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Abstract What happens after the death of a marine tetrapod
in seawater? Palaeontologists and neontologists have
claimed that large lung-breathing marine tetrapods such as
ichthyosaurs had a lower density than seawater, implying
that their carcasses floated at the surface after death and sank
subsequently after leakage of putrefaction gases (or ‘‘carcass
explosions’’). Such explosions would thus account for the
skeletal disarticulation observed frequently in the fossil
record. We examined the taphonomy and sedimentary
environment of numerous ichthyosaur skeletons and
compared them to living marine tetrapods, principally
cetaceans, and measured abdominal pressures in human
carcasses. Our data and a review of the literature dem-
onstrate that carcasses sink and do not explode (and
spread skeletal elements). We argue that the normally

slightly negatively buoyant carcasses of ichthyosaurs
would have sunk to the sea floor and risen to the
surface only when they remained in shallow water
above a certain temperature and at a low scavenging
rate. Once surfaced, prolonged floating may have occurred
and a carcass have decomposed gradually. Our conclusions
are of significance to the understanding of the inclusion of
carcasses of lung-breathing vertebrates in marine nutri-
ent recycling. The postmortem fate has essential impli-
cations for the interpretation of vertebrate fossil preservation
(the existence of complete, disarticulated fossil skeletons is
not explained by previous hypotheses), palaeobathymetry, the
physiology of modern marine lung-breathing tetrapods and
their conservation, and the recovery of human bodies from
seawater.

This article is a contribution to the special issue "Taphonomic processes in
terrestrial and marine environments"
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Introduction

Large vertebrate fossils such as ichthyosaurs are spectacular
documents of earth history, but uniformitarian studies of the
fate of large vertebrate carcasses in shallow marine environ-
ments before fossilization are rare (Britton and Morton
1994; Dahlgren et al. 2006; Glover et al. 2005; Liebig et
al. 2007; Schäfer 1972; Smith 2007a). Recent studies have
mainly dealt with decomposition of vertebrate carcasses in
the deep sea (e.g., Glover et al. 2008; Kemp et al. 2006;
King et al. 2006; Smith and Baco 2003). Because of the
usual lack of food at the deep-sea floor, the scavenging rate on
carcasses can be much higher than in shallow marine habitats
(Bozzano and Sardà 2002; Janßen et al. 2000; Kemp et al.
2006). Consequently, direct comparisons between deep and
shallow marine habitats are of only limited value (e.g.,
Fujiwara et al. 2007; Martill et al. 1995; Smith 2007a), since
physical, chemical, and microbial decomposition are signifi-
cantly more important than scavenging in the shallow-water
(Anderson and Hobischak 2004; Kahana et al. 1999;
Mosebach 1952; Petrik et al. 2004; Smith and Baco 2003).

We thus examined peri- and postmortem processes
concerning carcasses of lung-breathing vertebrates in a shal-
low marine regime by applying palaeontological, sedimen-
tological, forensic, anthropological, archaeological,
veterinary, marine biological, and trophological methods.
This integrative approach enabled us to falsify several pre-
viously applied hypotheses to explain taphonomic phenome-
na. It is our aim to portray the processes involved in the
stratinomy of lung-breathing vertebrates, to falsify some old
hypotheses, and to discuss possible applications.

Ichthyosaurs represent a diverse group of extinct marine
reptiles which were almost cosmopolitan during most of the
Mesozoic [245–90 million years ago (Ma); Gradstein et al.
2004; McGowan and Motani 2003]. Although these fossil
lung-breathing tetrapods exhibit a whole set of morphological
characters which evolved convergently to the Odontoceti
(cetaceans), it has been assumed that ichthyosaur bodies had
a lower density than seawater (e.g., McGowan 1992;
McGowan and Motani 2003; Taylor 1987, 2001). The
prevailing interpretation implies that ichthyosaurs drifted
after death for a while at the sea surface and the preservation
quality decreased with the floating duration (e.g., Fröbisch et
al. 2006; Long et al. 2006; Martill 1986, 1993). The carcasses
sank finally to the sea-floor only after leakage of the putrefac-
tion gas, often by bursting (e.g., Cruickshank and Fordyce
2002; Kuhn-Schnyder 1974; Long et al. 2006; Martill 1993;
commonly called “carcass explosion”).

Ichthyosaurs were probably able to dive to depths ex-
ceeding 500 m (Dollo 1907; Humphries and Ruxton 2002;
McGowan and Motani 2003). This inference can be drawn
from the absence of ossified tracheas in fossil ichthyosaurs,
which can otherwise be preserved in great detail in marine
crocodiles of the same age and localities as the ichthyosaur
finds (e.g., Westphal 1962). A more or less ossified trachea
limits diving depth (Mason and Macdonald 1986; Tarasoff
and Kooyman 1973), and the tracheas of Recent, deep-diving
lung-breathers are cartilaginous (Kooyman 1989). Such carti-
laginous tracheas are usually not preserved in the fossil record.

Exploding the myth: can carcasses explode?

“Carcass explosion” was first discussed among palaeontolo-
gists and geologists 32 years ago (Keller 1976), when study-
ing the Early Jurassic Posidonienschiefer Formation (Bloos et
al. 2005; ca. 183–181 Ma) of Germany. These black shales
were deposited at depths between 50–150m (Röhl et al. 2001)
and contain exceptionally well-preserved remains of ichthyo-
saurs and other marine tetrapods (Hauff 1921; Hofmann 1958;
Martill 1993). The excellent fossil preservation within finely
laminated, unbioturbated black shales was explained with the
widely accepted classic “stagnant basin model” (Keller 1976;
Pompeckj 1901). The ichthyosaur skeletons are usually
complete but disarticulated to varying degrees (Hauff
1921; Hofmann 1958). Therefore, “carcass explosion”
appeared to be a reasonable explanation. It was assumed that
carcasses which lie on the sea-floor might have exploded or
internal organs and bones erupted, and that in so doing, bones
as well as fetuses were ejected and ribs were fractured (Fig. 1;
e.g., Böttcher 1989; Hofmann 1958; Keller 1976; Martill
1993). In spite of the lack of (direct) evidence for these
processes, these ideas have never been questioned.

These classic models rely on the observation that beached
Cetacean carcasses can get inflated impressively by putre-
faction gases within hours (0bloated stage; Malakoff 2001;
Schäfer 1972; Smith and Baco 2003; Stede et al. 1996;
Tønnessen and Johnsen 1982). This process is mainly initi-
ated by the activity of intestinal bacteria (0intrinsic flora;
Daldrup and Huckenbeck 1984; Fiedler and Graw 2003;
Mallach and Schmidt 1980; Robinson et al. 1953; Stevens
and Hume 1998). Postmortem bacterial activity is highly
variable because it depends on numerous factors such as the
type of bacteria involved, the cause of death, injuries, and
composition and amount of ingested food, as well as
environmental conditions (Bajanowski et al. 1998; Daldrup
and Huckenbeck 1984; Keil et al. 1980; Mallach and Schmidt
1980; Pedal et al. 1987; Pierucci and Gherson 1968;
Rodriguez 1997; Sakata et al. 1980). Putrefaction rates decel-
erate with decreasing (water) temperature (Bonhotal et al.
2006; Dickson et al. 2011; Haberda 1895; Padosch et al.
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2005; Petrik et al. 2004; Robinson et al. 1953). Decay by
intestinal bacteria (e.g., Clostridia, Escherichia) all but halts
below 4°C, while enzymes (0autolysis) remain active until
−5°C (Jauniaux et al. 1998; Keil et al. 1980; Lochner et al.
1980; Robinson et al. 1953; Sharp andMarsh 1953; Vass et al.
2002; compare Rollo et al. 2007). In aquatic environments,
putrefaction and autolysis progresses most rapidly at low
hydrostatic pressures within an intact, large, cylindrical and
well-insulated carcass (e.g., a whale; Hood et al. 2003; Innes
1986; McLellan et al. 1995; Robinson et al. 1953; Worthy and
Edwards 1990), independent of oxygen availability. When an
inflated carcass experiences mechanical stress such as
inappropriate transport or dissection, body liquids and
internal organs may be ejected from the carcass (Fig. 2;
Anonymous 2004; Stede 1997; Tigress Productions 2008;
Tønnessen and Johnsen 1982). There is no evidence for
skeletal elements being included in such “eruptions”.

During the Toarcian, the conditions in the European epeiric
sea were favourable for putrefaction and autolytical processes,

because the sea surface temperature has been estimated
to have varied between 25 and 30°C (Röhl et al. 2001).

In spite of the adaptations to the marine habitat, it is still
probable that sometime after death seawater containing anaer-
obic or aerobic bacteria intruded both digestive and respiratory
tracts of ichthyosaurs because of the hydrostatic pressure
(0exogenous bacteria; e.g., Eisele 1969; Hänggi and Reisdorf
2007; Kakizaki et al. 2008; Siebert et al. 2001; Sims et al.
1983). Onset of putrefaction processes due to exogenous
bacteria is thus conceivable (as in human carcasses;
Davis 1986; Dickson et al. 2011; Lunetta et al. 2002;
Mallach and Schmidt 1980; Padosch et al. 2005; Tomita
1975, 1976). The putrefaction gases produced by the
intrinsic bacteria but probably also by exogenous bacteria
comprise CO2, H2, N2, to a lesser amount CH4, H2S, and even
O2 (Keil et al. 1980; Mallach and Schmidt 1980; see also
Ettwig et al. 2010). To obtain data for the pressure that builds
up in carcasses in different stages of bloating, intra-abdominal
pressures were measured in 100 human corpses at the Institut

Fig. 1 Ichthyosaur skeleton
with approximately 10
embryos, Holzmaden
(Germany), Posidonienschiefer
Formation (Stenopterygius,
specimen SMNS 50007;
drawing modified after Böttcher
1990; image by courtesy of
Staatliches Museum für
Naturkunde Stuttgart). In
contrast to the skeleton of the
mother, most of the embryonal
skeletons are largely
disarticulated. Many embryonal
bones are scattered far beyond
the body limits of the mother.
Böttcher (1990) explained this
arrangement by a displacement
of already disarticulated
embryos during the expulsion
of putrefaction gases through
the ruptured body wall of the
mother. Osborn (1905)
explained such phenomena
by currents
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für Forensische Medizin Frankfurt am Main in 2004 (Bux et
al. 2004). The manometer (C9557 Pressure Meter; Comark,
Hertfordshire, UK) was introduced into the abdominal cavity

in the vicinity of the umbilicus by means of an anasarca trocar.
The intraabdominal pressures did not exceed 0.035 bar
(Fig. 3). This agrees with the pressures which were measured

Fig. 2 Improper sectioning of a stranded whale carcass bloated by putrefaction gases at the beach of Nymindegab/ Denmark; body liquids and
parts of the intestinal tract erupt violently from the body cavity (Krarup 1990; image by courtesy of TV/Midt-Vest)
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Fig. 3 Relationship between
effective intra-abdominal
pressures and bloated stages in
100 human corpses (measured
between January 1 and August
30, 2004). a Intraabdominal
pressures at no (light grey bars)
or mild (dark grey bars) visible
inflation. Intra-abdominal
pressures lower than atmo-
spheric pressures are due to
postmortem cooling of the
corpses. b Intraabdominal
pressures at moderate (light
grey bars) or strong (dark grey
bars) visible inflation. The
range of intraabdominal
pressures due to bloating by
putrefaction gas is comparable
to the pressures used in
laparoscopic surgery
(Abu-Rafea et al. 2006)
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by Fallani (1961) in human dead bodies. In goat carcasses,
however, pressures up to 0.079 bar have been recorded (Li et al.
2003). These pressure values correspond to submersion depth
inwater of 0.35 and 0.79m. In the case of ichthyosaur carcasses
that sank to the bottom of the Toarcian epeiric sea in Europe,
potential hydrostatic pressures corresponding to a water depth
of 50–150 mwould reach 5–15 bar (Boyle’s law; e.g., Haglund
and Sorg 2002; Toklu et al. 2006; Tomita 1975). It is highly
unlikely that intraabdominal pressures in the most common
European ichthyosaur Stenopterygius quadriscissus (which
usually attained 1.5–2.9 m in length; e.g., von Huene 1922;
McGowan andMotani 2003) exceeded these values, and there-
fore, “carcass explosion” was impossible in greater water
depths, close to or at the water surface. This appears even more
unlikely because ichthyosaur fetuses are commonly found di-
rectly adjacent to the carcass of their mother in calculated water
depths of 50–150 m (Fig. 1; Böttcher 1990; Hofmann 1958;
Röhl et al. 2001), where such explosions are physically
impossible.

Subsequently, we present two models explaining disarticu-
lation of ichthyosaur skeletons of the Posidonienschiefer For-
mation. The burial depth of the carcass (0–100% covered by
sediment) plays an important role. This is especially true since
the palaeoenvironment of the Posidonienschiefer Formation
was neither entirely nor continuously anoxic (e.g., Kauffman
1981; Röhl et al. 2001; Röhl and Schmid-Röhl 2005).

Effects of sediment compaction and currents

Even in an oxygen-deficient environment, preservation
potential of carcasses of marine tetrapods depends on
burial depth (Hofmann 1958; Martill 1993). Organic-rich
mudrocks such as the Early Jurassic Posidonienschiefer
Formation exhibit a high initial porosity. During some
time intervals, the topmost decimetres of the sediment
were probably nearly fluid (0“soupy substrate”; Hofmann
1958; Martill 1993; Röhl et al. 2001). The physical properties
of such “soupy substrates” enabled ichthyosaur carcasses to
sink into the sediment partially or entirely [e.g., Hofmann
1958; Martill 1993; Schimmelmann et al. 1994; Smith and
Wuttke (2012, this issue), however, critically evaluate this
taphonomic scenario of embedding of ichthyosaur carcasses].
Afterwards, the sediment was compacted by over 90% due to
burial, causing intense brittle and “plastic” deformation of the
skeleton parts (Einsele and Mosebach 1955; Hofmann 1958;
Martill 1993) unless embedded in early diagenetic concretions
(Keller 1992; Wetzel and Reisdorf 2007). The most intense
deformation during compaction occurred in the thorax, caus-
ing the ribs to depart from their original arrangement and, as
documented in some ichthyosaur fossils, from phosphatized
or pyritized soft part remains (e.g., the stomach) near the
abdominal and cloacal regions (Hofmann 1958; Keller

1976). These phenomena resemble injuries of an originally
intact body characteristic of “crush/traumatic asphyxia” (e.g.,
Byard et al. 2006; Machel 1996), and this type of preservation
contradicts explosion.

Organic-rich, muddy sediments like the Posidonienschiefer
Formation are stated to accumulate mainly under prevailing
tranquil conditions (e.g., Seilacher 1982). Evidence for weak
to moderate currents, however, can be encountered in nearly
all levels of the Posidonienschiefer Formation, indicating
fluctuations in the depositional environment (Kauffman
1981; Röhl and Schmid-Röhl 2005; Schieber et al. 2007).
Indeed, recent experiments show that such mud can be depos-
ited from currents moving at 0.1–0.26 m/s (Schieber et al.
2007). The erosion of such cohesive sediments requires high
current velocities, depending on the degree of consoli-
dation because of the electrostatic forces between particles
(Sundborg 1956). Bacteria–particle interactions at the sedi-
ment surface might also increase the resistance against erosion
(Black et al. 2003; Röhl et al. 2001; Widdel 1988). The low
net sedimentation rate of the Posidonienschiefer Formation of
4 mm/1,000 years (calculated for compacted sediments; Röhl
et al. 2001) and the high compressibility of such sediments
might have favored dewatering of an initially “soupy sub-
strate” (e.g., Bernhard et al. 2003; Wetzel 1990). Flume-
experiments with human and animal bones (density of dry
and wet bones is usually below 2.65; Blob 1997; de Ricqlès
and de Buffrénil 2001; Lam et al. 2003) revealed that bones of
the thorax and the appendages begin to move at current
velocities as low as 0.2–0.4 m/s (e.g., Blob 1997; Boaz and
Behrensmeyer 1976; Coard 1999; Fernández-Jalvo and
Andrews 2003). Such currents have been postulated for the
shallow marine Early Toarcian epeiric sea (e.g., Hofmann
1958; Kauffman 1981; Martill 1993; Röhl and Schmid-Röhl
2005). The histology of ichthyosaur bones displays some
convergences to Recent cetacean bones, which possess a
lower density than land tetrapods (de Buffrénil et al. 1986;
de Ricqlès and de Buffrénil 2001; Maas 2002). A further
density decrease might have been caused by decay, microbial
activity, and bone diagenesis (Arnaud et al. 1980; Fujiwara et
al. 2007; Glover et al. 2005; Kiel 2008; Meyer 1991; Smith
and Baco 2003). Thus, there was a real potential for transport
of ichthyosaur bones by water currents.

All these factors make it highly probable that currents
moved bones on the seafloor without eroding mud. This
deduction is supported by the fact that 90% of all ichthyosaur
specimens are disarticulated (Hauff 1921). The arrangement of
ichthyosaur skeletal remains documents that the carcass was
not or incompletely embedded in sediment for a considerable
time (physical properties of the topmost decimetres of the sea-
bottom prevented carcasses from being embedded entirely).
Under these conditions, soft-tissues initially decomposed,
causing the loss of connectivity of the skeletal elements, and
the carcass eventually collapsed gravitationally (Hofmann
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1958; Martill 1993; Reisdorf and Wuttke 2012, this issue).
Thoracic elements were most strongly affected by currents
because they were usually exposed furthest above the ground
and experienced highest current velocities. It is also conceivable
that larger Metazoan scavengers played an additional role in the
disarticulation and transport of skeletal elements (e.g.,
Kauffman 1981; Martill 1993; von Huene 1922), but the
processes discussed above are of greater importance in a
predominantly oxygen-deficient environment.

Sink or float?

The density of the ichthyosaur body and other aquatic lung-
breathing tetrapods plays a crucial role in the potential to
sink or float. Today, no Recent reptiles are known which can
be considered as closely related to ichthyosaurs, especially
with respect to anatomical and physiological characteristics.
Therefore, Recent (facultatively) aquatic reptiles are only of
limited use for such comparisons (e.g., Wade 1984). By
contrast, Recent cetaceans (e.g., de Ricqlès and de Buffrénil
2001; Ridgway 2002; Sekiguchi and Kohshima 2003;
Staunton 2005; Taylor 2000; Williams et al. 2000) may
serve as a morphological and ecological model to recon-
struct the postmortem fate of ichthyosaurs. With the excep-
tion of the species Eubalaena glacialis and Physeter
macrocephalus, cetaceans have a density slightly higher
than that of seawater (e.g., Butterworth 2005; Schäfer
1972; Shevill et al. 1967; Smith 2007a, b; Tønnessen and
Johnsen 1982). E. glacialis and P. macrocephalus are rela-
tively slow-swimming whales and the only species which
usually does not sink after having been shot by whalers
(Braham and Rice 1984; Gosho et al. 1984; Nowacek et
al. 2001). [Jurassic Ichthyosaurs are usually considered to
have been the fastest sustained swimmers of the Mesozoic
seas (e.g., Lingham-Soliar and Wesley-Smith 2008) and
thus seem also likely to have been negatively buoyant.]
The low density of the bodies of these species, the so-
called “right whales”, is caused by an extraordinarily
high content of oil and fat (e.g., Glover et al. 2008;
Gosho et al. 1984; Kemp et al. 2006; Slijper 1962).
Other “right whales” (e.g. Balaenoptera musculus) may float
after death only when caught by “Electrical Whaling”;
paralyzed thoracic musculature apparently accounts for this
phenomenon (Øen 1983).

Odontoceti might also become positively buoyant when
the lungs are almost completely or entirely filled by air (e.g.,
Ridgway et al. 1969; Slijper 1962). Among living and
etiologically unconditioned cetaceans, the lung volume
never gets used exhaustively (Wartzok 2002). The respiration
physiology of mammals, however, is significantly different
from that of Recent reptiles; most of the latter exhale actively
and inhale passively (Carrier and Farmer 2000; Perry 1983).

This line of reasoning suggests that even if inhalation in
ichthyosaurs was passive as in Recent reptiles, they
would still have been negatively buoyant (e.g., Hogler
1992; Wade 1984) and sunk immediately after death,
unless the lungs were filled with air to an abnormal
degree (e.g., pulmonary emphysema; Siebert et al. 2001;
Slijper 1962; Ridgway et al. 1969; Fig. 4).

Incipient decomposition at the seafloor causes a reduc-
tion in carcass density. How far gaseous putrefaction prod-
ucts develop in the carcass, and whether they are dissolved
or bound within the soft-tissues and body liquids, depends
mainly on the local hydrostatic pressure and temperature
(Allison et al. 1991; Dickson et al. 2011; Hofmann 1958;
Lucas et al. 2002; McLellan et al. 1995; Smith and Baco
2003; Tomita 1975, 1976; Wasmund 1935; Zangerl and
Richardson 1963). All main components of the putrefaction
gas (N2, H2, O2; possibly also CH4) except for the CO2 share a
low solubility at temperatures below 4°C and moderate pres-
sures (O2>N2>CH4>H2; Ashcroft 2002: 59; Mallach and
Schmidt 1980; Ramsey 1962; Shafer and Zare 1991; Weiss
and Price 1989) and tend to increase buoyancy by forming
bubbles (Dumser and Türkay 2008; Mueller 1953; Tomita
1975). It depends on the integrity of the skin and the digestive
tract whether these gases can accumulate inside the carcass
(beneath the skin and in the body cavities; Anderson and
Hobischak 2004; Dumser and Türkay 2008; Haglund 1993;
Schäfer 1972; Smith and Baco 2003; Thali et al. 2003).

In shallow water and at temperatures above 4°C, it is very
likely that putrefaction gases would cause carcasses to sur-
face and drift (presuming that they are not covered by
sediment; Haberda 1895; Hofmann 1958; Moreno et al.
1992; Petrik et al. 2004; Sorg et al. 1997; Tomita 1975,
1976; Wasmund 1935). Drifting at the water surface, some-
times over months and long distances, carcasses decompose
gradually (Giertsen and Morild 1989; Haglund 1993; Schäfer
1972; Smith 2007a; Tomita 1975, 1976; Wild 1978).

Empirical data on the hydrostatic pressure needed to keep
a carcass at the sediment surface are available for cetaceans,
various terrestrial tetrapods such as humans, mice, and
domestic pigs, and different freshwater fish (e.g., Allison et al.
1991; Anderson and Hobischak 2004; Berg 2004; Elder and
Smith 1988; Esperante et al. 2008; Moreno et al. 1992; Smith
2007a; Tomita 1975, 1976; Tønnessen and Johnsen 1982).
These studies reveal that higher hydrostatic pressures
are required to suppress the rise of carcasses of larger
dimensions compared to smaller carcasses (e.g., Barton
and Wilson 2005; Tomita 1975, 1976; see also Kemp
2001). Apparently, taxonomy does not play a major role
in this respect, but physics does (Tomita 1975).

In marine environments, Recent cetaceans and human
carcasses may rise from water depths up to 50 m, but never
from below 100 m (Tomita 1975, 1976; Tønnessen and
Johnsen 1982). The above-mentioned water depth estimate
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of the “Posidonienschiefer Formation sea” in southern
Germany of 50–150 m (Röhl et al. 2001) matches the
physical requirements to keep an ichthyosaur carcass on
the seafloor. In the case of nearly complete ichthyosaur
skeletons, it is very likely that the carcass was entombed close
to the place of death because of the short settling time.

Skeleton preservation as a sea-level proxy?

The taphonomy of lung-breathing tetrapods depends on water
depth and, thus, can be used as palaeobathymetrical proxy (cf.
Allison et al. 1991). Early Jurassic ichthyosaur remains

display recurring taphonomic patterns which can be grouped
into three preservation categories: (1) articulated skeletons, (2)
disarticulated skeletons, and (3) isolated bones (e.g., Martill
1986, 1993; isolated body parts of predated animals which
sank towards the seafloor are not considered in the subsequent
discussion; e.g., Böttcher 1989; Martill 1993; Taylor 2001).

Articulated skeletons are equally abundant and well-
documented throughout the Early Toarcian; for instance,
>3000 more or less articulated specimens are known just
from the Holzmaden area in Germany (Martill 1993;
McGowan and Motani 2003). These articulated skele-
tons are not included in this analysis because these
carcasses were apparently largely or completely embedded

w
ea

ke
ne

d 
co

ns
tit

ut
io

n
w

ea
ke

ne
d 

co
ns

tit
ut

io
n

??
??

alive dead
A

st
ab

le
 c

on
st

itu
tio

n
st

ab
le

 c
on

st
itu

tio
n

balanced host-
parasite-ratio

seeking shallow
water K

ne
ga

tiv
e 

bu
oy

an
cy

pr
ef

er
re

d 
re

si
de

nc
e

at
 th

e 
w

at
er

 s
ur

fa
ce

pa
ra

si
te

s
vi

ru
se

s

ba
ct

er
ia

fu
ng

i

pa
ra

si
te

s 

hi
gh

 d
eg

re
e

of
 in

ha
la

tio
n

of
 th

e 
lu

ng
s

Ichthyosaurs

as well as whales (also applies to marine turtles, seals etc. with some 
restriction)B

adaptation of "naked" lung-breathing
marine tetrapods to the aquatic habitat:
deep diving and active swimming. density higher than sea-water

"small" lungs

healthy

beaching
K

(B

se
ve

re
 in

ju
rie

s
I

gas in lungs and 
subcutaneous tissue

indisposition of respirative and 
digestive tracts, liver and circu-
latory system

liquid in lungs

death by disease
J

atypical drowning
H

sudden death
C, D

atypical drowning
D, F, G, H

typical drowning
E, D, F

sudden death
C, D

w
ea

ke
ne

d 
co

ns
tit

ut
io

n
w

ea
ke

ne
d 

co
ns

tit
ut

io
n

w
ea

ke
ne

d 
co

ns
tit

ut
io

n

st
ab

le
 c

on
st

itu
tio

n

J

Death by poisoning or starvation or natural 
 death (which occurs rarely in nature) is not
 considered.

Evidenced for Phocine Distemper Virus
 (PDV) and Morbillivirus.

"Right whales" are not considered.

No data available.

Italics: exclusively anthropogenic input.

Injuries by conspecifics, predators, accidents 
 etc. (subsequent indisposition not considered).

) Recent observations, probably transfer-
    able on ichthyosaurs and other lung-
    breathing marine tetrapods.

) Possibility.

Applies only for human whaling.

Applies only for fishery (drift nets).

Due to predation (except by humans).

Due to mating.

Accident: Trapped in gillnet, drowning under
 closed ice-sheet (possibly applied for Australian
 Cretaceous ichthyosaurs).

No further consideration of etiopathology and 
 possible death causes.

Legend

Except for drowning of pups after birth complica-
 tions, e.g., after incomplete accouchement of pups 
 which were born head-first (among ichthyosaurs, 
 breech birth was the normal case).

A)

B)

C)

D)

E)

F)

G)

H)

I)

J)

K)

?)

po
si

tiv
e 

bu
oy

an
cy

EE

sea bottomsea bottomsea bottom

JJ

Fig. 4 Peri- and postmortem behavior of marine tetrapods without buoyancy-increasing body fat, oil, hair or feathers in the pelagic realm (modified
after Hänggi and Reisdorf 2007; references in Reisdorf 2007)

Palaeobio Palaeoenv (2012) 92:67–81 73



in the sediment immediately after grounding while sinking
into the “soupy substrate” (Hofmann 1958; Martill 1993; but
see Smith and Wuttke 2012, this issue). Adhesion and sedi-
ment weight prevented the carcass from surfacing even
when putrefaction gases developed sufficiently to lift the
carcass (Hofmann 1958; see also Piccard 1961). Additionally,
they were protected against Metazoan scavengers (Hofmann
1958) or bottom currents, i.e. the carcasses could not be re-
aligned after their deposition.

Disarticulated skeletons are mainly found in sediments
deposited during times of eustatic sea-level rise (0transgressive
cycles; e.g., de Graciansky et al. 1998; Hallam 2001) under
oxygen-depleted conditions (Hauff 1921; Röhl et al. 2001).
Such skeletons were probably not or not completely covered
by sediment for a prolonged timespan or they were secondarily
exhumed (e.g., Hofmann 1958; Kauffman 1981; Martill 1993).
Apparently, rising of the carcasses was prevented by hydro-
static pressure and/or partial sediment cover (Allison et al.
1991; Hofmann 1958; Tomita 1975, 1976). Speculatively, an
overgrowth by microbial mats or other organisms might have

had the potential to prevent the carcass from refloatation to the
water surface. However, the remarkable completeness of iso-
lated parts of a skeleton found in spatial proximity rules out
strong bottom currents.

Isolated bones, scarcity or absence of ichthyosaur frag-
ments result from times of eustatic sea-level fall (0regressive
cycles; e.g., de Graciansky et al. 1998; Hallam 2001). Many
carcasses surfaced because of the low hydrostatic pressure
which allowed putrefaction gases to develop. These skeletons
disintegrated while floating (e.g., Hofmann 1958; Martill
1986, 1993). Such isolated bones possibly underwent a further
maceration up to complete disintegration.

The “Ichthyosaur Corpse Curve” (ICC; Fig. 5) summarizes
the frequency of different modes of ichthyosaur preservation
in Central Europe during the Lower Jurassic. The poor corre-
lation of the ichthyosaur record of the Hettangian with the sea-
level curve of Hallam (1988, 2001) may be explained by the
generally still low sea-level of this interval. The “Ichthyosaur
Corpse Curves” are based on data from England, Germany,
and Switzerland for which a reasonable amount of well-
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rich occurrences of ichthyosaurs (literature data and estimates; see
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ichthyosaur remains are scarce, and preservation of single bones pre-
vails (see Table 1 and main text; see also Hesselbo and Palmer 1992)
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documented ichthyosaur remains over a longer time interval is
available. These occurrences are plotted on a logarithmic scale
to give an impression of the three abundance categories.
Absence of fossils was set to one occurrence to make them
displayable on the logarithmic scale. Due to the unsatisfying
documentation of ichthyosaur finds especially in the
nineteenth century, partially caused by a focus on articulated
skeletons, we had to guess the number of occurrences in
several cases, especially since we chose a temporal resolution
on ammonite-zone level. The numbers of disarticulated skel-
etons (DS) and isolated bones (IB) of the “Ichthyosaur Corpse
Curves” represent an estimate of the minimum unless precise
numbers from the literature or collections were available. In
some cases, we estimated some numbers of IB based on the
usual ratio of DS to IB of 1:10 to 1:100. Accordingly, the
amount of DS in British fossillagerstätten is based on the
number of occurrences of articulated skeletons. The
abundance of disarticulated ichthyosaur-remains as shown
by the DS:IB ratio thus reflects the fossil record in the Lower
Jurassic ammonite zones of Great Britain, southern Germany
and northern Switzerland (Table 1).

Stratigraphical resolution is in the range of a few million
years spanning 3rd order cycles of Haq et al. (1988) or 2nd
order cycles of Hallam (e.g., de Graciansky et al. 1998;
Hallam 2001). It appears that ichthyosaur skeletal remains
are most abundant in sediments of transgressive cycles and
rare in sediments of regressive cycles. Cycle T5 of Haq et al.
(e.g., de Graciansky et al. 1998) is poor in ichthyosaur
remains, but, by contrast, this interval corresponds to a phase
of falling sealevel of Hallam (e.g., Hallam 2001; Fig. 5).

Conclusions and significance

1. According to our measurements and deductions, it is
impossible that skeletons of vertebrates become
disarticulated with their bones being scattered over a
certain area exclusively by the release of putrefaction
gases under hydrostatic or atmospheric pressures.

2. There is ample evidence that ichthyosaurs and most
other lung-breathing marine tetrapods of compara-
ble mode of life were negatively buoyant. This is

Table 1 These data on the occurrences and abundances of preservational
modes (disarticulated skeletonsDS; and isolated bones IB) were obtained
from museum collection counts (Paläontologische Forschungs-, Lehr-
und Schausammlung am Institut für Geowissenschaften Universität
Tübingen, Sammlung am Staatlichen Museum für Naturkunde Stuttgart)
and from the literature (Altmann 1965; Benton and Taylor 1984; Benton

and Spencer 1995; Berckhemer 1938; Dean et al. 1961; Delair 1960;
Fraas 1891; Hauff 1921; von Huene 1922, 1931; Knitter and Ohmert
1983; Maisch 1999; Maisch and Reisdorf 2006; Maisch et al. 2008;
Martin et al. 1986; McGowan 1978; McGowan and Motani 2003; Meyer
and Furrer 1995; Pratje 1922; Quenstedt 1858; Reiff 1935; Reisdorf et al.
2011; Schieber 1936); for a comment of the quality of the data, see text

Ammonite zonation sensu
Dean et al. (1961)

Stages Great Britain Germany Switzerland Sum DS Sum IB

DS IB DS IB DS IB

levesquei Toarcian 0 0 0 1 0 0 0 1

thouarsense 0 1 0 0 0 0 0 1

variabilis 0 0 0 4 0 0 0 4

bifrons 61 610 18 180 0 0 79 790

falcifer 6 60 1,295 130 2 11 1,303 201

tenuicostatum 0 0 6 60 0 0 6 60

spinatum Pliensbachian 0 0 0 1 0 0 0 1

margaritatus 0 0 0 10 0 0 0 10

davoei 0 0 0 3 0 0 0 3

ibex 0 0 1 4 0 0 1 4

jamesoni 0 1 0 0 0 1 0 2

raricostatum Sinemurian 0 1 0 0 0 0 0 1

oxynotum 0 0 0 0 0 0 0 0

obtusum 1 6 0 0 0 0 1 6

turneri 0 1 3 6 0 0 3 7

semicostatum 25 250 1 6 1 11 27 267

25 250 1 35 0 0 26 285bucklandi

angulata Hettangian 0 0 0 11 0 2 0 13

liasicus 0 0 0 1 0 0 0 1

planorbis 9 90 0 12 0 0 9 102
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corroborated by the fact that even the density of
some of the lightest Recent cetaceans (e.g., harbor
porpoise Phocoena phocoena) is higher than that previ-
ously assumed for the most common European ich-
thyosaur Stenopterygius (Kemp et al. 2006;
McLellan et al. 2002; Motani 2001; Reisdorf
2007). Therefore, previous body mass calculations of
ichthyosaur bodies, which presume a seawater density of
the ichthyosaurs, are too low (Reisdorf 2007).

3. If an ichthyosaur body is assumed to have been nega-
tively buoyant, locomotion models which assume that
ichthyosaurs needed to overcome positive buoyancy
when diving (e.g., Taylor 1987; McGowan 1992)
require re-evaluation. Sleep behavior must also
have been adapted for negative buoyancy: ichthyosaurs
had to actively surface to respire, as do Cetaceans (e.g.,
Lyamin et al. 2006; Ridgway 2002; Staunton 2005;
Wade 1984).

4. Most of the ichthyosaurs that were not killed by exter-
nal forces died by drowning when rendered unable to
surface, due to diseases, complications during preg-
nancy and the birth process, or old age (Kastelein
et al. 1995; Knieriem and García Hartmann 2001;
Reisdorf 2007; Shevill et al. 1967; Slijper 1962;
Smith 2007a; Fig. 4). They subsequently sank.
This theoretically opens the possibility to apply
the “diatom-test” (e.g., Hürlimann et al. 2000) to
ichthyosaurs, especially to Cretaceous representatives.
These algae and other small particles (e.g., Knieriem
and García Hartmann 2001; Möttönen and Nuutila
1977; Yoshimura et al. 1995) can be deposited in bones
when lung-breathing vertebrates inhale water when
drowning (but see also Kan 1973, and Koseki 1968).
However, the possible occurrence of such a “fossil trap”
has yet to be analysed.

5. Ichthyosaurs usually settled on the sea-floor without
any density increase or buoyancy decrease except for the
compression of the body as well as the compression (e.g.,
Hui 1975) and the dissolution of gas contained in the
carcass (e.g., Haglund and Sorg 2002; Kemp 2001; Smith
2007a).

6. Buoyancy-increasing formation of putrefaction gases
plays a crucial role with respect to the drift behaviour
and fossilization of vertebrate carcasses in shallow
marine (and lacustrine) depositional environments. A
disarticulated skeleton with bones preserved in spatial
proximity helps to estimate palaeobathymetry, because
the hydrostatic pressure had to be sufficient to
counteract the effects of gas formed by putrefaction
(0“Cartesian Diver Effect”). This is also important for
the interpretation of marine (and lacustrine) fossillager-
stätten (e.g., Beardmore et al. 2012, this issue; Buffetaut
1994; Elder and Smith 1988; Esperante et al. 2008;

Hofmann 1958; Hogler 1992; Mancuso and Marsicano
2008; Reisdorf and Wuttke 2012, this issue; Sander
1989; Smith and Wuttke 2012, this issue; Zangerl and
Richardson 1963).

7. We suggest the use of the term “ichthyosaur fall” for
more or less completely preserved ichthyosaur skele-
tons. This is in accordance with the established marine
biological terms “nekton fall” and “whale fall” (e.g.,
Smith and Baco 2003), which describe carcasses or
skeletons of nektonic organisms which sank through
the water column to the seafloor.

8. We found that our newly constructed “Ichthyosaur
Corpse Curves” for England, south-western Germany
and Switzerland (Fig. 5) correlate well with the global
sea-level curve of the Early Jurassic by Hallam (e.g.,
Hallam 2001), but do not match that of Haq et al.
(1988) or de Graciansky et al. (1998). Additional uni-
formitarian taphonomic studies of modern marine
lung-breathing vertebrates are necessary to improve
“nekton falls” as a useful palaeobathymetric proxy.

9. Most of the outlined factors and mechanisms affecting
the density and maceration of Recent cetaceans and
ichthyosaurs in water can be generalised with respect
to most lung-breathing marine vertebrates and various
land-living tetrapods such as humans, at least with some
minor modifications (e.g., Donoghue and Minnigerode
1977; Gray et al. 2007; Tomita 1975, 1976).

10. Our findings have implications for a number of today’s
environmental problems and the protection of species:
The carcasses of many lung-breathing marine verte-
brates, such as those of whales, cannot be observed
because most of them will never surface or strand (e.g.,
Cassoff et al. 2011; Ford et al. 2000; Kirkwood et al.
1997; Moreno et al. 1992; Smith 2007a). Knowledge
of postmortem hydrostatic pressure, temperature and
scavenging rate conditions in Recent cetaceans and
ichthyosaurs can serve as a model for human carcasses
(Anderson and Hobischak 2004; Haglund 1993; Hood
et al. 2003; Kahana et al. 1999; Moreno et al. 1992;
Petrik et al. 2004; Schäfer 1972) and thus be applied to
the retrieval of missing humans after disasters (e.g.,
tsunamis, heavy flooding, cyclones) and crimes from
bodies of water (e.g., Blanco Pampin and Lopez-Abajo
Rodriguez 2001; Tomita 1975, 1976; Tsokos and
Byard 2011).
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