicate that a heterogeneity in
longitudinal MBF during CPT is indeed related to
sympathetically mediated functional alterations of the
epicardial artery. Thus these findings and previous in-
vestigations19,26,27 support the evolving concept, as
raised first by Gould et al,24 that the assessment of a
myocardial perfusion gradient or a longitudinal hetero-
geneity in MBF by means of PET could serve as an
important tool by which to noninvasively identify early
functional or structural alterations of the epicardial cor-
onary artery.24,26,27,40 Such a noninvasive measure of the
early stages of the development of CAD may also
provide important predictive information on future car-
diovascular events.18,19

The endothelium-related global �MBF to CPT in
healthy individuals has been reported to range between
30% and 50% and, thus, reveals some variability.1-5 The
reason for this variability is uncertain and may be related
to differences in daily temporal fluctuations of coronary
circulatory (dys)function or interindividual differences in
hemodynamic responses to CPT (or both).1,3-5,20-23,44

Furthermore, there is also an intrinsic variability of the
severity of endothelium-dependent vasomotor dysfunc-
tion in the individual, despite the presence of a similar
risk profile, which has to be taken into consideration.11,37

Another explanation is that the extent of a diminished
global MBF response to CPT, as indicative for coronary
endothelial dysfunction,45 is also determined by an

-adrenergically mediated constriction of the vascular
smooth muscle cells, which is closely related to the
degree of sympathetic stimulation during CPT, as re-
ported recently.27 Thus interindividual differences in
sympathetic stimulation of the vascular smooth muscle
cells are likely to add some variability to the abnormal
global MBF responses during CPT. Notably, the assess-
ment of a heterogeneity in longitudinal MBF during
pharmacologically stimulated hyperemia or during CPT
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may evolve as another promising quantitative index by
which to identify an impairment of flow-mediated and,
thus, endothelium-dependent coronary vasodilation.26,27

Such an approach might also overcome the aforemen-
tioned limitations of the evaluation of the global �MBF
to CPT and, thereby, could lead to a further improvement
in the diagnostic accuracy of the detection of coronary
vasomotor dysfunction. Thresholds for a heterogeneity in
longitudinal MBF during CPT and a diminished increase
in global �MBF to CPT were derived from an ROC
analysis and validated in this group of patients who
underwent coronary angiography within 20 days before
the PET study. In this validation study abnormal endo-
thelium-dependent vasomotion was defined as an absent
vasodilation or vasoconstriction of the epicardial artery
during CPT.30,46 Such an impairment of epicardial vaso-
motor function during CPT has been demonstrated to
extend to the site of the coronary arteriolar resistance
vessels.1,3,5 Using the epicardial vasomotor response to
CPT as a reference, we performed an ROC analysis to
define the optimal threshold for the identification of
coronary vasomotor dysfunction by a heterogeneity in
longitudinal MBF during CPT and the global �MBF to
CPT. This analysis relied exclusively on the heterogene-
ity in longitudinal MBF during CPT and on CPT-induced
global �MBF with an ROC-defined threshold of greater
than 0.071 and less than or equal to 0.216
mL · g�1 · min�1, respectively, to distinguish between
abnormal and normal coronary vasomotor function. By
use of these thresholds, the sensitivity and specificity of
the MBF heterogeneity during CPT were significantly
higher as compared with the global �MBF to CPT (88%
vs 79% and 82% vs 64%, respectively). This also
resulted in a higher diagnostic accuracy to detect coro-
nary vasomotor dysfunction, with 86% for the heteroge-
neity in longitudinal MBF as compared with 74% for
global �MBF to CPT. Furthermore, when we integrated
both quantitative measures from the PET flow study,
considering the vasomotor abnormality to be significant
when detected by one of the two approaches, the diag-
nostic accuracy was significantly increased to 91%. In
this regard, the sensitivity increased to 100% at the
expense of a lower specificity of 73%. Thus our results
indicate that the assessment of a heterogeneity in longi-
tudinal MBF may be more sensitive in identifying
coronary vasomotor dysfunction than the global �MBF
to CPT. Nevertheless, the combined analysis of both
parameters yielded the highest accuracy in the evaluation
of coronary vasomotor function as compared with the
separate analysis of the MBF heterogeneity during CPT
or the global MBF response to CPT. It follows, then, that
combining both quantitative measures of endothelium-
related changes in MBF to CPT could be the preferred

approach in the evaluation of coronary vasomotor func-
tion.

Limitations

There are shortcomings of this study worthy to be
considered in the interpretation of the data. First, coro-
nary intravascular ultrasound was not used in our study
protocol. Thus we cannot rule out the presence of
CAD-induced structural alterations of the arterial wall24

that might have contributed to the manifestation of the
MBF heterogeneity during CPT. Second, because the
sample size of the study population was relatively small,
larger prospective investigations in patients without or
with diffuse CAD are desirable to draw more definite
conclusions. Finally, as we did not assess the hyperemic
MBF increases to pharmacologic vasodilation, which is
clinically more widely used, further prospective angio-
graphic studies are necessary to investigate the diagnos-
tic accuracy of the heterogeneity in longitudinal MBF
during pharmacologic vasodilation to identify an impair-
ment of flow-mediated coronary vasomotor function.

Conclusions

Although the assessment of a heterogeneity in lon-
gitudinal MBF during CPT appears to be more sensitive
than the CPT-induced change in global MBF in identi-
fying coronary vasomotor dysfunction, the combined
analysis of both parameters yields the highest diagnostic
accuracy of the noninvasive evaluation of coronary
vasomotor function. Combining both quantitative mea-
sures of MBF responses to CPT may emerge as a new
promising analytic approach to further optimize the
noninvasive identification and characterization of coro-
nary vasomotor dysfunction.
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