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Abstract Detecting car taillights at night is a task which can
nowadays be accomplished very fast on cheap hardware. We
rely on such detections to build a vision-based system that,
coupling them in a rule-based fashion, is able to detect and
track vehicles. This allows the generation of an interface that
informs a driver of the relative distance and velocity of other
vehicles in real time and triggers a warning when a poten-
tially dangerous situation arises. We demonstrate the system
using sequences shot using a camera mounted behind a car’s
windshield.

Keywords Vehicle tracking · Real-time · Light detection

1 Introduction

One of the main particularities that distinguishes newer cars
from older ones is the growing use of embedded electronic
components whose role is to improve driver safety. Even
purely mechanical devices, such as brakes, have now been
electronically enhanced. While some cars are now equipped
with proximity sensors for parking assistance, the new trend
is to equip them with long-range radar sensors or video-based
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assistance functions to protect the vehicle’s occupants, those
of other cars and pedestrians [1]. In this paper we describe
a low cost video-based assistance system, that relies on tail-
light tracking to locate other vehicles at night-time, to analyze
their trajectory and to avoid collisions. We chose night-time
because it is a delicate situation, in which the driver’s percep-
tion of distance is far worse than during the daytime, which
makes our system potentially very helpful. The need for
reliable real-time performance makes it a challenging prob-
lem as it imposes restrictions on the algorithms that may be
used.

We demonstrate our approach on sequences shot with a
small camera mounted behind a car’s windshield and point-
ing forwards. Essentially the same approach could have
been used with a camera pointing backwards to monitor the
situation behind the car by detecting headlights instead of
taillights.

Our approach includes the following steps: we first
detect independent candidate taillights using standard low-
level image processing. We then couple them using adequate
criteria. Finally we track the resulting pairs over time to infer
the presence and location of vehicles. This lets us generate a
radar-like view that includes distance to other cars and their
relative velocity. As shown in Fig. 1, it can be very helpful to
the driver. By further analysis of the input image the system
can also detect if a blinker is activated.

The contribution of this paper is therefore twofold: first,
we propose a simple, effective and real-time technique to
track multiple vehicles at night-time, both in urban and rural
environments while realistically estimating their trajectories
and velocities with respect to the camera. Secondly, we pro-
vide the driver with a valuable interface that can help him
understand the situation by augmenting his perception of the
traffic conditions and triggering a warning when events that
require an increased level of attention are likely to happen.
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Fig. 1 Sample output of our real-time tracking system. On the left
tracked vehicles are marked and their distance in meters to the camera
is overlaid on them. On the right a radar-like view of the scene is drawn:
the bottom rectangle represents the car on which the camera is mounted
and other represent preceeding vehicles. The short line segment on them
indicates their relative velocity with respect to the camera

2 Related work

The standard approach for robust and accurate vehicle track-
ing in traffic consists in adopting sophisticated instruments
like radars or lidars, as for example in [2]. However, this has
the drawback of being very expensive, in contrast to standard
video cameras. For this reason, in recent years, several au-
thors have investigated the video-based vehicle detection and
tracking issue. Some researchers focused on analyzing traffic
and vehicles’ motion [3,4] or on detecting cars [5] using a
static camera. Others studied instead what kind of informa-
tion can be retrieved using vision algorithms on sequences
captured using a camera that is itself mounted on a vehicle.
Among these [6] used a video camera to detect, however not
tracking them in time, light sources which could correspond
to other vehicles, using the light source spectral distribution
for discriminating purposes. The work in [7] has an approach
similar to ours in the sense that uses taillights to detect vehi-
cles, but does not determine their location in space and to
run in real time needs a very low-resolution input and a
hybrid hardware/software implementation. It also fails in
case a blinker is activated. Similarly [8] detects oncoming
cars through their headlights but also this work only focuses
on determining if a car is present, and not where it is located.

On the other hand some works tackled the real-time track-
ing problem, which is the one we try to solve. Different tech-
niques have been proposed in the literature, for example using
a mixture of sonar and vision information [9] or using stereo
vision [10]. For tracking purposes [11] suggested to mount a
few artificial landmarks on the car to be followed, while [12]
used templates of a car’s back to perform the tracking.
In [13] a system for tracking cars on highways was proposed,

using edges and templates, which was able to run in real-
time thanks to an ad hoc system architecture. Finally [14]
describes a system used by an autonomous car to track and
follow a lead vehicle at night, which uses taillights to com-
pute an approximate trajectory. This method can follow only
one car and requires manual initialization of the location of
the lead vehicle. Our contribution has therefore been to unify
and improve the latter approaches to build a fully automatic
system able to track multiple cars, at night, both in highways
and city environments. Moreover, our system does not need
any special hardware but still runs in real time, which gives it
the ability to promptly trigger useful warnings for the driver.

3 Algorithm overview

Our framework is composed of two main parts. The first part,
described in Sect. 4, involves analyzing the input frames sep-
arately and outputting a list of detected vehicles, together
with a confidence value for each such candidate. This list is
obtained by first finding image patches most likely to corre-
spond to taillights and then coupling them by selecting among
all possible pairs those that satisfy certain criteria.

The second part takes those detected pairs as input, as
discussed in Sect. 5. It then generates a time-consistent recon-
struction of the scene by linking detections across consecu-
tive frames. This allows the system to find those that truly
correspond to actual vehicles and to reconstruct their trajec-
tories with respect to the camera. Finally such information
is used to generate the radar-like view of the scene and to
predict potential collisions.

4 Vehicle detection

4.1 Light coupling for vehicle detection

The vehicle detection algorithm consists in analyzing the
input images separately: In each frame we first detect all the
n light patches, secondly we generate the 1

2 n(n − 1) possi-
ble pairs of candidate taillights and finally we filter out those
which a priori cannot be a vehicle. In this section we will first
describe how the light pairs are filtered, to give a global view
of how vehicle detection is performed. We will then explain
in detail how we detect light patches in the input images and
characterize them.

4.1.1 Pair filtering

First of all, we need to define a few measures and thresh-
olds in order to choose the pairs of lights that are the most
likely to be the two main taillights of a vehicle. To do this, we
begin by introducing a set of conditions Ci to be necessarily
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fulfilled. Any pair of lights that fails at complying to at least
one of them will be immediately removed from the list of
potential vehicles. To avoid missing some vehicles, all the
parameters used to compute these conditions are set in a way
that minimizes the number of false negatives, thus including
also some outliers that will be filtered out in the successive
tracking phase.

The most important threshold to be applied is the need for
a pair to have both its lights on the same horizontal line. We
therefore begin by defining the first condition C1 as the fact
that the angle between them must be smaller than a very low
threshold ε as follows:

C1 : arctan

(
�μy

�μx

)
≤ ε,

where �μy is the vertical distance between two light patches
and �μx is their horizontal distance. We will explain in
Sect. 4.2.3 how to compute such quantities.

Secondly, we assume that the shape of both taillights
should be similar, assuming minimal variation in the lamp.
We therefore choose a reasonable threshold ζ which has been
computed after validation on the training sequences. Condi-
tion C2 can then be defined as

C2 : �shape ≤ ζ,

where �shape is computed as will be defined in Sect. 4.2.4.
As the area of lights theoretically should not vary too much

either, we define a third condition for removing pairs that have
a large difference between the areas of both lights:

C3 : �area ≤ area.

In Sect. 4.2.4 we will show how the area of a candidate
taillight is computed. The quantity �area defines the differ-
ence of area between two lights, while area is their average
area.

Finally condition C4 represents the fact that two candidate
taillights should have a similar appearance:

C4 : �type ≤ η.

The type of a candidate taillight is defined as described
in Sect. 4.2.5, where also a quantitative measure to compute
the difference �type between two light patches will be intro-
duced.

4.1.2 Dissimilarity indicators

We can now define four dissimilarity measures Di from the
left terms of the previous inequalities by normalizing them
with their right term, thus obtaining variables whose value
is between 0 and 1 if their corresponding condition Ci is
fulfilled:

D1 =
arctan

(
�μy
�μx

)
ε

, D2 = �shape

ζ

D3 = �area

area
, D4 = �type

η
.

The final dissimilarity measure D consists of the sum of
all Di :

D =
4∑

i=1

Di . (1)

Once the previous conditions and dissimilarity measures
are defined, the vehicle detection algorithm is as simple as
generating each possible pair of taillights and storing those
which satisfy all the necessary conditions Ci along with their
D value.

4.1.3 Detection results

As can be seen in Fig. 2, only four out of the about 150 pos-
sible pairs of the input frame satisfy all the conditions Ci and
have been kept, half of them being real vehicles. Moreover,
all individual detected vehicles are coherent without further
analysis of the scene.

4.2 Light detection and characterization

We will now explain in more detail how the candidate light
patches are obtained and how their features are computed,
to clarify the similarity measures introduced in the previous
section. Our approach to detecting candidate taillights goes
through several steps. First, a score function is computed at
every pixel in the input frame. This basic function applies a
threshold on the input pixels to retain only those which have
a high probability of pertaining to a car’s light, and outputs
a value related to this probability that can further be used
to weight the pixel’s contribution to the computation of the

Fig. 2 Detection results: top row input frame, center row taillight
detection, bottom row vehicle detection
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light’s descriptor. Then, we group the pixels together accord-
ing to the light they belong to. Finally, we extract from such
sets of pixels the features that allow the computation of the
conditions Ci presented in the previous section.

4.2.1 Score function

To make the computation fast we decided to select a color
space in which a simple thresholding is enough to discrimi-
nate the candidate lights, and HSV was our final choice after
some experiments. In fact, being the Value channel a repre-
sentation of the human perception of brightness, it already
gives a good representation where lights differ a lot from
other elements in the input scene. We therefore simply define
our score function as being the value of such channel if greater
than a certain threshold. In our experiments this threshold τ

was always fixed to a quarter of the biggest possible value:

score(v) =
{

v if v ≥ τ

∅ otherwise

}
. (2)

As we can see in Fig. 3, despite its simplicity, this score
function does quite a good job at detecting cars’ lights. Most
of the false positives have indeed very similar properties to
the true positives, and they do not seem to be removable on a
per pixel basis without further knowledge of the surrounding
region.

4.2.2 Pixels grouping

By using a thresholded score measure, in addition to save pro-
cessing time, we also most likely get disconnected groups of
pixels. However, assuming each connected set of pixels is a
light is a reasonable choice. Figure 3 illustrates well the pros
and cons of such an approach if we compare the taillights
of the closest car at the center of the frame and the sev-
eral headlights of the on-coming vehicles on the left. Indeed,
when applying this approach to the input image depicted in
the top row of Fig. 3, the taillights of the near vehicle will
be correctly detected. On the other hand, we will have up to

Fig. 3 Results—score: top row input frame, center row score function,
bottom row light detection

five different light sources detected as a single light on the
left side of the image. Our algorithm avoids this by using
first regrouping connected pixels together, and later splitting
them into two or more lights only if necessary, during the
tracking phase.

The algorithm we use for grouping pixels is an efficient
version of the Connected Component Labeling algorithm
[15]. We found this algorithm to be a fair tradeoff between
overgrouping and creation of small noise-only lights due to
artifacts in the border of the real lights. Noise appearing in
objects reflecting light, such as road signs, is also likely to
be grouped using such an approach, which helps preventing
parts of it from being detected as vehicles in a later phase.
Reducing the number of those small groups of pixels also
helps saving processing time as less pairs of lights will be
generated and tested in the vehicle detection phase.

4.2.3 Light location

We characterize a light by its location and shape, which we
formally define as((

μx

μy

)
,

(
σx

σy

))
,

where (μx , μy) denotes the centroid and (σx , σy) denotes the
spatial standard deviation of the group of pixels. These simple
descriptors of position and shape are sufficient to compute
most derived features that we will define in the following
subsection.

4.2.4 Light shape and area

We approximate the candidate lights as being rectangles cen-
tered at (μx , μy) whose horizontal and vertical dimension are
respectively 4σx and 4σy . Therefore we have a straightfor-
ward way of defining the area of a light as

area = 4σx · 4σy . (3)

Concurrently, the shape can be defined as the ratio between
both sides of the rectangle:

shape = σx

σy
. (4)

4.2.5 Appearance information and light type

To distinguish among headlights, taillights and blinkers we
have analyzed several training videos and built, for each
of the light types, a probability distribution on the HS
space, considering the fact that the V Channel has already
been used for thresholding. The task of such distributions
is to assign to every input pixel a likelihood of belong-
ing to each one of the light types. Figure 4 shows the
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Fig. 4 Likelihood distributions
for the three different light
types, based on the H and S
channels

three different likelihood functions ωT (h, s), where T =
{Headlight|Taillight|Blinker} represents the light type.

At this point we simply need to extend this calculation to
measure the likelihood of a given patch of pixels to be of one
type or another.

Extending pixel measurement to a light patch The best
choice for measuring the likelihood of a whole light patch
is theoretically to multiply the likelihoods of all the pixels
(or, to avoid rounding problems in the implementation, to
sum the logarithms of their likelihoods). However, this would
be based on the assumption of independence of such pixels,
which has not proved to be robust enough in our experiments.
We have therefore chosen to use a different method and aver-
age them instead, which is more robust. The likelihood for a
light patch L , given a light type T , is then defined as

p(L|T ) =
∑

(h,s)∈L ωT (h, s)

‖L‖ , (5)

where ‖L‖ indicates the number of pixels inside the light
patch L .

Bayes factors Finally we need to find a way of measuring the
confidence that a light is effectively of a detected type. We
chose to compare the probabilities relatively to each other
instead of looking at their absolute value, and we will use
Bayes factors [16] for that purpose. Bayes factors let us select
amongst several probability models the one that most likely
has generated a given set of events. The Bayes factor K is
defined as

K = p(L|T1)

p(L|T2)
, (6)

where T1 and T2 are the two hypotheses that we want to com-
pare, which in our case represent two different light types.

The logarithm of K is called weight of evidence and can
be measured in different units depending on the base of the
chosen logarithm. The logarithmic unit on base 10 is called
ban, which we will use for the following definition:

Weight of Evidence = 10 · log10(K ) [deciban] . (7)

Table 1 Interpretation of Bayes factors

Weight of evidence Strength of evidence

<0 Negative (supports T2)

0–5 Barely worth mentioning

5–10 Substantial

10–15 Strong

15–20 Very strong

>20 Decisive

The main advantage of Bayes factors amongst other statis-
tical hypothesis testing method resides in the interpretation of
the output value. Indeed, the use of a logarithmic unit such as
the deciban gives us results that are linear with respect to an
intuitive notion of confidence, and a scale of interpretation of
K in deciban is given in Table 1 as proposed by Jeffreys [16].

Light type We can therefore compute a simple and mean-
ingful measure of the confidence that a light pertains to its
most likely type by testing it against all the other types, and
then using the lowest of the weights of evidence. We can
now define the quantity �type between two light patches as
the difference of this measure of confidence if they are most
likely to belong to the same type, or as ∞ otherwise.

5 Vehicle tracking

5.1 The tracking algorithm

The next step towards a full understanding of the scene is then
to ensure consistency in time. We have therefore developed
an algorithm for tracking the detected vehicles from frame
to frame. For tracking to be robust, we define a criterion to
evaluate the confidence that the tracked objects are indeed
real vehicles.

The list of detected vehicles, obtained as described in
Sect. 4, is first merged with a list of tracked vehicles,
retained from the previous frame: vehicles of which a match
is found, meaning that they were already been tracked, have
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their confidence value updated through a weighted average
between the D value of their taillights and their previous
confidence value. Then newly detected vehicles, that do not
have a match in the list of tracked vehicles, are added. For
this we make some basic assumptions about plausible loca-
tions where vehicles may appear and optionally assign them
a start bonus or malus accordingly. This process is explained
in details in Sect. 5.1.2.

Finally, we sort the list of tracked vehicles according to
the vehicles’ confidence and loop through it again for detect-
ing physical incoherencies between them, as described in
Sect. 5.1.3.

As the confidence of the tracked vehicles is updated at
each iteration of this algorithm, we finish by removing those
whose confidence drops below a certain threshold.

5.1.1 Tracked vehicle lookup and special cases handling

Once a vehicle is detected in the current scene, its descriptor
[μx , μy, σx , σy, area, shape, type] is compared to those of
the vehicles that are stored in the tracking list, and the nearest
neighbor is selected for the match. If there are no neighbors
which are close enough, then a new entry is generated in the
list.

However, there are two special cases that need to be
detected and handled: merged lights from distinct vehicles
and lights merged with blinkers. The common point between
these two situations is that both provoke a sudden increase
of the light’s area, which can easily be detected during the
nearest neighbor matching phase.

In such case, we want to split a set of connected pixels into
two or more lights, and for this purpose we choose to use an
approach originally inspired from non-maxima suppression.
Lights are split by raising the score threshold τ of Sect. 4.2.1
until disconnected groups of pixels are obtained. If the size
of one of the latter is less than an adaptive threshold, defined
in Eq. 8, we remove its pixels and continue raising τ until
we get other disconnected groups. Finally, if we remove all
pixels without finding a satisfying partition, we do not split
the light. The stopping criterion is hence

‖Ln‖∑N
i=1 ‖Li‖

<
0.25

N
, (8)

where ‖L‖ defines the size in pixel of a light patch and N is
the number of groups.

If two or more lights are found by the splitting algorithm,
these are considered as separated and their dissimilarity mea-
sures to other light patches updated accordingly. Otherwise,
the increase of the light’s area is most probably caused by
a blinker. As the light could not be split, we need to find
another way of separating the main light and its blinker.

Therefore the center both of the light and the blinker is
obtained according to the evolution of the detected light’s

center between t − 1 and t . We first set the main light’s cen-
ter to its extrapolated value computed from the position and
velocity at t − 1, and the blinker’s center to the center of
the detected light. We can then compute the blinker’s raw
features and type. If the blinker’s detected type is blinker or
any other type with at most a substantial weight of evidence
compared to blinker, we assume that the detected light indeed
contained a blinker.

5.1.2 New detected vehicles

When a detected vehicle is not matched to any vehicle in the
tracking list, a new entry is generated. To increase robust-
ness to noise, newly detected vehicles which are not on the
horizon line or at the limit of the camera’s viewing angle
are given a penalty to overcome issues due to reflections on
the license plate of overtaking vehicles, or to the presence
of accessory pairs of headlights on their bottom part. More-
over, the main taillights of a vehicle being the most distant
ones, we inevitably start tracking those pairs of light sources
before the second main light appears in the camera’s angle
of view, thus giving them a non-negligible advantage.

At the same time, we also prevent most of the false pos-
itives to interfere in tracking, based on the assumption that
these are likely to appear and disappear in short intervals.
A vehicle has to be tracked for at least a certain amount
of time before being displayed in an output video or taken
into account in the collision prediction phase described in
Sect. 5.2.3. Persistent noise is also filtered out with the step
described in the next section.

5.1.3 Physical inconsistencies

To avoid a physically inconsistent reconstruction of the
scene, which can be produced by false positives, we de-
fine a box with the approximate proportions of a car around
the pairs of taillights and consider that no other vehicles are
allowed to have a light in that area. Then, correction is done
by comparing each vehicle to others that have a higher con-
fidence and decreasing the confidence of the former if one
or more of its taillights are in the other car’s box, or one or
more of the other’s lights are inside its box.

5.2 Motion analysis

5.2.1 Position estimation

A standard formula for computing the distance Z to an object
of known size simply consists of the focal length f multi-
plied by the ratio between the size L of the real object and
the size l of the object’s projection on the image plane. This
assumes that the road can be considered planar, which is true
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in most cases. Then

Z = f · L

l
= f · Wreal

Wsensor
, (9)

where Wreal i s the real width of the vehicle, which is assumed
to be constant for all vehicles, and Wsensor is the vehicle’s
width on the imaging sensor, which is derived from the cam-
era calibration and the vehicle’s width in pixels Wpixels, that
can be computed using the light patches location as

Wpixels =
(
μ

right
x + 2 · σ

right
x

)
−

(
μleft

x − 2 · σ left
x

)
. (10)

Knowing the depth Z of the plane in which the vehicle is sit-
uated, Eq. 11 can be derived from it. This defines the lateral
shift X between the camera’s center and the vehicle’s posi-
tion, assuming that other vehicles travel in a direction which
is approximately parallel to the camera’s optical axis:

X = Z · Ssensor

f
, (11)

where Ssensor is the horizontal distance on the imaging sensor
between the detected vehicle’s center and the image center
and can be computed with the help of camera calibration.

5.2.2 Data smoothing and interpolation

When using only Eqs. 9 and 11 for computing the vehicles’
position, the obtained results are correct but their evolution
in time is sometimes jittering. We therefore smooth them
through spline interpolation as follows: at each frame, vehi-
cles are pushed into a buffer storing one second of data (25
frames in our case), which is an appropriate time interval
with enough data to compute stable splines. When the vehi-
cle has been tracked for less than three frames (i.e. there is
not enough data to be interpolated), we use the raw values
(μx , μy) and (σx , σy) of its lights for the computations. After
three frames, these values are corrected using standard 2D
spline fitting and interpolation, since we are not interested in
the relative distance along the vertical Y -axis.

Finally, we apply exactly the same method for correcting
the distance, itself computed from the interpolated values of
μ and σ . It is important to notice that the smoothed values are
neither stored nor taken into account for the following inter-
polations. Only the raw values are stored in order to make
the trajectory reconstruction stick to the real data.

5.2.3 Collision prediction and warnings

As previously mentioned, we already have access to the
position, velocity and acceleration of vehicles from the spline
interpolations. We therefore have all the information we need
for making trajectory predictions and thus detecting potential
imminent collisions.

This can help preventing accidents by warning the driver.
If, within a given safety delay (e.g. 4 s), a vehicle’s extrapo-
lated trajectory will intersect, also considering a spatial safety
margin, the trajectory of the car on which the camera is
mounted, a warning is triggered.

Apart from predicting collisions, we also provide warn-
ings indicating active blinkers. This is achieved by setting
a blinker flag to vehicles at each frame in which either the
blinker correction algorithm had to be used, or the headlight’s
detected type is blinker. In order to prevent a flickering effect,
we make the warning last as long as the vehicle has a blinker
flag set in any of the ten last frames.

6 Results

We present here the results of our vehicle detection and track-
ing system. The screenshot in Fig. 1 shows the final output
of our system in a standard situation. Note that all vehicles
present in the input image are detected and their positions
and relative velocities estimated. Figure 5 depicts a video
grabbed when arriving in a city center. It confirms that the
system works well even in situations of medium artificial
lighting if the exposure of the camera is set appropriately. In
fact, the system works better when the camera’s exposure is
set to be very low, so that only strong lights are visible on the
sensor.

We also illustrate additional visualization features of the
radar-like view. As shown in Fig. 6, vehicles further than
50 m are displayed in the top band reserved for that pur-
pose. Their frontal distance, rounded to 10 m, is displayed
above them. Their lateral distance is represented, as for other
vehicles, by the lateral offset of the vehicle in the radar-like
frame. Figure 7 shows the representation of a car whose right
blinker is active, the small triangle representing the direction
the driver indicates by activating such blinker. Finally, vehi-
cles that trigger a warning due to a danger of collision in the
next few seconds are darker, as in Fig. 8.

Fig. 5 Results—in town, stopped at traffic lights
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Fig. 6 Results—far away vehicle

Fig. 7 Results—blinker activated

Fig. 8 Results—security warning

Since we believe that the performance of our algorithm
can be better judged in video sequences, we provide them as
supplementary material. As all the figures presented in this
section, they are composed of two parts. The left one repre-
sents the original video with the cars’ bounding boxes and
their distance in meters overlaid. The right part is a radar-like
view of the scene. The bottom box and the two lines represent
the front part of the car in which the camera is installed, and
the angle of view of the camera. The other rectangles repre-
sent the vehicles on the road, and the line segment starting at
their center is their velocity vector.

Finally we present some failure modes of our framework:
It intrinsically cannot track motorbikes or vehicles that have
a broken taillight. It also does not explicitly handle occlu-
sions, but we think that this is acceptable since the most
critical vehicles for the driver’s security are the closer, and
therefore occluding, ones. When the occluded vehicles will
re-appear they will automatically be re-detected and tracked.
Obviously it also cannot cope with bumps on the road and
large slopes. Finally, given our assumptions about the con-
stant width of vehicles, the distance estimates for big trucks
or very small cars will suffer from some inaccuracy. Apart
from such cases, we believe that our technique for vehicle
detection and tracking is generally able to provide an accu-
rate and realistic trajectory estimation, and is therefore a good
starting point for making night driving safer.

6.1 Quantitative evaluation

To better evaluate the accuracy of the distance estimation
algorithm, we designed a simple experiment to obtain some
quantitative results. Since doing it in the dynamical case
would require special and expensive equipment (i.e. a radar),
we focused our attention on the static case, which is anyway
a good approximation since all the input frames are analyzed
separately. We therefore took several pictures of three differ-
ent cars at three different distances each (10, 20 and 50 m).
We tested both the case in which the cars are straight in front
of the camera and shifted on one side as if they were on a
parallel lane. For each one of such cases we took 10 mea-
surements, whose averages are shown in Table 2. As can be
noticed there is a slight degradation of accuracy in the vehi-
cles when they are further away and on a parallel lane, but
we still believe such figures to represent acceptable distance
estimations.

Finally to demonstrate the robustness of the algorithm
to missed detections and false positives we manually
labeled several test video sequences, making a distinction
between the easier highway scenarios and the more chal-
lenging city center ones. Then we evaluated our algorithm
frame by frame, counting the number of correct detections,
missed detections and false positives. The results of these
experiments are summarized in Table 3. It can easily be seen
in the table that there is a very low ratio of false positives,
which in the highway scenario are totally absent. Moreover
these experiments show that even the ratio of false negatives

Table 2 Average errors of distance estimations in the static case

Car location 10 m 20 m 50 m

Straight in the front 6.16% 6.92% 7.81%

One lane shift 8.04% 8.39% 9.23%
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Table 3 Evaluation of the number of correct vehicle detections, missed
detection and false positives

Scenario Correct Missed False
detections detections positives

Highway 10,365 187 (1.77%) 0

City Center 3,370 200 (5.60%) 5

is low and, as expected, is better in the highway scenes than
in the city center ones, where the clutter and the traffic have
more influence.

6.2 Performance analysis

To provide a first evaluation of the system’s performance,
we computed the average number of frames per second it
can process on a Pentium D 1.8 GHz dual core. To evaluate
computation time only, we use a version of the program that
does not provide any output video. From all the 50 videos
we have processed, we removed the best (47 fps) and worst
(33 fps) results. The remaining processing times varied from
39 to 46 fps, with an average of 43 fps, which means that
the average processing time is 23 ms, on input frames of
resolution 720 × 576.

7 Conclusion

We presented a system to detect and track vehicles at night,
estimate their position and relative velocity and predict their
trajectory. Special care has been taken to make the system
robust, by minimizing the false negatives and filtering out the
false positives using temporal consistency. The framework
also provides information that can help enhancing security
by warning the driver in case of potentially dangerous situa-
tions. Finally the system runs in real-time on ordinary hard-
ware using as input a standard video camera.

Future work will involve enhancing the system’s perfor-
mances by increasing the quality of its input data. By choos-
ing an optimal camera model and finding its more appropriate
exposure, we could already increase the system’s accuracy
while reducing processing time. We are also considering a
hardware implementation of the algorithm to further speed
it up.
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