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Abstract The susceptibility of agriculture to changing environmental conditions is arguably
the most dangerous short-term consequence of climate change, and predictions on the geogra-
phy of changes will be useful for implementing mitigation strategies. Ecological niche model-
ing (ENM) is a technique used to relate presence records of species to environmental variables.
By extrapolation, ENMmaps the suitability of a landscape for the species in question. Recently,
ENM was successfully applied to predict the geographic distribution of agriculture. Using
climate and soil conditions as predictor variables, agricultural suitability was mapped across the
Old World. Here, I present analogous ENM-based maps of the suitability for agriculture under
climate change scenarios for the year 2050. Deviations of predicted scenarios from a current
conditions model were analyzed by (1) comparing relative average change across regions, and
(2) by relating country-wide changes to the data indicative of the wealth of nations. The findings
indicate that different regions vary considerably in whether they win or lose in agricultural
suitability, even if average change across the entire study region is small. A positive relationship
between the wealth of nations and change in agriculture conditions was found, but variability
around this trend was high. Parts of Africa, Europe and southern and eastern Asia were
predicted to be particularly negatively affected, while north-eastern Europe, among other
regions, can expect more favorable conditions for agriculture. The results are presented as an
independent “second opinion” to previously published, more complex forecasts on agricultural
productivity and food supply variability due to climatic change, which were based on fitting
environmental variables to yield statistics.

1 Introduction

Man-made climatic change is expected to have a variety of adverse consequences, among
them an increase in extreme weather events (Easterling et al. 2000) and consequent impacts
on economic and human health (Patz et al. 2005), or range shifts and extinction of species
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(e.g., Parmesan and Yohe 2003; Chen et al. 2011) with potential consequences on biodiver-
sity and ecosystem functioning (Balvanera et al. 2006). However, the arguably most
important and immediate danger for human societies and economies will be the effects on
the distribution and productivity of agriculture. Agriculture is closely tied to climatic
conditions (Rosenzweig and Hillel 2008) and has largely determined the historical ‘carrying
capacity’ of a region. Most populations were dependent on local or regional food production
throughout history (e.g., Diamond 2006).

It is therefore not surprising that attempts at predicting the future of agriculture in a
changing climate are manifold and that they have been received with great interest (e.g.,
Adams et al. 1990; Rosenzweig and Parry 1994; Olesen and Bindi 2002; Parry et al. 2004;
Fischer et al. 2005). These often complex models took into account many different eco-
nomical and agricultural variables. Most relevant here, most past studies modeled agricul-
tural productivity as functions of the environment that have been fitted to yield data for the
most important crop plants (i.e., cereals).

Techniques of ecological niche modelling (ENM, also termed ‘species distribution model-
ing’; Elith and Leathwick 2009) may offer a quite different approach to relate agriculture to the
environment. ENMs have been developed and successfully applied to estimate the geographic
ranges of species from recorded presences on the basis of the environmental conditions
encountered. By linking recorded presences with environmental conditions, the ecological
niches of species are inferred (Soberon and Nakamura 2009). These niche models are then
projected over rasterized environmental data to retrieve geographical predictions on the suit-
ability of landscapes for the species, hence allowing a prediction of its occurrence. Beck and
Sieber (2010) have recently borrowed this approach to model the suitability of agriculture in
different regions based on climatic and soil conditions. They reported a relationship between
their model of suitability for agriculture and human population density as well as regional
economic strength. In their approach, Beck and Sieber (2010) used a broad spectrum of plant
communities managed for food production in their definition of “agriculture” (i.e., differences
in agricultural techniques and in crops utilized in different parts of the world were ignored), but
they did not include ‘high-tech’ plant production (i.e., greenhouses, large-scale irrigation) and
plantations of cash-crops (e.g., palm oil).

While the application of ENM to “agriculture” as a whole may be oversimplifying for some
applications, it carries some advantages precisely due to this generality and simplicity. For
example, it avoids the uncertainties involved in yield estimates and provides estimates that are
independent from other published data, hence providing a “second opinion” to such dependent
predictions.

In this paper, I applied an ENM of climate- and soil-driven suitability for agriculture (i.e.,
croplands) across the Old World and extrapolated it to different climate change scenarios for the
year 2050. I mapped and quantified which regions will be “winning” and “losing”, and further
explored links of these patterns with population densities and with the wealth of countries. I
compared effects on agriculture under two climate scenarios and discuss the results in the context
of earlier studies that used other modeling approaches to address similar questions.

2 Methods

2.1 Modeling suitability for agriculture

290 presence records of agriculture across many ethnic groups and world regions (see Beck and
Sieber 2010 for details and free access to data) were used to model the probability of occurrence

178 Climatic Change (2013) 116:177–189



of agriculture from current climatic and soil conditions across the OldWorld plus the Australia/
Pacific region (25°W–180°E, 90°N–60°S). These data were assembled from descriptions of
‘traditional’ plant cultivation for food, i.e. excluding pastures, high-tech practices (e.g. non-
traditional irrigation, greenhouses) and cash-crops such as coffee or palm oil. Sites were chosen
irrespectively of what plants were cultivated there. I used data from Monfreda et al. (2008) to
assign these presence points to main staple crop growing areas (assuming presence of a plant
where yield values are given). According to this, 81 % of presence points were in maize-
growing regions, 70 % in rice regions, 61 % in sweet potato regions, 54 % in wheat regions,
29% in rye regions and 22% in yam regions (data add to more than 100% because at most sites
more than one crop is grown). This reflects the large tropical extent of agriculture in the Old
World. 12% of presence points, most of them fromAfrica, lay in regions where Monfreda et al.
(2008) do not give yield data for any of the above plants.

Current climate data (in 2.5′×2.5′ lat/long≈5×5 km resolution) were taken from
www.worldclim.org (accessed June 2010), whereas I rasterized a soil classification from the
Food and Agriculture Organization (FAO; http://www.fao.org/ag/agl/agll/wrb/soilres.stm;
accessed June 2010) in the same resolution (latest FAO classification, 32 soil types). 17
‘bioclimatic’ variables (see Supplement for details) and ‘soil type’ were used for the ENM.

The maximum entropy method (Maxent; Phillips et al. 2006; Phillips & Dudik 2008) was
used to quantitatively relate the presence of agriculture to environmental conditions and to obtain
estimates of the probability of occurrence of agriculture for each raster cell. Maxent is considered
among the best currently available techniques of ecological niche modeling (Elith et al. 2006).
Beck and Sieber (2010) had tentatively termed this output “suitability” for agriculture. The
predictive ability of the model was evaluated by fitting the model to a random selection of 75 %
of records while using the remaining 25 % as independent ‘test data’. This procedure was
repeated 10 times to retrieve mean values of model quality. At each run, model performance was
measured on ‘test data’ according to a standard metric, the area under the receiver-operating
characteristic (AUC; Marzban 2004). An AUC close to one indicates minimal errors (both
omission and commission), whereas an AUC00.5 would be expected from a random prediction.
For further analysis, however, a model run containing all data was used. This model was almost
identical to the model of Beck and Sieber (2010).

2.2 Climate change predictions

Various global circulation models (GCMs) are used in climatology. All of these models attempt
to describe the mechanistic links of variables that govern global climate and allow prediction on
what will happen under certain assumptions of change (e.g., elevated CO2-levels). There is no
consensus on which model is most accurate (IPCC 2001). Results based on the CCCMA-
CGCM2 model are presented here, but all analyses were repeated for three further models for
which data were available, i.e. NIES99, CSIRO-MK2.0 and UKMO-HADCM3. These data are
presented as a Supplement, whereas only major deviations from data shown here are highlight-
ed. The Intergovernmental Panel on Climate Change (IPCC) has defined various political and
economic scenarios that are frequently used for deriving climate change predictions. Data for
two of these scenarios were used here. Scenario A2a can be labeled as ‘pessimistic’ (national/
regional economic interests followed, fast-growing population, slow and fragmented techno-
logical change), whereas B2a is more ‘optimistic’ (national/regional economic, social and
environmental interests followed, slower population growth, slow and fragmented technolog-
ical change; see Special Report on Emissions Scenarios, IPCC 2001, for details). Predictions for
these scenarios for the year 2050 (data from http://www.ccafs-climate.org/; accessed June 2010)
were used, in combination with the ENM of agriculture (fitted to current conditions, see above),
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to derive a projection of agricultural suitability for the future (soil type was kept as a non-
changing variable).

2.3 Data analysis

Climate change effects on the suitability of agriculture were calculated as the difference
between a future scenario and the current conditions model (i.e., positive values denote better
conditions in the future, while negative values indicate worsening conditions). All raster data
manipulation and map editing was carried out in ArcGIS 9.2.

To quantify major patterns and relate them to other features of regions, values for 20’000
randomly chosen grid cells were extracted (data available as Supplement). Means for larger
geographic regions were calculated, and values were related to population density (year 2005:
http://gcmd.nasa.gov/records/GCMD_Landscan.html; accessed 2008; data per km2, interpola-
tion averages for the ca. 5×5 km cells).Means were also aggregated by country and compared to
per capita gross domestic product (GDP) of nations (data for 2005, http://geodata.grid.unep.ch/;
accessed June 2010). These data were considered more relevant than cell-wide GDP data in the
current context, as nations may be the unit of action and mitigation of regional climate change
effects. All relevant analyses were repeated after including only regions where (current) suit-
ability (i.e., modeled probability of occurrence) is ≤0.27. In this data range, stronger links
between agriculture and local population density were reported (Beck and Sieber 2010), and
climate change effects may therefore have more direct effects on population carrying capacity.
Additionally, change in suitability was tabulated by growing regions of major staple crops,
defined by yield data in Monfreda et al. (2008).

Beck and Sieber (2010) had speculated that ENM output may be positively related to
yield, which would increase the relevance of ENM data as presented here. While a detailed
appraisal of this relationship is pending, I used summed yield data for the most important
cereals (wheat, rice, maize and rye, year 2000; Monfreda et al. 2008, data available at http://
www.sage.wisc.edu/mapsdatamodels.html; accessed August 2010) and correlated it to ENM
“suitability” for agriculture.

3 Results

Figure 1 shows the model output for agriculture suitability under current conditions (i.e.,
averages 1950-2000). A model test on 25 % of data yielded an AUC00.860 (mean of 10 runs),
indicating good predictive performance. The two most important input variables were annual
precipitation and annual temperature range, whereas soil type was the third most important
variable (see Supplement for model details and response curves).

Figures 2 and 3 map predicted suitability and deviations from current conditions for the year
2050 (scenarios A2a and B2a, respectively). Across the entire region, all models except NIES99
predicted a slight mean decrease in future suitability (for CCCMA: mean±99%CI0-0.005±
0.002 for A2a, -0.005±0.001 for B2a; see Supplement for other models). However, variation
around this mean loss was high and showed a strong geographic structure. Some regions benefit
considerably, while others lose.

Densely populated cells lost more than sparsely populated cells sites (data not shown), but
the link was very weak (r2<0.08 for linear regression on log-transformed population density).
The pattern got even weaker (r2<0.01) if restricted to those sites where strong relationships with
population density were expected (i.e. where current suitability was ≤0.27; Beck and Sieber
2010).
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A summary of expected changes by geographic regions is presented in Fig. 4.
Some regions, such as Eastern Europe, were predicted to benefit on average from
climate change, whereas other, such as West Africa, will have poorer conditions.
Excluding regions where suitability is probably less directly related to population density
(i.e., current suitability >0.27) confirmed some, but modified other assessments. The Arabian
Peninsula, for example, benefited overall, but regions with already relatively poor conditions
lost out. Western Europe benefited only slightly overall, but did so strongly in those regions
currently judged poor for agriculture.

Figure 5 relates per capita GDP, as a measure of nations’ wealth, to the country-wide
mean modeled agricultural suitability change. A pattern of economically weak countries that
lose more than rich countries emerged, but scatter was high and there were winners and
losers across the entire range of GDP. Perhaps most relevant was a cluster of economically
very weak countries from West Africa that were predicted to lose more agricultural suitability
than the majority of other countries.

Maps of differences between agriculture suitability predictions for the two IPCC scenar-
ios (A2a and B2a), and for the four circulation models used, are shown in the Supplement.

Fig. 1 Upper map: Modeled suitability for agriculture under current climatic conditions (“probability of
occurrence”, theoretically ranging from 0 to 1). Lower map: Regions where current modeled suitability is >0.27
(in black). Below that value (i.e., in the white terrestrial areas), Beck and Sieber (2010) showed a steep relationship
between agriculture suitability and (log-)population density, whereas it was much more shallow above
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While there was some disagreement on whether agriculture in central Europe or central
Africa, for example, would be better off under A2a or B2a scenarios, these comparisons
broadly agreed where B2a should be preferred (e.g., in the Sahel or in the populous eastern
part of China) and where not (e.g., Scandinavia and Eastern Europe).

When comparing mean projected changes of the growing regions of major staple crops (see
Supplement), one can see a slight trend of larger losses in regions where tropical plants are
grown (i.e., rice, sweet potato, yam), intermediate losses for wheat- andmaize-growing regions,
and almost no losses in rye-growing regions. This trend is confirmed if only data from the main
growing regions for each crop (i.e., the 25 % most productive sites) are considered. However,
variation around these means is substantial (i.e., within growing regions there are local losses
and gains). Furthermore, the described trends are of similar magnitude as, e.g., variation
between GCMs. All data except rye under NIES99 indicate mean losses, and losses under
A2a scenario are generally higher then under B2a.

A rank correlation of ENM-derived suitability (based on current climate) to available
yield data indicated that ENM suitability is positively related to yield (Spearman R00.53).
However, negative exponential regression smoothing (not shown) indicated that the rela-
tionship is non-linear, featuring (on log10(yield+1)-transformed data) a linear increase to a

Fig. 2 Upper map: Modeled suitability for agriculture under the A2a scenario of climate change for the year
2050. Lower map: Modeled change between current (Fig. 1) and future conditions (i.e., change 0 A2a-current).
Positive values denote better conditions, negative values indicate worsening
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suitability of ca. 0.27 (see above for coincidence of this threshold with other results) and no
relationship above that values. Linear breakpoint regression according to this specifications
explained ca. 27 % of yield variability. I.e. ENM-derived “suitability” is a good predictor of
current cereal yield for regions of poor (modeled) agriculture, whereas the two types of data
are not closely related in agriculturally rich regions.

4 Discussion

4.1 Caveats and advantages of niche model predictions

Any prognosis of future events and conditions should be met with some skepticism. Despite best
attempts, there are manifold potential sources of error in all predictive models, ranging from input
data (e.g., climate change predictions; IPCC 2001) to technical issues (e.g., regarding the niche
model approach taken here; Elith and Leathwick 2009; Soberon and Nakamura 2009; see also
Beck and Sieber 2010) and interpretation. The response of soils to climate change, in particular
their carbon and nutrient stocks (Smith et al. 2005; Quinton et al. 2010), and associated

Fig. 3 Upper map: Modeled suitability for agriculture under the B2a scenario of climate change for the year
2050. Lower map: Modeled change between current (Fig. 1) and future conditions (i.e., change 0 B2a-current).
Positive values denote better conditions, negative values indicate worsening
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susceptibility to soil erosion is debated (van Oost et al. 2007; Lal and Pimentel 2008). Whatever
the anticipated direction and rate of change, recent results suggest that soils in agricultural
landscapes are far from steady (Quinton et al. 2010). Changes in agricultural practices may also
mitigate changes in “suitability” (e.g. Mendelsohn and Dinar 1999; Smit and Skinner 2002),
whereas future political and economic circumstances may lead to unexpected consequences of
such change. However, due to modeling current agricultural practice as a whole in this study,
results are probably robust to regional change of farmingmethodwhereas entirely new inventions
are not likely to be used across the world in the time range treated here. As outlined in Methods,
the majority of input data lay within the growing areas of the globally relevant staple crops.

Rare but extreme weather events may affect plant growth (Kreyling et al. 2010), whereas
only climatic averages were considered here. Other modeling studies have tried to consider
some of these possibilities by integrating, e.g., agricultural adaptation and changing trade
patterns (Parry et al. 2004; Fischer et al. 2005). Likewise, direct effects of CO2 enrichment
on plant growth were included in some prediction attempts (Parry et al. 2004) whereas their
exact consequences on in situ plant growth remain an issue of debate (Ainsworth et al. 2008;
Körner 2009). Furthermore, as with all modeling exercises, the ability to predict empirical
patterns is no proof for correctly modeled causalities—but these are best for successful prediction
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Fig. 4 Change in suitability for
agriculture for larger geographic
regions. Positive values denote
better conditions, negative values
indicate worsening. For both cli-
mate change scenarios data from
all 20’000 sample cells (“all data)
and data restricted to cells initially
poor in suitability (≤0.27) are
shown (see main text and Fig. 1
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of new scenarios. In light of such uncertainties there is much value in employing and comparing a
variety of methods (Araujo and New 2007), and data presented here should be understood as a
complement to the existing, more sophisticated models of climate change effects.

ENM and future extrapolations thereof carry a number of problems and disadvantages that
are discussed in detail with reference to modeling the occurrence of non-human species (e.g.,
Austin 2007; Elith and Leathwick 2009; Elith et al. 2010). These problems equally apply to
applications of ENM to human populations (Samson et al. 2011) or human economic traits
(Beck and Sieber 2010, this study). They include, e.g., that input occurrences may have been
shaped by historical processes unrelated to the environmental variables in the model, the
assumption of niche conservatism (here: no novel techniques), the neglected effects of potential
interaction with other species (here: other economic activities that lead to acquiring food, i.e.
trade), and they unknown capability of species to migrate fast enough to keep track of
environmental change (here: speed of accepting techniques and crops from other regions).
Similarly to species’ range model predictions based on ENM, these limitations must be kept in
mind when interpreting results, but they should not be a reason to discard ENM results. As
pointed out below, earlier studies have addressed similar research topics on the basis of more
detailed input data (i.e., yield statistics of selected crops) and more complex assumptions (e.g.,
CO2-effects, mitigation). Where data were presented in comparable fashion, they came to
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largely similar conclusions, which reaffirms both approaches and therefore lends credibility to
those future projections. Furthermore, ENM data could be shown to be related to cereal yield
(see above) and human population density (Beck and Sieber 2010) particularly for regions of
low modeled suitability (i.e., ≤0.27), which lends additional support to those analyses based on
data from these regions alone.

4.2 Winners and losers

Results indicated, consistent with earlier projections, that there will be a slight decrease in
mean conditions for agriculture across the modeled region. However, variation around this
average change is large, has a strong geographical structure, and is hence much more
relevant than the mean itself. Some modeled changes presented in this paper have long
been predicted, such as the worsening conditions in the Sahel region south of the Sahara
desert (IPCC 2001). Others are contrary to commonly perpetuated opinions (e.g., better
conditions in central Europe; see also Parry et al. 2004 for ambivalent prediction in that region)

Fig. 5 Relationship between the
wealth of countries (as per capita
gross domestic product, GDP)
and average predicted change in
agricultural suitability in 2050.
GDP data from 2005 was
available for 124 countries.
Positive correlations between
log10-transformed GDP and
change left much variation
unexplained (r200.054 for
scenario A2a; r200.045 for B2a)
despite being statistically
significant (p<0.02). Data are
available as Supplement. Locally
weighted smoothing (not shown)
confirmed that data can
reasonably be represented
by linear regression; i.e., there
was no indication for different
relationships between GDP and
suitability change among poor or
wealthy countries, respectively
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or draw attention to patterns that have rarely, if ever, been discussed (e.g., better agriculture on
the Tibetan plateau, which may have cultural and political implications). However, sensitivity
analysis of replicate models indicated regions of particular model uncertainty in parts of Siberia
and central Asia (see Supplement for map).

Samson et al. (2011) have taken a methodologically similar approach to map the vulnera-
bility of human populations to climatic changes. As a notable difference, they directly used
population density as a response to climatic variables whereas the model presented here implies
that effects on humans are mediated mainly by effects on agriculture. When comparing their
predicted changes of population carrying capacity (i.e., Fig. 4 in Samson et al. 2011) with
predicted change in agricultural suitability in this study, major differences are only seen in parts
of West Africa (Samson et al. 2011 do not predict the massive deterioration of conditions) and
the Congo region (where Samson et al. 2011 are more pessimistic than this study). Zhang et al.
(2011) provide data underpinning the causal relationships between climate, agriculture and
human population density.

Various earlier studies related crop yields to climate and used these relationships to
predict change for parts of the regions treated here. Only some of these studies can be
reasonably compared to results presented here, showing detailed maps for some overall
effect (i.e., treating not only specific crops). Predictions by Fischer et al. (2005) for cereal
output in Africa in 2080 closely match predictions in this study. Main deviations from this
study (Figs. 2 and 3) are less dramatic effects in (coastal) West Africa in Fisher et al. (2005)
and a decline in output in northern Namibia. Rosenzweig & Parry (1994) and Parry et al.
(2004) made nation-wide predictions of cereal production which are consistent, in broad
pattern, to data presented here. However, low spatial resolution and the inclusion of assumed
CO2-effects make further comparison difficult.

A weakly positive link between countries’ wealth and modeled change was found in
this study (Fig. 5). This links with results in Samson et al. (2011), who found a
negative relationship between per capita CO2 emissions and an index devised to
measure vulnerability to climate change in the light of demographic processes. In
combination these results support the notion that those who cause climate change
(and get wealthy from industrialization) will have to suffer least from its consequences.
However, in both studies data variation was high. In data presented here (Fig. 5), there
are both rich and poor countries that are predicted to win or lose from climate change.
A notable cluster of economically weakWest African countries are predicted to suffer particular
losses in agricultural suitability, which may influence economic and political developments in
the region.

When comparing projected change of suitability in growing regions of major staple crops,
the slightly negative averages (more pronounced in tropical crop plants) were associated with
large variability around these averages. They imply that much of the locally expected losses in
harvest of a particular crop could be mitigated by harvest benefits at some other location (if free
exchange is feasible).

Our approach of modeling agriculture as a whole implies local variation of practices and
therefore local adaptation (within the range of current practices), but it does not allow making
specific predictions on site-specific crop exchanges. Crop-specific ENMs may be a suitable
approach to explore such options. Global strategies of maintaining food availability under
constraints of changing demography, climate and landuse have recently been discussed by
Foley et al. (2011). However, the prospects of adaptation and mitigation in the timeframe
discussed here may not only depend on what is scientifically possible, but also on the less
optimistic outlook on overcoming selfish economic systems, poor leadership and irrational
decisions (Diamond 2006; Dickinson 2009).
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Current agriculture, cultural history, national poverty, population density and -growth,
carrying capacity, future environmental trends, and the abilities of cultural, economic and
social structures to adapt, are interlinked in complex ways. Disentangling causalities and
consequences for patterns presented here are well beyond the scope of this paper. Effects of
change are probably most immediate in those regions of currently relatively poor conditions
(cf. Fig. 4), as we may expect more direct effects on the local population carrying capacity
(Beck and Sieber 2010). Parts of East Africa (i.e., northern Kenya, Somalia, parts of Ethiopia
and southern Sudan) may deserve particular attention with regard to the mitigation of change
(which seems to be supported by the 2011 food crisis in the region). Famine and regional-
scale migrations have in the past led to violent conflict (Reader 1998; Beck 2011; Zhang
et al. 2011), and such problems may be expected to increase in light of the modeled change
scenarios.

In conclusion, ENM is a relatively simple approach that is less dependent on detailed data on
agricultural practices and productivity, yet reproduces many patterns of climate change effects
that had been previously published while deviating in some other aspects. As outlined above,
reaching consensus by a variety of methodologies is a guard against the manifold error
possibilities inherent to predicting the future.
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