Ultrafast assessment of left ventricular dyssynchrony from nuclear myocardial perfusion imaging on a new high-speed gamma camera

Pazhenkottil, Aju ; Buechel, Ronny ; Herzog, Bernhard ; Nkoulou, Rene ; Valenta, Ines ; Fehlmann, Ursula ; Ghadri, Jelena-Rima ; Wolfrum, Mathias ; Husmann, Lars ; Kaufmann, Philipp

In: European Journal of Nuclear Medicine and Molecular Imaging, 2010, vol. 37, no. 11, p. 2086-2092

Add to personal list
    Summary
    Purpose: To validate the ultrafast assessment of left ventricular (LV) dyssynchrony by phase analysis using high-speed nuclear myocardial perfusion imaging (MPI) on a new gamma camera with cadmium-zinc-telluride (CZT) solid-state detector technology. Methods: In 46 patients rest MPI with 960MBq 99mTc-tetrofosmin was acquired on a dual-head detector SPECT camera (Ventri, GE Healthcare) and an ultrafast CZT camera (Discovery NM 530c, GE Healthcare) with acquisition times of 15 and 5min, respectively. LV dyssynchrony was assessed using the Emory Cardiac Toolbox with established values for histogram bandwidth (male <62.4°; female <49.7°) and standard deviations (male <24.4°; female <22.1°) as the gold standard. Evaluating CZT scan times of 0.5, 1, 2, 3 and 5min (list mode) in 16 patients revealed the preferred scan time to be 5min, which was then applied in all 46 patients. Intraclass correlation and the level of agreement in dyssynchrony detection between the CZT and Ventri cameras were assessed. Results: In LV dyssynchrony the mean histogram bandwidths with the CZT camera (n = 8) and the Ventri camera (n = 9) were 123.3 ± 50.6° and 130.2 ± 43.2° (p not significant) and 42.4 ± 13.6° vs. 43.2 ± 12.7° (p not significant). Normal bandwidths and SD obtained with the CZT camera (35.9 ± 7.7°, 12.6 ± 3.5°) and the Ventri camera (34.8 ± 6.6°, 11.1 ± 2.1°, both p not significant) excluded dyssynchrony in 38 and 37 patients, respectively. Intraclass correlation and the level of agreement between the CZT camera with a 5-min scan time and the Ventri camera were 0.94 (p < 0.001, SEE 14.4) and 96% for histogram bandwidth and 0.96 (p < 0.001, SEE 3.9) and 98% for SD. Conclusion: This ultrafast CZT camera allows accurate assessment of LV dyssynchrony with a scan time of only 5min, facilitating repeat measurements which would potentially be helpful for parameter optimization for cardiac resynchronization therapy