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Abstract Many compound properties depend directly on

the dissociation constants of its acidic and basic groups.

Significant effort has been invested in computational

models to predict these constants. For linear regression

models, compounds are often divided into chemically

motivated classes, with a separate model for each class.

However, sometimes too few measurements are available

for a class to build a reasonable model, e.g., when inves-

tigating a new compound series. If data for related classes

are available, we show that multi-task learning can be used

to improve predictions by utilizing data from these other

classes. We investigate performance of linear Gaussian

process regression models (single task, pooling, and multi-

task models) in the low sample size regime, using a pub-

lished data set (n = 698, mostly monoprotic, in aqueous

solution) divided beforehand into 15 classes. A multi-task

regression model using the intrinsic model of co-region-

alization and incomplete Cholesky decomposition per-

formed best in 85 % of all experiments. The presented

approach can be applied to estimate other molecular

properties where few measurements are available.

Keywords pKa prediction � Multi-task learning �
Quantitative structure–property relationships � Gaussian

processes

Introduction

A compound’s pharmacokinetic and biochemical proper-

ties depend directly on dissociation constants of its acidic

and basic groups, commonly expressed as the negative

decadic logarithm pKa of the acid dissociation constant Ka.

Its accurate estimation is thus of great interest, and much

effort has gone into computational models for pKa values

[1–5]

Empirical (as opposed to ab initio) models assume that a

compound’s physico-chemical properties are a (mathe-

matical) function of its structure, usually described by

computable features. Often, changes in property are

assumed to be additive for different substitutions within a

class of compounds, e.g., ortho-substituted benzoic acids.

Separate models are then built for each class.

This approach does not make use of all information

contained in the reference data. Consider, e.g., ortho-

substituted phenols. Division into two classes, those that

can form internal hydrogen bonds, and those that can not,
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improved certain linear pKa models [6]. However, each

class contains information about the other one that separate

models don’t use.

The ability to use information from related classes might

also be beneficial in other settings. An example is the

investigation of a new compound series, for which few

measurements are likely available, but more measurements

might exist for compounds from structurally related series.

This is exacerbated for (computationally) designed com-

pounds that have not been synthesized yet.

Multi-task learning [7] is a machine learning approach

where multiple related tasks sharing a common represen-

tation are learned simultaneously. It has rarely been used in

chem- and bioinformatics [8–11].

In this work, we model relationships between pKa values

of related classes using multi-task Gaussian process

regression to improve accuracy in situations where only

few samples are available.

Acid dissociation constants

In Brønsted–Lowry theory, an acid HA is a proton

(hydrogen cation) donor, HA� Hþ þ A�, and base B is a

proton acceptor, Bþ Hþ � BHþ. For weak acids in

aqueous solution, the dissociation HAþ H2O� A� þ
H3Oþ is reversible. In the backward reaction, oxonium acts

as acid and A- as base. The equilibrium constant [12],

known as the acid dissociation constant Ka, is the ratio of

activities of products and reagents,

Ka ¼
aðA�Þ aðH3OþÞ
aðHAÞ aðH2OÞ ; ð1Þ

where að�Þ is activity, a unit-less measure of ‘‘effective

concentration’’. It can be defined in terms of chemical

potential, and expressed relative to a standard concentra-

tion as aðxÞ ¼ cðxÞcðxÞ=c�� [1], where cð�Þ is a dimension-

less activity coefficient, cð�Þ is the molar (or molal)

concentration of a species, and, c�� ¼ 1 mol=L (or 1 mol/

kg) is a standard concentration.

In an ideal solution cð�Þ ¼ 1, and effective concentra-

tions equal analytical ones. Assuming this, cðH2OÞ ¼
c�� ¼ 1 mol/L, and taking negative decadic logarithm

yields the Henderson–Hasselbalch [13] equation

pKa � pHþ log10

cðHAÞ
cðA�Þ ; ð2Þ

where pH ¼ � log10 aðH3OþÞ � � log10ðcðH3OþÞ=c��Þ. In

an ideal solution, the pKa of a (monoprotic) weak acid is

thus the pH at which 50 % of it is in deprotonated form.

Analogously, protonation of bases leads to pKb values.

Since pKa and pKb values use the same scale, pKa values

are used for both acids and bases. Note that these

considerations are for monoprotic compounds with a single

ionizable center (proton to accept/donate).

Linear free energy relationships

Many descriptors and prediction methods have been used

to establish quantitative structure–property relationships

for pKa [1–5]. Linear free energy relationships (LFER)

[14–17] use the Hammett equation [18]

log10

Ka

K0a
¼ q

Xm

i¼1

ri () pKa ¼ pK0a � q
Xm

i¼1

ri; ð3Þ

where Ka and K0a are the acid dissociation constants for the

substituted and the parent molecule, q is a constant specific

for the class of the two molecules, m is the number of

substituents, and the ri are constants expressing the sub-

stituent effect on the dissociation constant [15]. The

underlying assumptions are that changes in pKa correspond

to changes in free Gibbs energy, and that these changes are

additive within a compound class.

This approach has several disadvantages: (1) the r con-

stants have to be known (experimentally determined) for all

involved substituents [19]. (2) non-linear effects within a

class are not captured. (3) information from related classes

is not used. In previous work by us [20] and others [1, 2], it

was shown that (1) influence of substituents on pKa can be

learned from data, i.e., from collections of experimental pKa

values, and that (2) non-linear models improve prediction

accuracy. In this work, we demonstrate that (3) using data

from other classes can improve prediction accuracy, in

particular if few experimental values are known for a class.

Material and methods

Data and descriptors

We use a published data set of structures and pKa measure-

ments compiled from the literature by Tehan et al. [6, 21] (a

curated subset of the PhysProp database [22]). The data set

(Table 1) contains 698 compounds (416 acids, 282 bases),

partitioned into 6 ? 9 = 15 classes. Figure 1 presents

numbering schemes for functional group atoms. Experi-

mental pKa values were obtained between 15 and 30 �C

(mean 23.8 �C, standard deviation 2.5 �C) in aqueous

solution.

We focus on investigation of multi-task learning for pKa

prediction. With regard to molecular representation, we

therefore limit ourselves to an established pKa descriptor,

electrophilic superdelocalizability (SE). This quantum-

mechanical descriptor is based on frontier electron theory

[23], and has been shown to be well-suited for pKa pre-

diction [6, 20]. It is defined as
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SEðpÞ ¼ 2
Xm

j¼1

Xq

a¼1

c2
a;j

kj
ð4Þ

where c; k are eigenvectors and -values of the Hesse

energy matrix, p is the atom index, a is the atomic orbital

(s; px; py; pz; . . .) index, q is the number of atomic orbitals,

j is the molecular orbital index, and m is the number of

occupied molecular orbitals.

We represent a compound by three values: The SE of it’s

ionizable center, and, the binned SE values of all atoms with

topological distance to the ionizable center of one and two,

respectively [20]. Single 3D conformations were calculated

for all molecules using CORINA [24] (version 1.82; Molec-

ular Networks GmbH, http://www.molecular-networks.com).

Quantum mechanical calculations were done using MOPAC

[25] (version 7.1; Stewart computational chemistry, http://

www.openmopac.net) with keywords XYZ, AM1, EF, PRE-

CISE, VECTORS, ALLVEC. Some compounds in the data

set may exist, at least partially, in zwitterionic form. Calcu-

lations were performed on the neutral species in these cases.

Computed descriptor values are provided via the supple-

mentary material. Structures and pKa values of the articles by

Tehan et al. [6, 12] are available at the ‘‘Online Chemical

Modeling Environment’’ [26] (http://www.ochem.eu,

accessed 2012-05-08). Matlab (version 7.6.0, The Math-

Works, http://www.mathworks.com) source code for STL

and MTL Gaussian process regression can be downloaded

from the authors web pages at http://homepages.inf.ed.ac.uk/

gsanguin/software.html, and, http://www.mrupp.info.

Gaussian process regression

We use Gaussian process (GP) [27] regression, a Bayesian

non-parametric1 technique. In brief, a Gaussian process

is a generalization of the (multi-dimensional) normal

Table 1 Data set and division into classes (tasks)

T n S [ pKa range Description

Aa 57 1 9.17 5.42–10.45 (5) Phenols, meta/para-substituted

Ab 26 2 6.32 3.03–9.87 (7) Phenols, ortho-substituted, IHB

Ac 91 3 7.71 0.38–12.23 (12) Phenols, ortho-substituted, NIHB

Ad 46 4 4.01 2.82–4.85 (2) Benzoic acids, meta/para-substituted

Ae 53 5 2.90 0.65–5.09 (4) Benzoic acids, ortho-substituted

Af 143 6 3.70 0.51–6.20 (6) Aliphatic carboxylic acids

Ba 55 1 1.97 -5.00–5.48 (10) Anilines

Bb 23 2 9.92 5.70–10.87 (5) Amines, primary

Bc 23 3 10.42 8.50–11.39 (3) Amines, secondary

Bd 31 4 9.09 6.57–11.25 (5) Amines, tertiary

Be 48 5 4.23 0.67–6.47 (6) Pyridines, meta/para-substituted

Bf 34 6 3.76 -2.86–7.90 (11) Pyridines, ortho-substituted

Bg 14 7 2.22 -1.63–6.81 (8) Pyrimidines

Bh 26 8 5.34 -0.53–7.85 (8) Imidazoles, benzimidazoles

Bi 28 9 4.66 2.69–6.10 (3) Quinolines

Tasks Aa,…,Af published in Tehan et al. [21], tasks Ba,…,Bi in Tehan et al. [6]. pKa ranges are given as min–max ranges; the number in

brackets indicates the number of spanned orders of magnitude rounded to one digit. T = task; abbreviations were chosen to indicate source

(capital letter) and are otherwise consecutively labeled (a,b,c,…). S source; number indicates table in original publication. [ = average pKa

value. (N)IHB = (not) capable of forming internal hydrogen bonds

(a) phenols (b) carboxylic acids (c) anilines (d) amines

(e) pyridines (f) pyrimidines (g) imidazoles (h) quinolines

Fig. 1 Chemical classes with atom numbering used for each

functional group [6, 21]

1 As opposed to parametric approaches, where the information from

the training data are summarized in the parameters of a distribution,

non-parametric approaches require the training data for later predic-

tions. This distinction does not prevent non-parametric approaches

from having parameters, here the regression weights a and hyper-

parameters h. Parameters a, which directly belong to the model itself,

are computed from the data by solving an optimization problem.

Hyper-parameters h parameterize the kernel, and can be estimated via

gradient-based optimization by maximizing the marginal likelihood.
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distribution to functions, i.e., a function-valued random

variable. For regression, one considers all functions gen-

erated by a GP that agree with the training data; the mean

of these functions is the predictor.2 A GP is specified by a

covariance function, or kernel, that quantifies similarity

between two inputs. We use the linear kernel kðxi; xjÞ ¼
ehð1þ\xi; xj[ Þ, where xi; xj are descriptor vectors,

\�; �[ is the standard inner product, and h is a hyper-

parameter. Computation of GP regression models essen-

tially amounts to inverting a symmetric positive definite

n 9 n matrix, where n is the number of training samples,

resulting in cubic O(n3) runtime. For details, see the book

by Rasmussen and Williams [27].

Multi-task learning

In supervised learning, one is given a single data set D of

n pairs of input and output, xi 2 R
d and yi 2 R. Here,

inputs are SE values, d = 3, and outputs are pKa values.

The goal is to learn from the data D a function f̂ that maps

new inputs x to their (unknown, i.e., not yet experimentally

measured) output y. This is called single-task learning

(STL).

By contrast, in multi-task learning (MTL), one is given

M different but related data sets D1; . . .;DM (the tasks), and

the goal is to learn M different functions f̂j. Here, each of the

15 compound classes in Table 1 is a task. We denote the

different inputs with Xj ¼ ½x1j; . . .; xnjj�, where the first and

second index indicate sample number and task number,

respectively. Corresponding outputs are denoted as yj ¼
½y1j; . . .; ynjj� 2 R

nj . For inputs and outputs, j ¼ 1; . . .;M,

and n1 þ � � � þ nM ¼ N. Here, the number of samples nj are

given by the second column in Table 1, M = 15, and

N = 698. We define the complete sets of inputs and outputs

as X ¼ ½X1; . . .;XM �, and y ¼ ½y1; . . .; yM �.
We model measurement errors in experimentally

determined pKa values as noise, i.e., yij ¼ fjðxijÞ þ e, where

xij is the ith compound in task j, yij is it’s observed pKa

value, fj is the ‘‘true’’ relationship between inputs and

outputs in task j, and e is the error introduced by mea-

surement. We make the usual assumption of independent,

identically distributed Gaussian noise, e�Nð0; r2Þ, where

r denotes standard deviation of measurement error. Tech-

nically, we treat r as a hyper-parameter.

Multi-task learning can be achieved either by sharing a

common set of parameters (parameter transfer), or by

directly inducing correlations between the task dependent

functions (collocated transfer). The simplest form of

parameter transfer couples the individual functions of the

tasks by sharing the same hyper-parameters h of the

covariance function, hj = h for all j. Let f ¼ ðf1; . . .; fMÞ;
the prior distribution of the latent function factorizes as

pðfjX; hÞ ¼
QM

j¼1 pðf jjXj; hÞ. The individual f j’s are inde-

pendent of the others, and transfer of information occurs

only by sharing hyper-parameters h during the training

phase. The prediction stage is the same as for STL GPs.

We refer to this method as MTL-SHP (shared hyper-

parameters).

The main characteristic of collocated transfer methods is

that they require some form of correlation between the

functions of the different tasks. A popular way to achieve

this is to employ the ‘‘intrinsic model of coregionalization’’

[29, 30]. This approach allows the joint prior probability

distribution of f to factorize as the Kronecker product � of

two separate matrices, fjX�GPð0;Kt �KxÞ, where task

matrix Kt 2 R
M	M captures correlations between tasks,

and Kx 2 R
N	N models correlations between each element

of each vector f j.
3

Bonilla et al. [30] proposed to use a free form task

covariance matrix Kt with hyper-parameters ht, both esti-

mated from the data. The entries of Kt reflect correlations

between the tasks. This allows the latent functions of the

different tasks to interact during training and during pre-

diction, and is considered a stronger form of transfer learn-

ing. We refer to this method as MTL-ICD (incomplete

Cholesky decomposition), from the used Cholesky decom-

position Kt ¼ LLT , where L is a lower triangular matrix.

The task covariance matrix Kt can be restricted to a

correlation matrix by enforcing a unit diagonal (proper

range of off-diagonal elements is ensured by positive def-

initeness of Kt) [31, 32]. We refer to this method as MTL-

COR (correlation matrix). Off-diagonal entries were

restricted to positive values for MTL-ICD and MTL-COR.

Both models employ the intrinsic model of co-regionali-

zation, and differ only in the way they parameterize the

task covariance matrix.

In summary, the three investigated Gaussian process

MTL methods can be characterized as follows: (1) MTL-

SHP learns shared kernel hyper-parameters, (2) MTL-ICD

learns task correlations in the form of a positive definite

task matrix, (3) MTL-COR learns task correlations in the

form of a correlation matrix (additional restriction of unit

diagonal).

2 Predictions are technically equivalent to those of kernel ridge

regression [28], a regularized form of ordinary regression. Here, we

do not use additional features of GPs like predictive variance.

However, the used GP MTL methods do make use of Bayesian

aspects of GPs.

3 Technically, Kt �Kx 2 R
MN	MN . In our setting, each sample

(compound) occurs in one task only. After removing (marginalizing

out) rows and columns corresponding to combinations of compounds

and tasks that don’t occur, the resulting matrix is N 9 N. In practice,

it is not necessary to construct the MN 9 MN matrix explicitly.
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Evaluation

We consider three baseline methods: STL, pooling, and

pooling with class information. The STL method is simply

linear ridge regression on a single task (STL). Pooling is

linear ridge regression on the data of all tasks pooled

together (Pooling). This is arguably the simplest form of

multi-task learning, as it uses information from different

tasks, but ignores all task structure. For pooling with class

information (PoolingCI), we encode task membership in

the descriptor vectors by augmenting them with M com-

ponents that are either 0 (sample does not belong to a task)

or 1 (sample belongs to a task). Since each molecule

belongs to exactly one task, this is equivalent to changing

the linear kernel to kðxi; xjÞ ¼ ehð1þ\xi; xj[ þ dti¼tjÞ,
where xi; xj are the original (not augmented) descriptor

vectors, and dti¼tj ¼ 1 if xi and xj belong to the same task,

and 0 otherwise.

For purposes of statistical evaluation, we consider a null

model (Null) that uses the average pKa value of a training

set as (constant) predictor for new samples. Any useful

model should improve over the null model.

We retrospectively evaluated models as follows: given

M C 2 of the tasks from Table 1, we randomly drew with

repetition n samples (compounds) and corresponding labels

(pKa values) from each task. These formed the training set,

where Null and STL were trained on each task separately,

and Pooling, PoolingCI, MTL-SHP, MTL-COR, MTL-ICD

were trained on all M tasks together. Each method was then

used to predict the remaining compounds of each task.

Based on the predicted values, mean absolute error (MAE)

and root mean squared error (RMSE) were computed to

quantify predictive performance. This procedure was

repeated 100 times for training set sizes n = 5, 10, 15, 20.

Shown averages, standard deviations, etc. are over these

100 repetitions. For the sake of simplicity, we consider

only the homogeneous case where all tasks contain the

same number of data points.

For each experiment, task, and training set size, two

tests were done: (1) To test which methods resulted in

meaningful models, the 100 repetitions of each method

were compared to the 100 repetitions of the null model

using a one-sided Wilcoxon signed rank test [33], with null

hypothesis that the median performance difference is

below 0.1. If the null hypothesis was rejected on a signif-

icance level of 0.05, the method was said to perform better

than the null model. (2) To test which methods performed

best, the best-performing method was compared to the

other methods, using the same test, with null hypothesis

that the median performance difference is greater than 0.1.

If the null hypothesis was rejected, both methods were

considered to have performed best.

To analyze task similarity matrices, we converted them

to Euclidean distance matrices,4 took the median of each

component over the 100 repetitions, and applied standard

hierarchical clustering (cluster agglomeration, single link-

age). The results were visualized as a dendrogram.

Results and discussion

We investigated three scenarios: in scenario I, limited data

from one or more highly similar tasks is available (e.g.,

ortho-substituted benzoic acids and meta/para-substituted

benzoic acids). There are four experiments in this scenario:

(1) phenols (tasks Aa, Ab, Ac), (2) carboxylic acids (tasks

Ad, Ae, Af), (3) amines (tasks Bb, Bc, Bd), and (4) pyri-

dines (tasks Be, Bf). In scenario II, limited data from more,

but less similar tasks is available (e.g., ortho-substituted

benzoic acids and other acids). There are two experiments

in this scenario: (1) acids (tasks Aa, . . ., Af), and (2) bases

(tasks Ba, …, Bi). In scenario III, all tasks (Aa, …, Af, Ba,

…, Bi) are used. This scenario includes tasks that may be

unrelated.

Table 2 presents method performance in terms of MAE.

Figures 2 and 3 give a visual overview of performance in

scenarios I and II. We limit shown results and discussion to

mean and standard deviation of MAE. The supplement

contains additional information (mean, standard deviation,

median, median absolute deviation of MAE and RMSE for

all scenarios, experiments and methods; dendrograms for

MTL-COR and MTL-ICD) in tabular and graphical form.

Method MTL-SHP consistently did not improve on STL,

and Pooling performed consistently worse than PoolingCI.

Both methods are therefore not shown or discussed further.

Performance in absolute terms

Prediction errors of one log-unit or less have been deemed

acceptable for pKa values in the literature [34]. Based on

Liao and Nicklaus [35], we classify predictions based on

MAE as excellent (MAE B 0.1), well (0.1 \ MAE B 0.5),

fair (0.5 \ MAE B 1), poor (1.0 \ MAE B 2), or awful

(2 \ MAE). Figure 4 presents MAEs of models in scenario I

according to this classification scheme. Figures for scenarios

II and III are qualitatively similar (see supplement). We

observe that (1) quality of predictions increases with number

of training samples; (2) method MTL-ICD delivers the best

predictions; (3) for 5 training samples, MTL-COR and MTL-

ICD have roughly half as many ‘‘awful’’ predictions as STL

4 2Task similarity matrices are positive definite. Their entries thus

correspond to evaluations of an inner product in some Hilbert space,

which can be converted to Euclidean distance by using

jjx�zjj22¼
Pd

i¼1jxi�zij2¼\x�z;x�z[¼\x;x[�2\x;z[þ\z;z[.
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Table 2 Performance in terms of mean absolute error ± standard deviation for 5, 10, 15, and 20 training samples
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and PoolingCI; (4) the fractions of ‘‘fair’’ or better predic-

tions are 64.4–82.9, 52.7–75.7, 51.1–77.1 % and

49.4–63.7 % for MTL-ICD, MTL-COR, PoolingCI, and

STL, respectively. This indicates that for very few samples

(n = 5), MTL can reduce the number of ‘‘awful’’ predic-

tions, and that it can markedly increase the share of ‘‘fair’’ or

better predictions for up to n = 20 samples.

Absolute performance values compare5 favorably with

previously published [20] results for larger models: For

n=20 training samples and over tasks Aa, …, Af, Bb, …, Bf

(scenario I), methods STL, PoolingCI, MTL-COR, MTL-

ICD achieve, respectively, 0.63, 0.71, 0.71, 0.83 % of the

median MAE of linear ridge regression models trained

there using the same descriptors, but 90 % of all available

training samples (see Table 1 for task sizes).

Variance in performance tends to decrease with training

set size: median ± median absolute deviation over all tasks

of the correlation between standard deviation of MAE and

training set size is -0.51 ± 0.39, -0.43 ± 0.46, -0.69 ±

0.26, -0.79 ± 0.1 for STL, PoolingCI, MTL-COR, MTL-

ICD. There are occasional deviations from this general

trend; e.g., in scenario I, the performance of MTL-ICD

varies more strongly for 20 than for fewer training samples

for tasks Bd, Be, Bf. These might be attributed to the fact

that all experiments take place in a low sample regime. In

accordance with this argument, the variance in the given

examples is much reduced in scenario II.

Comparison of methods

In scenario I (Fig. 2), for phenols MTL-ICD performs best,

followed by PoolingIC and MTL-COR. For 5 samples,

MTL-ICD’s winning margin is greatest, albeit at high

Table 2 continued

Each experiment was repeated 100 times. Figures not significantly different from the null model (best model) are set in italics (bold) typeface; to

increase readability, entries not in italics have a gray backbround

5 Comparison is based on Table S2 of the supplement of Ref. [20],

using column R’ and third lines from each row of the common tasks.

J Comput Aided Mol Des (2012) 26:883–895 889

123



variance. For carboxylic acids, all methods perform on par,

except for STL and PoolingIC for 5 and 10 samples. For

amines, models outperform the null model only for 20

samples, except for STL, which never does. Behaviour

differs for meta/para- and ortho-substituted pyridines, with

large gains by MTL-ICD for 20 samples, again at high

variance.

In scenario II (Fig. 3), the overall picture stays the same

for the tasks from scenario I, except that the variance of

MTL-ICD is reduced. On the other tasks (Ba, Bg, Bh, Bi),

(a)

(b)

(c)

(d)

Fig. 2 Scenario I (few, highly similar tasks) performance. Shown are

mean absolute error (MAE) 25 % quantile (lower bars), median

(symbols), and 75 % quantiles (upper bars), for increasing number of

training samples n = 5, 10, 15, 20 and methods STL (red circle),

PoolingCI (blue star), MTL-COR (purple bar), and MTL-ICD (black
diamond). Dashed gray horizontal lines indicate performance of the

null model; stars indicate that a model performs significantly better

than the null model. Each experiment was repeated 100 times. Plots

are intended to provide an overview of larger overall differences in

performance across tasks; the y-axis scaling intentionally does not

resolve minor differences, as these are likely not significant due to

noise, e.g., from experimental measurements and cross-validation
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(a)

(b)

Fig. 3 Scenario II (more, but less similar tasks) performance. Shown

are mean absolute error (MAE) 25 % quantile (lower bars), median

(symbols), and 75 % quantiles (upper bars), for increasing number of

training samples n = 5, 10, 15, 20 and methods STL (red circle),

PoolingCI (blue star), MTL-COR (purple bar), and MTL-ICD (black
diamond). Dashed gray horizontal lines indicate performance of the

null model; stars indicate that a model performs significantly better

than the null model. Each experiment was repeated 100 times. Plots

are intended to provide an overview of larger overall differences in

performance across tasks; the y-axis scaling intentionally does not

resolve minor differences, as these are likely not significant due to

noise, e.g., from experimental measurements and cross-validation
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MTL-ICD mostly leads, followed by PoolingIC and MTL-

COR, with STL often not able to outperform the null

model. Scenario III (see supplement) resembles scenario II,

except for occasionally increased variance in MAE.

Table 3 presents the fraction of tasks across all experi-

ments in which a given method performed both best and

better than the null model. Due to ties (if performance of

two methods could not be statistically distinguished, both

were considered to have performed best), columns do not

add up to 100 %. We observe that (1) all methods improve

with increasing number of samples (the only exception is

MTL-COR from 5 to 10 samples). (2) STL performs worst;

MTL methods improve over STL over all training set sizes.

(3) PoolingCI and MTL-COR are on par in total, but MTL-

COR performs better for small (5 and 10) training set sizes,

whereas PoolingCI is better for 15 and 20 samples. (4)

MTL-ICD outperforms all other methods by a wide

margin.

In scenario I, improvements of MTL over STL are

mostly seen on acid tasks (phenols, carboxylic acids). For

bases (amines, pyridines), all methods perform equally bad,

often not improving over the null model, the exception

being ortho-substituted pyridines (task Bf). For 20 samples,

this improves somewhat. The introduction of additional

related tasks in scenario II improves MTL performance, in

particular for tertiary amines and pyridines. Scenario III

does not introduce marked changes.

Average MAEs over all scenarios, tasks, repetitions, and

training set sizes for STL, PoolingCI, MTL-COR, MTL-

ICD are 1.12, 0.94, 0.90, 0.74 (median MAEs were 0.97,

0.80, 0.80, 0.63), in accordance with values reported in the

literature [1, 6, 21], taking reduced training set size into

account (see also subsection on performance in absolute

terms).

In summary, methods rank by increasing overall per-

formance in the order STL, PoolingCI, MTL-COR, MTL-

ICD.

Performance and number of tasks

In scenario I, for phenols, carboxylic acids, and ortho-

substituted pyridines, models improve on the null model

from n = 5 training samples on. For amines and meta/para-

substituted pyridines, this happens not until n = 20.

Increasing the number of related tasks (scenario II) shifts

this to smaller n, i.e., models improve on the null model

from n = 10 (amines) and n = 5 (pyridines) on. Tasks not

in scenario I (Ba, Bg, Bh, Bi) improve from n = 5

onwards. In scenario III, models improve starting from

n = 5 for all tasks except for secondary amines (Bc,

n = 10). This indicates that increasing the number of tasks

allows for meaningful models earlier on, i.e., with fewer

training samples per task, even if tasks are increasingly less

related to the task of interest. However, adding more, but

less related tasks (scenario III) also leads to marked

increase in variance of MTL-ICD for very few (n = 5)

samples.

Figure 5 presents improvements in MAE when

increasing the number of tasks. In the transitions from

Fig. 4 Classification of

predictive performance.

Model’s MAE (over 100

repetitions of all experiments in

scenario I) are classified (from

left to right) as excellent (blue,

MAE B 0.1), well (green,

0.1 \ MAE B 0.5), fair

(yellow, 0.5 \ MAE B 1), poor

(orange, 1 \ MAE B 2), and

awful (red, 2 \ MAE), for

different methods and numbers

of training samples. Numbers

are percentages. Category

excellent is occupied only once

(MTL-ICD, n = 20, 0.2 %)

Table 3 Best performance by number of training samples

Method Number of training samples

5 10 15 20 All

STL 4.9 7.3 25.6 28.2 16.2

PoolingCI 0.0 17.1 43.6 53.8 28.1

MTL-COR 36.6 24.4 33.3 38.5 33.1

MTL-ICD 68.3 87.8 87.2 97.4 85.0

Shown is the percentage of tasks over all scenarios for which a

method performed best and better than the null model. Due to ties

(when the performance of several methods could not be statistically

distinguished), columns add up to more than 100 %
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scenario I to scenario II to scenario III, more, but

increasingly less related tasks are added; e.g., for a task in

the phenols experiment, the other tasks are two phenols

(scenario I), five acids (scenario II), and, 14 acids and bases

(scenario III). STL does not improve as it does not make

use of the additional tasks. MTL methods improve in MAE

when related tasks are added (Fig. 5a), with MTL-ICD

profiting the most. The average improvement of PoolingCI

and MTL-COR is similar, with MTL-COR showing more

stable performance. When adding more, but less related

tasks (Fig. 5b), performance degrades for acids (-1.2, -8,

-23.3, -9.9 % MAE for STL, PoolingCI, MTL-COR,

MTL-ICD over tasks Aa,. . .,Af and n=5,10,15,20), but

improves for bases (0.5, 12.3, 8.1, 7 %), leaving overall

performance unchanged (except for a tendency of MTL-

COR to degrade). A potential explanation is that acids have

better initial performance and profit more from adding

related tasks than bases do. Adding unrelated tasks does not

help them further, but introduces noise, whereas bases can

still profit from more information, even if it is only mar-

ginally related.

This indicates that adding related tasks tends to improve

performance, whereas for less related tasks, this depends.

Task similarity

We show exemplarily how to interpret task similarity

kernel matrices of methods MTL-COR and MTL-ICD.

Figure 6 shows dendrograms of learned dependencies

for amines (based on MTL-COR with 5 samples) and acids

(MTL-ICD with 5 samples). See the supplement for

dendrograms for MTL-COR and MTL-ICD over all

experiments and numbers of training samples. In Fig. 6a,

primary and secondary amines are more correlated with

each other than with tertiary amines. A possible reason

could be that the solvent accessible area is smaller for

tertiary amines with their three substituents, i.e., the qua-

ternary aminium ion is less well solvated for tertiary

amines than for secondary ones. In Fig. 6b, carboxylic

acids are grouped together, separate from the phenols.

While these examples appear reasonable, other correla-

tions are harder to explain; e.g., in scenarios II and III,

ortho-substituted pyridines are often separate from all other

tasks. Altogether, dendrograms tend to be shallow, with

few pronounced subgroups.

Conclusions

We show that multi-task learning (MTL) methods can

improve prediction performance in quantitative structure–

property relationship modeling when few experimental

measurements are available for the target task, but data is

available for related (similar) tasks. Using prediction of

acid dissociation constants (pKa values) of small molecules

as a model application, we conducted a retrospective

(a) (b)

Fig. 5 Improvement in MAE when increasing the number of tasks.

Shown are box-whisker plots of the improvement in MAE, expressed

in percent, when going a from scenario I to scenario II, and b from

scenario II to scenario III, for methods STL, PoolingCI, MTL-COR,

MTL-ICD, and training set sizes n = 5, 10, 15, 20. Data for each box-
whisker plot are the improvement in average MAE, expressed in

percent, of the 11 tasks Aa, …, Af, Bb, …, Bf that are part of all three

scenarios

Bb Bc Bd Aa Af Ae Ad Ab Ac

(a) Amines, MTL-COR (b) Acids, MTL-ICD

Fig. 6 Dendrograms for a amines by MTL-COR, and b acids by

MTL-ICD, both for 5 training samples
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validation study on a published data set (n = 698) divided

into 15 chemically motivated compound classes that con-

stitute the related tasks.

We compared performance of three MTL methods, a

model trained only on the target task, and two models

trained on multiple tasks data pooled together. All models

are linear Gaussian process regression models. MTL

methods outperform the model trained on only one task;

adding related tasks increases their performance. One MTL

method, based on an intrinsic model of co-regionalization

and incomplete Cholesky decomposition, outperforms the

other models, performing best in 85 % of all experiments.

For as few as 5 training samples in each task, its mean

absolute error is below one log-unit in 64 % of all cases.

For 20 training samples per task, this increases to 83 %.

This model also makes the most efficient use of data from

additional tasks. The investigated MTL methods provide a

measure of correlation between the tasks, and thus a lim-

ited form of insight into relationships between tasks.

MTL methods might prove useful in situations where

computational estimates of physico-chemical or other

molecular properties are required and data is scarce, but

related data is available. An example is the investigation of

new compound series, where few measurements exist for

compounds of the new series, but more measurements might

exist for structurally related compound series. This might be

particularly useful if experimental determination is expen-

sive, e.g., computationally designed compounds that would

need to be synthesized prior to experimental measurement.
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