Annual pollen traps reveal the complexity of climatic control on pollen productivity in Europe and the Caucasus

van der Knaap, W. ; van Leeuwen, Jacqueline ; Svitavská-Svobodová, Helena ; Pidek, Irena ; Kvavadze, Eliso ; Chichinadze, Maia ; Giesecke, Thomas ; Kaszewski, Bogusław ; Oberli, Florencia ; Kalniņa, Laimdota ; Pardoe, Heather ; Tinner, Willy ; Ammann, Brigitta

In: Vegetation History and Archaeobotany, 2010, vol. 19, no. 4, p. 285-307

Add to personal list
    Annual PAR (pollen accumulation rates; grains cm−2year−1) were studied with modified Tauber traps situated in ten regions, in Poland (Roztocze), the Czech Republic (two regions in Krkonoše, two in Šumava), Switzerland (4 regions in the Alps), and Georgia (Lagodekhi). The time-series are 10-16years long, all ending in 2007. We calculated correlations between pollen data and climate. Pollen data are PAR summarized per region (4-7 traps selected per region) for each pollen type (9-14 per region) using log-transformed, detrended medians. Climate data are monthly temperature and precipitation measured at nearby stations, and their averages over all possible 2- to 6-month windows falling within the 20-month window ending with August, just prior to the yearly pollen-trap collection. Most PAR/climate relationships were found to differ both among pollen types and among regions, the latter probably due to differences among the study regions in the habitats of plant populations. Results shared by a number of regions can be summarized as follows. Summer warmth was found to enhance the following year's PAR of Picea, Pinus non-cembra, Larix and Fagus. Cool summers, in contrast, increase the PAR of Abies, Alnus viridis and Gramineae in the following year, while wet summers promote PAR of Quercus and Gramineae. Wetness and warmth in general were found to enhance PAR of Salix. Precipitation was found to be more important for PAR of Alnus glutinosa-type than temperature. Weather did not have an impact on the PAR of Gramineae, and possibly of Cyperaceae in the same year. Care is advised when extrapolating our results to PAR in pollen sequences, because there are large errors associated with PAR from sediments, due to the effects of taphonomy and sedimentation and high uncertainty in dating. In addition, in pollen sequences that have decadal to centennial rather than near-annual resolution, plant-interaction effects may easily out-weigh the weather signal